圆的常用辅助线
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
圆中常作哪些辅助线?通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下:弦与弦心距,密切紧相连直径对直角,圆心作半径已知有两圆,常画连心线遇到相交圆,连接公共弦遇到相切圆,作条公切线“有点连圆心,无点作垂线.”切线证明法,规律记心间一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连例1.如图,AB是O O的直径,P0丄AB交O O于P点, 弦PN与AB相交于点M,求B 证:PM?PN=2PO 2分析:要证明PM?PN=2PO12,即证明PM ?—PN =PO 2 ,2过O点作OC丄PN于C,根据垂经定理-PN =PC,只需证明2爭、。
…企M0PM ?PC=PO 2,由PO_PM亠,“三点定型”法可判断需证。
_。
丈Z企OCPC PO明Rt △^OC s Rt△^MO.证明:过圆心O作OC丄PN于C,.・.PC= — PN2 •••PO 丄AB, OC 丄PN ,•••/"OP= /OCP=90 0又V/0PC= /MPO APOCsRt△PMO.PO PM 2•——=——,即•P02= PM ?PC.PC PO1•••PO 2= PM ?—PN ,.・.PM?PN=2PO 22二、连结半径与切线相互垂直”都与圆的半径有关 .连结半径是常用的方法之一例2 .已知:△KBC 中,/ B=90 0, O 是AB 上一点,以 0为圆心,以 0B 为半径的圆 切AC 与D 点,交AB 与E 点,AD=2 , AE=1.求证:CD 的长.分析:D 为切点,连结 DO ,/ODA=90 0.根据切线长定理A CD=CB.DO=EO= 半径r ,在Rt △ADO 中根据勾股定理或 Rt △ADO- Rt △KBC ,求出 CD.证明:连结DO••QD 丄 AC 于 D, •••JOCP=90 0 ••AB 过 O 点,/B=90 0.•••BC 为O O 的切线,•••CD=CB 设 CD=CB=x,DO=EO=y 在 Rt △KDO 中,AO 2 =AD 2+ DO 2, AD=2 , AE=1 3 .•(1+y) 2=2 2+y 2, • y= 一2在 Rt △KBC 中,AC 2=AB 2+ BC 2,即(2+x) 2=(1 +•••CD=3. 三、连结公共弦第2页共9页 二_圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径3+3)2+x 2,.・.X=32 2在处理有关两圆相交的问题时,公共弦像一把A“钥匙”,常常可以打开相应的“锁”,因此“遇到相交圆,连接公共弦例3 .已知:如图,O O i和O 02相交于点A和B,0201的延长线交O 0i于点C, CA、CB的延长线分别和O 02相交于点D、E,求证:AD=BE.分析:O 01和O 02是相交的两圆,作公共弦AB为辅助线.证明:连结AB交0201于P点,•••01 02丄A B且01 02的平分AB•••CA=CB•••ZAC P= /BC P•••点02到线段AD、CE的距离相等•••AD=BE.四、作连心线两圆相交,连心线垂直平分两圆的公共弦;两圆相切,连心线必过切点.通过作两圆的连心线,可沟通圆心距、公共弦、两圆半径之间的关系.因此,“已知有两圆,常画连心线.”例4 .已知:如图,O A和O B外切于P点, O A的半径为r和O B的半径为3r, CD为O A、••AC 丄CD , BD 丄CD第3页共9页•••/BAC= 90 0•••AB 丄 A C .O B 的外公切线,C 、D 为切点,求:(1 ) CD与弧PD 及弧PC 所围成的阴影部分的面积解:连结AB 、AC 、BD• O A 和O B 外切于P 点,••• AB 过P 点 •••CD 为O A 、O B 的外公切线,C 、D 为切点,过A 点作AE 丄BD 于E ,则四边形 ACDE 为矩形.的长;(2)•••/BAC= 90 0•••AB 丄 A C .题中,所作的内公切线 MN 起到沟通两圆的作用.因此,相切两圆过切点的公切线是常用辅 助线.例5 .已知:O O i 和O O 2外切于点A , BC 是O 求证:AB 丄A C证明:过切点A 作公切线MN 交BC 于P 点,•••BC 是O 01和O 02外公切线,.