高中数学 第一章 解三角形C组测试题 新人教A版必修5
- 格式:doc
- 大小:332.50 KB
- 文档页数:6
第一章 1.2 应用举例第二课时 高度、角度问题课时分层训练‖层级一‖|学业水平达标|1.如图,在湖面上高为10 m 处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)( )A .2.7 mB .17.3 mC .37.3 mD .373 m解析:选C 根据题图,由题意知CM =DM . ∴CM -10tan 30°=CM +10tan 45°,∴CM =tan 45°+tan 30°tan 45°-tan 30°×10≈37.3(m),故选C. 2.渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4 km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)( )A .14.5 km/hB .15.6 km/hC .13.5 km/hD .11.3 km/h解析:选C 由物理学知识,画出示意图如图.AB =15,AD=4,∠BAD =120°.在▱ABCD 中,D =60°.在△ADC 中,由余弦定理,得AC =AD 2+CD 2-2AD ·CD cos D =16+225-4×15=181≈13.5(km/h).故选C.3.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D ,测得塔顶A 的仰角为30°,则塔高为( )A .15米B .5米C .10米D .12米解析:选C如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h .在Rt △AOD 中,∠ADO =30°,则OD =3h , 在△OCD 中,∠OCD =120°,CD =10,由余弦定理,得OD 2=OC 2+CD 2-2OC ·CD cos ∠OCD ,即(3h )2=h 2+102-2h ×10×cos 120°,∴h 2-5h -50=0,解得h =10或h =-5(舍去).4.甲船在B 岛的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时,乙船自B 岛出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是( )A.1507 minB .157 hC .21.5 minD .2.15 h 解析:选A 设经过x 小时时距离为s ,则在△BPQ 中,由余弦定理知PQ 2=B P 2+BQ 2-2BP ·BQ ·cos 120°,即s 2=(10-4x )2+(6x )2-2(10-4x )·6x ·⎝ ⎛⎭⎪⎫-12=28x 2-20x +100,∴当x =514 h 时,s 2最小,即当航行时间为514 h =1507 min 时,s 最小.5.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30°,45°,60°,且AB =BC =60 m ,则建筑物的高度为( )A .15 6 mB .20 6 mC .25 6 mD .30 6 m解析:选D 设建筑物的高度为h ,由题图知,P A =2h ,PB =2h ,PC =233h ,∴在△PBA 和△PBC 中,分别由余弦定理,得cos ∠PBA =602+2h 2-4h 22×60×2h,① cos ∠PBC =602+2h 2-43h 22×60×2h.② ∵∠PBA +∠PBC =180°,∴cos ∠PBA +cos ∠PBC =0.③由①②③,解得h =306或h =-306(舍去),即建筑物的高度为30 6 m.6.学校里有一棵树,甲同学在A 地测得树尖的仰角为45°,乙同学在B 地测得树尖的仰角为30°,量得AB =AC =10 m 树根部为C (A 、B 、C 在同一水平面上),则∠ACB = .解析:如图,AC =10,∠DAC =45°,∴DC =10.∵∠DBC =30°,∴BC =103, cos ∠ACB =102+(103)2-1022×10×103=32, ∴∠ACB =30°.答案:30°7.如图,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA=60°.已知山高BC =100 m ,则山高MN = m.解析:根据题图所示,AC =100 2.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3.在△AMN 中,MN AM =sin 60°,∴MN =1003×32=150(m).答案:1508.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正以每小时90海里的速度向它靠近,此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船到达商船.解析:如图,设观测站、商船、分别位于A,B处,开始时,海盗船位于C处,20分钟后,海盗船到达D处.在△ADC中,AC=107,AD=20,CD=30,由余弦定理,得cos∠ADC=AD2+CD2-AC2 2AD·CD=400+900-7002×20×30=12,则∠ADC=60°.在△ABD中,由已知,得∠ABD=30°,∠BAD=60°-30°=30°,所以BD=AD=20,2090×60=403(分).答案:40 39.在社会实践中,小明观察一棵桃树.他在点A处发现桃树顶端点C的仰角大小为45°,往正前方走4米后,在点B处发现桃树顶端点C的仰角大小为75°.(1)求BC的长;(2)若小明身高为1.70米,求这棵桃树顶端点C离地面的高度(精确到0.01米,其中3≈1.732).解:(1)∠CAB=45°,∠DBC=75°,则∠ACB=75°-45°=30°,AB=4,由正弦定理得BCsin 45°=4sin 30°,解得BC=42(米),即BC的长为4 2 米.(2)在△CBD中,∠CDB=90°,BC=42,∴DC=42sin 75°.∵sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=6+24,则DC =2+23,∴CE =ED +DC =1.70+2+23≈3.70+3.464≈7.16(米),即这棵桃树顶端点C 离地面的高度约为7.16米.10.碧波万顷的大海上,“蓝天号”渔轮在A 处进行海上作业,“白云号”货轮在“蓝天号”正南方向距“蓝天号”20海里的B 处.现在“白云号”以每小时10海里的速度向正北方向行驶,而“蓝天号”同时以每小时8海里的速度由A 处向南偏西60°方向行驶,经过多少小时后,“蓝天号”和“白云号”两船相距最近.解:如图,设经过t 小时,“蓝天号”渔轮行驶到C 处,“白云号”货轮行驶到D 处,此时“蓝天号”和“白云号”两船的距离为CD .根据题意,知在△ADC 中,AC =8t ,AD =20-10t ,∠CAD=60°.