•.PB = PA=PC•••/PBA= /PAB ,/P AC= /PCA •//PBA+ /P AB+ /P AC+ /P CA= 180 0•••DE=AC= r , BE=BD-DE=3r-r=2r 在 Rt △AEB 中,AB=AP+PB=r+3r=4r ,BE=2r••AE= J AB 2 - BE 2 = J16r 2 -4r 2 =273r .•••CD=2 J 3 r .•••COSB=匹卫」,•/B=60 0.AB 4r 2•••2CAB= /CAE+ /BAE=90 0+3O 0=120 0•S 阴影=S 梯形ABDC -S 扇形BPD -S 扇形ACP_ 3 1— =4 V 3 r 2 -------- n r 2 ------- 冗r 2 = (4 J 3 —2 311—n) r 2.6五、作公切线分析:相切两圆过切点有一条公切线,这条公切线在解题时起着非常重要的作用,如本01和O 02外公切线,B 、C 为切点 N六、切线判定分两种:公共点未知作垂线、公共点已知作半径切线的判定定理是:“经过半径的外端,并且垂直于这条半径的直线是圆的切线.”就是说, 要判定一条直线是否是切线,应同时满足这样的两条: (1 )直线经过半径的外端,(2)直线垂直于这条半径,所以,在证明直线是切线时,往往需要通过作恰当的辅助线,才能顺利地解决问题•下面是添辅助线的小规律1 .无点作垂线需证明的切线,条件中未告之与圆有交点,则联想切线的定义,过圆心作该直线的垂线, 证明垂足到圆心的距离等于半径D例6 .已知:如图,AB是半圆的直径,AD丄AB于A , BC丄AB于B,若/DOC= 90 0.求证:DC是半圆的切线.A分析:DC与O O没有交点,“无点作垂线”,过圆心O作OE丄DC,只需证0E等于圆的半径•因为AO为半径,若能证OE=OA即可•而0E、0A 在MEO、8AO 中,如何证明ADEO空DAO呢?证明:作OE丄DC于E点,取DC的中点F,连结OF.又•••/DOC= 90 0••• FO=FD••AD 丄AB , BC 丄AB,••• /2= /3.•••OF为梯形的中位线.•••OF /AD .•••DO是/ADE的角平分线.••OA 丄DA , OE 丄DC ,•••OA=OE=圆的半径.• DC是半圆的切线.2 .有点连圆心.当直线和圆的公共点已知时,联想切线的判定定理,只要将该点与圆心连结,再证明该半径与直线垂直例7 . AB为O O的直径,BC为O O的切线,切点为B, OC平行于弦AD,求证:CD是O O的切线.分析:D在O O上,“有点连圆心”,连结DO,证明DO丄DC即可.证明:连结DO , V OC //AD •••/DAO= /COB , /DAO= /DOC •••JDOC= /COB,又OC=OC , DO=BO •••△DOC ^^BOC •••/ODC= /OBC ,•••BC为O O的切线,切点为B •••/OBC=90 0[课后冲浪]•••/ODC=90 0,又 D 在O O 上,•••CD是O O的切线.一、证明解答题且AB=CD.求证:P0平分/BPD .0相切.19 •如图,学校 A 附近有一公路 MN ,—拖拉机从 P 点出发向PN 方向行驶,已知/ NPA=30 °,AP=160米,假使拖拉机行使时,A 周围100米以内受到噪音影响,问:当拖拉机向PN 方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为 18千米/小时,则受噪音影响的时间是多少秒?20 .如图,A 是半径为1的圆0外的一点,0A=2 切线,B 是切点,弦BC//0A ,连结AC ,求阴影部分的面积.16 .已知:P 是O O 外一点,PB , 17 .如图,A ABC 中,/C=90 圆0分别与AC 、BC 相切于 M 、N ,如果 A0=15 cm, BO=10 cm,求圆 O18 .已知:CABCD 的对角线 AC 、BD 交于0点,BC 切O 0于E 点.求证:AD 也和OPPD 分别交O 0于A 、B 和C 、_■CD 是弦,AE 丄CD ,垂足为 E,BF 丄CD ,垂足为02为圆心,0i 02为半径作一个圆交O 01于C ,AF.求证:DE=CF.D .直线0i 02分别交O 0i 于延长线和O 结AC , BC .⑴求证:AC=BC ;⑵设O 0i 连AD , BD ,求证:四边形ADBC 是菱形;0i , O 02于点A 与点B .连的面积. 23 .已知:如图, AB 是O 0的直径,BC 是O 0的切线,连 AC 交O 0 21 .如图,已知 AB 是O O 的直径,22 .如图,02是O O i 上的一点,以于D ,过D 作O O 的切线EF ,交BC 于E 点.求证:OE //AC.二、探索题BC 是O O 的切线,切点为B , OC 平行于弦 AD .求察P 点在DE 的什么位置?并说明理由B24 .已知:图a, AB 是O O 的直径, 证:(1) DC 是O O 的切线,(2 )过D 点作DE 丄AB ,图b 所示,交AC 于P 点,请考。
中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。
下面以几道题目为例加以说明。
1. 有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。
例1 如图1, O O的弦AB、CD相交于点P,且AC=BD。
求证:PO平分/ APD。
=> OE=OF ]/ OEP= / OFP=90 °=> △OPE^A OPF0OP=OP=> / OPE= / OPF => PO 平分/ APD分析2:如图1-1,欲证PO平分/ APD,即证分析1:由等弦AC=BD可得出等弧AC BD,进一步得出A B = C D,从而可证等弦AB=CD,由同圆中等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线丄CD,易证△ OPE^A OPF,得出PO平分/ APD。
证法1 :作OE丄AB于E, OF丄CD于F(=>(=AB CDAC=BD A C B D=> AB=CDOE丄AB, OF/ OPA= / OPD,可把/ OPA与/ OPD构造在两个三角形中,证三角形全等,于是不妨作辅助线即半径OA,OD,因此易证△ ACP^A DBP,得AP=DP,从而易证△ OPAOPDODP B图1-1证法2:连结OA, OD。
/ CAP= / BDP/ APC= / DPB => △ACP^A DBPAC=BD=>AP=DP、OA=O D => △ OPAOPD => / OPA= / OPD =>PO 平分/ APD OP=OP J2. 有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
初中几何辅助线——圆常用辅助线题型 1.圆中解决有关弦的问题时,常常需要作出圆心到弦的垂线段(即弦心距)这一辅助线,一是利用垂径定理得到平分弦的条件,二是构造直角三角形,利用勾股定理解题.例1如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 二点.求证:AC = BD证明:过O 作OE ⊥AB 于E∵O 为圆心,OE ⊥AB∴AE = BE CE = DE ∴AC = BD练习:如图,AB 为⊙O 的弦,P 是AB 上的一点,AB = 10cm ,P A = 4cm .求⊙O 的半径.题型2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.例2如图,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,求证:证明:(一)连结OC 、OD∵M 、N 分别是AO 、BO 的中点∴OM =12AO 、ON = 12BO ∵OA = OB∴OM = ON∵CM ⊥OA 、DN ⊥OB 、OC = OD ∴Rt △COM ≌Rt △DON ∴∠COA = ∠DOB ∴(二)连结AC 、OC 、OD 、BD∵M 、N 分别是AO 、BO 的中点 ∴AC = OC BD = OD ∵OC = OD ∴AC = BD∴题型3.有弦中点时常连弦心距例3如图,已知M 、N 分别是⊙O 的弦AB 、CD 的中点,AB = CD ,求证:∠AMN = ∠CNM证明:连结OM 、ON∵O 为圆心,M 、N 分别是弦AB 、CD 的中点 ∴OM ⊥AB ON ⊥CD ∵AB = CD ∴OM = ON∴∠OMN = ∠ONM∵∠AMN = 90o -∠OMN ∠CNM = 90o-∠ONM ∴∠AMN =∠CNM题型4.证明弦相等或已知弦相等时常作弦心距.例4如图,已知⊙O 1与⊙O 2为等圆,P 为O 1、O 2的中点,过P 的直线分别交⊙O 1、⊙O 2于A 、C 、D 、B .求证:AC = BD证明:过O 1作O 1M ⊥AB 于M ,过O 2作O 2N ⊥AB 于N ,则O 1M ∥O 2N∴1122O M O PO N O P= ∵O 1P = O 2P ∴O 1M = O 2N ∴AC = BD题型5.