由余弦定理,知CD 2=AC 2+AD 2-2×AC ×AD cos 60°=(8t )2+(20-10t )2-2×8t ×(20-10t )×cos 60°=244t 2-560t +400=244⎝ ⎛⎭⎪⎫t -70612+400-244×⎝ ⎛⎭⎪⎫70612, ∴当t =7061时,CD 2取得最小值,即“蓝天号”和“白云号”两船相距最近.‖层级二‖|应试能力达标|1.在一座20 m 高的观测台台顶测得对面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的高为( )A .20⎝⎛⎭⎪⎫1+33m B .20(1+3)m C .10(6+2)m D .20(6+2)m解析:选B 如图所示,AB 为观测台,CD 为水塔,AM 为水平线.依题意得AB =20,∠DAM =45°,∠CAM =60°,从而可知MD =20,AM =20,CM =203, ∴CD =20(1+3)(m). 2.在静水中划船的速度是每分钟40 m ,水流的速度是每分钟20 m ,如果船从岸边A 处出发,沿着与水流垂直的航线到达对岸,那么船前进的方向指向河流的上游并与河岸垂直的方向所成的角为( )A.π4B .π3 C.π6 D .512π解析:选C 设水流速度与船速的合速度为v ,方向指向对岸.则由题意知,sin α=v 水v 船=2040=12, 又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π6.故选C. 3.某工程中要将一长为100 m 倾斜角为75°的斜坡,改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长( )A .100 2 mB .100 3 mC .50(2+6)mD .200 m解析:选A ∠BAC =75°-30°=45°.在△ABC 中,AC =100 m ,由正弦定理,得BC sin ∠BAC=AC sin B ,∴BC =AC sin ∠BAC sin B =100×sin 45°sin 30°=1002(m).故选A.4.如图,在O 点测量到远处有一物体做匀速直线运动,开始时物体位于P 点,1分钟后,其位置在Q 点,且∠POQ =90°,再过1分钟,该物体位于R 点,且∠QOR =30°,则tan ∠OPQ 的值为( )A.12 B .22 C.32 D .3解析:选C 由题意知,PQ =QR ,设其长为1,则PR =2.在△OPR 中,由正弦定理,得2sin 120°=OP sin R .在△OQR 中,由正弦定理,得1sin 30°=OQ sin R ,则tan ∠OPQ =OQ OP =sin 120°2sin 30°=32.故选C.5.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距 m.解析:设两条船所在位置分别为A ,B 两点,炮台底部所在位置为C 点,在△ABC 中,由题意可知AC =30tan 30°=303(m),BC =30tan 45°=30(m),C =30°,AB 2=(303)2+302-2×303×30×cos 30°=900,所以AB =30(m).答案:306.某海岛周围38海里有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30海里后测得此岛在东北方向,若不改变航向,则此船 (填“有”或“无”)触礁的危险.解析:如图所示,暗礁位于C 处,开始时,轮船在A 处,航行30海里后,轮船在B 处.由题意在△ABC 中,AB =30,∠BAC =30°,∠ABC =135°,则∠ACB =15°.由正弦定理,得BC=AB sin ∠BAC sin ∠ACB =30sin 30°sin 15°=156-24=15(6+2). 在Rt △BDC 中,CD =22BC =15(3+1)>38.所以,此船无触礁的危险.答案:无7.如图,小明同学在山顶A 处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD =100 m ,汽车从C 点到B 点历时14 s ,则这辆汽车的速度为 m/s(精确到0.1,参数数据:2≈1.414,5≈2.236).解析:由题意,AB =200 m ,AC =100 2 m ,在△ABC 中,由余弦定理可得BC =40 000+20 000-2×200×1002×⎝ ⎛⎭⎪⎫-22≈ 316.17 m ,这辆汽车的速度为316.17÷14≈22.6 m/s.答案:22.68.如图所示,A ,B 是海面上位于东西方向相距5(3+3)n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?解:由题意,知AB=5(3+3),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB =ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 (h).。
第一章 解三角形章末检测(B )新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →²AC →等于( )A .-2B .2C .±4D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 57.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形 12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a=cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A的仰角分别为α,β,CD=a,测角仪器的高是h,用a,h,α,β表示建筑物高度AB.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2b sin A.(1)求B的大小.(2)若a=33,c=5,求b.19.(12分)如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;(2)求四边形OPDC面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+32-122³2³3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||²|AC →|²sin A =12³4³1³sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.²AC →=|AB →|²|AC →|cos A=4³1³cos A =±2.] 