有弧中点(或证明是弧中点)时,常有以下几种引辅助线的方法:⑴连结过弧中点的半径 ⑵连结等弧所对的弦 ⑶连结等弧所对的圆心角例5如图,已知D 、E 分别为半径OA 、OB 的中点,C 为弧AB 的 中点,求证:CD = CE证明:连结OC∵C 为弧AB 的中点∴»»AB BC = ∴∠AOC =∠BOC∵D 、E 分别为OA 、OB 的中点,且AO = BO∴OD = OE = 12AO = 12BO又∵OC = OC∴△ODC ≌△OEC ∴CD = CE结论1.圆内角的度数等于它所对的弧与它对顶角所对的弧的度数之和的一半. 结论2.圆外角的度数等于它所截两条弧的度数之差的一半.结论3.有直径时常作直径所对的圆周角,再利用直径所对的圆周角为直角证题.例6如图,AB为⊙O的直径,AC为弦,P为AC延长线上一点,且AC = PC,PB的延长线交⊙O于D,求证:AC = DC 证明:连结AD∵AB为⊙O的直径∴∠ADP = 90o∵AC = PC∴AC = CD =12 AP练习:如图,在Rt△ABC中,∠BCA = 90o ,以BC为直径的⊙O交AB于E,D为AC中点,连结BD交⊙O于F.求证:BC CF BE EF=题型6.有垂直弦时也常作直径所对的圆周角.题型7.有等弧时常作辅助线有以下几种:⑴作等弧所对的弦⑵作等弧所对的圆心角⑶作等弧所对的圆周角练习:1.如图,⊙O的直径AB垂直于弦CD,交点为E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD =∠FMC(提示:连结BM)2.如图,△ABC内接于⊙O,D、E在BC边上,且BD = CE,∠1 =∠2,求证:AB = AC(提示如图)题型8.有弦中点时,常构造三角形中位线例7已知,如图,在⊙O中,AB⊥CD,OE⊥BC于E,求证:OE =12 AD证明:作直径CF,连结DF、BF ∵CF为⊙O的直径∴CD⊥FD又∵CD⊥AB∴AB∥DF∴»»AD BF=∴AD = BF∵OE⊥BC O为圆心CO = FO ∴CE = BE∴OE =12 BF∴OE =12ADP2题图A1题图BA题型9.圆上有四点时,常构造圆内接四边形.例8如图,△ABC 内接于⊙O ,直线AD 平分∠F AC ,交⊙O 于E ,交BC 的延长线于D ,求证:AB ·AC= AD ·AE证明:连结BE ∵∠1 =∠3 ∠2 =∠1 ∴∠3 =∠2∵四边形ACBE 为圆内接四边形 ∴∠ACD =∠E ∴△ABE ∽△ADC∴AE AB AC AD∴AB ·AC = AD ·AE题型10.两圆相交时,常连结两圆的公共弦例9如图,⊙O 1与⊙O 2相交于A 、B ,过A 的直线分别交⊙O 1、⊙O 2于C 、D ,过B 的直线分别交⊙O 1、⊙O 2于E 、F .求证:CE ∥DF证明:连结AB∵四边形为圆内接四边形∴∠ABF =∠C同理可证:∠ABE =∠D∵∠ABF +∠ABE = 180o ∴∠C +∠D = 180o ∴CE ∥DF题型11.在证明直线和圆相切时,常有以下两种引辅助线方法:⑴当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可.⑵如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可.例10如图,P 为⊙O 外一点,以OP 为直径作圆交⊙O 于A 、B 两点,连结P A 、PB .求证:P A 、PB 为⊙O 的切线 证明:连结OA ∵PO 为直径∴∠P AO = 90o ∴OA ⊥P A∵OA 为⊙O 的半径 ∴P A 为⊙O 的切线同理:PB 也为⊙O 的切线例11如图,同心圆O ,大圆的弦AB = CD ,且AB 是小圆的切线,切点为E ,求证:CD 是小圆的切线证明:连结OE ,过O 作OF ⊥CD 于F ∵OE 为半径,AB 为小圆的切线∴OE ⊥AB ∵OF ⊥CD , AB = CD∴OF = OE ∴CD 为小圆的切线P练习:如图,等腰△ABC ,以腰AB 为直径作⊙O 交底边BC 于P ,PE ⊥AC 于E , 求证:PE 是⊙O 的切线题型12.当已知条件中有切线时,常作过切点的半径,利用切线的性质定理证题.例12如图,在Rt △ABC 中,∠C = 90o ,AC = 12,BC = 9,D 是AB 上一点,以BD 为直径的⊙O 切AC 于E ,求AD 长.解:连结OE ,则OE ⊥AC∵BC ⊥AC ∴OE ∥BC∴OE AOBC AB=在Rt △ABC 中,AB= 15==∴15915OE AB OB OEAB --==∴OE = OB = 458∴BD = 2OB = 454∴AD = AB -DB = 15-454= 154答:AD 的长为154.练习:如图,⊙O 的半径OA ⊥OB ,点P 在OB 的延长线上,连结AP 交⊙O 于D ,过D 作⊙O 的切线CE 交OP 于C ,求证:PC = CDCC AE。
十大辅助线口诀在进行几何作图时,辅助线的作用是不可忽视的。
正确使用辅助线可以大大提高作图效率,减少错误率,更加准确地画出所需图形。
为了帮助大家更好地理解和掌握辅助线的使用方法,我们整理出了“十大辅助线口诀”,便于大家记忆和应用。
第一大辅助线口诀:“中点万能定位,利用中垂线交点作图”。
这是一个非常实用的口诀,利用中点和中垂线可以快速定位图形的位置和大小。
例如,在画平行四边形时,只需画出其中一条对角线的中垂线,然后在中垂线上取一点作为原点,再利用对角线的中点和原点连线即可准确画出整个平行四边形。
第二大辅助线口诀:“平移移动平行线,平行四边形任意成”。
这个口诀可以帮助我们在画平行四边形时更加方便灵活。
只要确定两条平行线段,就可以通过平移移动其中一条线段使其与另一条平行线段重合,然后连接相应点即可。
第三大辅助线口诀:“圆周角相等,利用等角、同弦定位”。
在画与圆有关的图形时,这个口诀非常实用。
只需利用圆周角相等的性质,画出等角或同弦即可确定圆上的点位置。
第四大辅助线口诀:“切线垂直半径,直角可随便”。
这个口诀是在画圆和圆内的图形时比较常用的。
利用切线垂直半径的性质,可以确定直角位置,使作图更加准确。
第五大辅助线口诀:“直角三角形,利用勾股定位”。
这个口诀是在画直角三角形时非常实用的。
只要确定两条直角边的长度,就可以利用勾股定理求出第三条边的长度,并画出整个三角形。
第六大辅助线口诀:“四边形内对角线,对半分线交于一点”。
这个口诀是在画四边形时非常实用的,只需将对角线对半分,再连接相应线段的中点即可确定四边形的位置和大小。
第七大辅助线口诀:“平行线分段比,适用比例定位”。
这个口诀是在画平行线间的图形时非常实用的,只需利用线段比例的性质来确定每个点的位置。
第八大辅助线口诀:“正多边形内角和,等于360度”。
这个口诀是在画正多边形时非常实用的,只需根据内角和为360度的性质来确定每个角度,即可画出整个正多边形。
第九大辅助线口诀:“等腰三角形,利用对称轴对称”。
1.碰到弦时(解决相关弦的问题时)经常增添弦心距,或许作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
或许连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用: 1 、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径构成直角三角形,依据勾股定理求相关量。
4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。
例:如图,AB是⊙ O 的直径 ,PO⊥ AB 交⊙ O 于 P 点,弦 PN 与 AB 订交于点 M ,求证:PM ?PN=2PO 2.剖析:要证明PM?PN=2PO2,即证明 PM ?PC =PO 2,过 O 点作 OC⊥PN 于 C,依据垂经定理 NC=PC ,只需证明PM?PC=PO2,要证明 PM?PC=PO2只需证明 Rt△ POC∽Rt △ PMO.1证明 : 过圆心 O 作 OC⊥ PN 于 C,∴ PC=PN2∵PO⊥ AB, OC ⊥PN ,∴∠ MOP= ∠ OCP=90° .又∵∠ OPC=∠ MPO ,∴ Rt△POC∽ Rt△PMO.∴ PO PC即∴ PO2 = PM?PC.∴ PO2= PM ?1PN,∴ PM ?PN=2PO2.PM PO2【例 1】如图,已知△ ABC内接于⊙ O,∠ A=45°, BC=2,求⊙ O的面积。
AOB C【例 2】如图,⊙ O的直径为10,弦 AB=8, P 是弦 AB 上一个动点,那么 OP的长的取值范围是 _________ .【例 3】如图,弦AB的长等于⊙ O的半径,点 C 在弧 AMB上,则∠ C的度数是 ________.2. 碰到有直径时经常增添(画)直径所对的圆周角。
作用:利用圆周角的性质,获得直角或直角三角形。
例 如图,在△ ABC 中,∠ C=90°,以 BC 上一点 O 为圆心,以 OB 为半径的圆交 AB 于点 M ,交 BC 于点 N .( 1) 求证: BA · BM=BC · BN ;( 2) 假如 CM 是⊙ O 的切线, N 为 OC 的中点,当 AC=3 时,求 AB 的值.剖析:要证 BA · BM=BC · BN ,需证△ ACB ∽△ NMB ,而∠ C=90°,因此需要△ NMB 中有个直角,而BN 是圆 O 的直径,因此连结 MN 可得∠ BMN=90 °。
垂径定理辅助线的做法
垂径定理是圆的基本性质之一,它指出经过圆心的直径垂直于该圆的弦,并且平分弦所对的弧。
在解决与垂径定理相关的问题时,通常需要添加辅助线来帮助证明。
以下是一些常见的垂径定理辅助线的做法:
1. 连接弦与直径的交点与圆心的线段。
这条线段是直径,它将垂直于弦,并且平分弦所对的弧。
2. 作出弦的中垂线。
中垂线将通过圆心并与直径垂直。
这条线将平分弦,并且平分弦所对的弧。
3. 作出圆心到弦的垂足,然后连接垂足与弦与直径的交点。
这条线段将垂直于弦,并且平分弦所对的弧。
4. 作出圆心到弦的两个端点的线段,然后连接这两个线段的延长线与直径的交点。
这两个交点将平分弦,并且平分弦所对的弧。
以上是常见的垂径定理辅助线的做法,可以根据具体的问题选择合适的方法来添加辅助线,帮助证明垂径定理。
圆中的重要模型之辅助线模型(八大类)在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本专题通过分析探索归纳八类圆中常见的辅助线的作法。
模型1、遇弦连半径(构造等腰三角形)【模型解读】已知AB 是⊙O 的一条弦,连接OA ,OB ,则∠A =∠B .在圆的相关题目中,不要忽略隐含的已知条件。
当我们要解决有关角度、长度问题时,通常可以连接半径构造等腰三角形,利用等腰三角形的性质、勾股定理及圆中的相关定理,还可连接圆周上一点和弦的两个端点,根据圆周角的性质可得相等的圆周角,解决角度或长度的计算问题1(2022·山东聊城·统考中考真题)如图,AB ,CD 是⊙O 的弦,延长AB ,CD 相交于点P .已知∠P =30°,∠AOC =80°,则BD 的度数是()A.30°B.25°C.20°D.10°【答案】C【分析】如图,连接OB ,OD ,AC ,先求解∠OAC +∠OCA =100°,再求解∠PAO +∠PCO =50°,从而可得∠BOA +∠COD =260°,再利用周角的含义可得∠BOD =360°-80°-260°=20°,从而可得答案.【详解】解:如图,连接OB ,OD ,AC ,∵∠AOC =80°,∴∠OAC +∠OCA =100°,∵∠P =30°,∴∠PAO +∠PCO =50°,∵OA =OB ,OC =OD ,∴∠OBA =∠OAB ,∠OCD =∠ODC ,∴∠OBA +∠ODC =50°,∴∠BOA +∠COD =260°,∴∠BOD =360°-80°-260°=20°.∴BD的度数20°.故选:C .【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.2(2023•南召县中考模拟)如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE =OB ,∠AOC =84°,则∠E 等于()A.42°B.28°C.21°D.20°【分析】利用OB =DE ,OB =OD 得到DO =DE ,则∠E =∠DOE ,根据三角形外角性质得∠1=∠DOE+∠E ,所以∠1=2∠E ,同理得到∠AOC =∠C +∠E =3∠E ,然后利用∠E =13∠AOC 进行计算即可.【解答】解:连结OD ,如图,∵OB =DE ,OB =OD ,∴DO =DE ,∴∠E =∠DOE ,∵∠1=∠DOE +∠E ,∴∠1=2∠E ,而OC =OD ,∴∠C =∠1,∴∠C =2∠E ,∴∠AOC =∠C +∠E =3∠E ,∴∠E =13∠AOC =13×84°=28°.故选:B .【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3(2023·江苏沭阳初三月考)如图,已知点C 是⊙O 的直径AB 上的一点,过点C 作弦DE ,使CD =CO .若AD 的度数为35°,则BE 的度数是.【答案】105°.【分析】连接OD 、OE ,根据圆心角、弧、弦的关系定理求出∠AOD =35°,根据等腰三角形的性质和三角形内角和定理计算即可.【解析】解:连接OD 、OE ,∵AD的度数为35°,∴∠AOD =35°,∵CD =CO ,∴∠ODC =∠AOD =35°,∵OD =OE ,∴∠ODC =∠E =35°,∴∠DOE =180°-∠ODC -∠E =180°-35°-35°=110°,∴∠AOE =∠DOE -∠AOD =110°-35°=75°,∴∠BOE =180°-∠AOE =180°-75°=105°,∴BE 的度数是105°.故答案为105°.【点睛】本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.4(2023年山东省淄博市中考数学真题)如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D 是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为()A.10B.3210 C.210 D.310【答案】A【分析】连接OA,OC,CE, 根据等腰三角形的性质得到∠B=∠ACB=30°, 根据等边三角形的性质得到AC=OA,根据相似三角形的判定和性质即可得到结论.【详解】连接OA,OC,CE,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OA,∵∠AEC=∠ACB=30°,∠CAD=∠EAC,∴△ACD∽△AEC,∴ACAD =AEAC,∴AC2=AD·AE,∵AD=2,DE=3,∴AC=AD×AE=2×2+3=10,∴OA=AC=10,即⊙O的半径为10,故选:A.【点睛】本题考查了圆周角定理,等腰三角形的性质,等边三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质度量是解题的关键.模型2、遇弦作弦心距(解决有关弦长的问题)【模型解读】已知AB是⊙O的一条弦,过点OE⊥AB,则AE=BE,OE2+AE2=OA2。
圆中常见的辅助线的作法
1.遇到弦时(解决有关弦的问题时)
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;
③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
2.遇到有直径时
常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质得到直角或直角三角形。
3.遇到90度的圆周角时
常常连结两条弦没有公共点的另一端点。
作用:利用圆周角的性质,可得到直径。
4.遇到弦时
常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。
5.遇到有切线时
(1)常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。
(2)常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。
6.遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。
作用:若OA=r,则l为切线。
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)
作用:只需证OA⊥l,则l为切线。
(3)有遇到圆上或圆外一点作圆的切线
7.遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
作用:据切线长及其它性质,可得到:
①角、线段的等量关系;
②垂直关系;
③全等、相似三角形。
8.遇到三角形的内切圆时
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:利用内心的性质,可得:
①内心到三角形三个顶点的连线是三角形的角平分线;
②内心到三角形三条边的距离相等。
9.遇到三角形的外接圆时,连结外心和各顶点
作用:外心到三角形各顶点的距离相等。
10.遇到两圆外离时(解决有关两圆的外、内公切线的问题)
常常作出过切点的半径、连心线、平移公切线,或平移连心线。
作用:①利用切线的性质;②利用解直角三角形的有关知识。
11.遇到两圆相交时
常常作公共弦、两圆连心线、连结交点和圆心等。
作用:①利用连心线的性质、解直角三角形有关知识;
②利用圆内接四边形的性质;
③利用两圆公共的圆周的性质;
④垂径定理。
12.遇到两圆相切时
常常作连心线、公切线。
作用:①利用连心线性质;
②切线性质等。
13.遇到三个圆两两外切时
常常作每两个圆的连心线。
作用:可利用连心线性质。
14.遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时常常添加辅助圆。
作用:以便利用圆的性质。