4.D [由正弦定理得b sin B =csin C, ∴sin C =c ²sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ²AC ²cos A , 即72=52+AC 2-10AC ²cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10²sin 60°15=33.∵a >b ,A =60°,∴B <60°. ∴cos B =1-sin 2B =1-332=63.]8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ²BC cos B ,∴12=(3)2+BC 2-2³3³BC ³32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ²BC sin B =12³3³1³12=34.当BC =2时,S △ABC =12AB ²BC sin B =12³3³2³12=32.]10.C [由S △ABC =12BC ²BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.] 12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =a 2+b 2-c 22ab2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos Bb.∴sin B =cos B .∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ²AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12³5³8³sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64³32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )²b 2+c 2-a 22bc=a ²a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β, 由正弦定理,得AC sin β=DCα-β,∴AC =a sin βα-β∴AB =AE +EB =AC sin α+h =a sin βsin αα-β+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ²sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°. 由余弦定理b 2=a 2+c 2-2ac cos B=(33)2+52-2³33³5³cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ²OC ²cos θ =5-4cos θ, 所以y =S △OPC +S △PCD =12³1³2sin θ+34³(5-4cos θ) =2sin ⎝ ⎛⎭⎪⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2α1+α2;第二步:计算AN .由正弦定理AN =d sin β2β2-β1;第三步:计算MN ,由余弦定理 MN =AM 2+AN 2-2AM ³AN α1-β1. 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ.又OC -θ=2sin 120°,∴OC =43sin(60°-θ).因此△POC 的面积为S (θ)=12CP ²OC sin 120°=12²43sin θ²43sin(60°-θ)³32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎪⎪⎫32cos θ-12sin θ =2sin θ²cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎪⎫2θ+π6-33∴θ=π6时,S (θ)取得最大值为33.。
高中数学学习材料金戈铁骑整理制作1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2cC R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、简单的判断三角形设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.7.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.8.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
章末综合测评(一) 解三角形满分:150分 时间:120分钟一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,a =k ,b =3k (k >0),A =45°,则满足条件的三角形有( ) A .0个 B .1个 C .2个D .无数个A [由正弦定理得a sin A =bsin B ,所以sin B =b sin A a =62>1,即sin B >1,这是不成立的.所以没有满足此条件的三角形.]2.已知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°B [设最小边为5,则三角形的三边分别为5,7,8,设边长为7的边对应的角为θ,则由余弦定理可得49=25+64-80cos θ,解得cos θ=12,∴θ=60°.则最大角与最小角的和为180°-60°=120°.]3.在△ABC 中,A =π3,BC =3,AB =6,则C =( ) A .π4或3π4 B .3π4 C .π4D .π6C [由BC sin A =AB sin C ,得sin C =22. ∵BC =3,AB =6,∴A >C , 则C 为锐角,故C =π4.]4.在△ABC 中,a =15,b =20,A =30°,则cos B =( )A .±53 B .23 C .-53D .53A [因为a sin A =b sinB ,所以15sin 30°=20sin B ,解得sin B =23.因为b >a ,所以B >A ,故B 有两解,所以cos B =±53.]5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6B [∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b6=k (k >0),则⎩⎨⎧b +c =4k ,c +a =5k ,a +b =6k ,解得⎩⎪⎨⎪⎧a =72k ,b =52k ,c =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.]6.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果2b =a +c ,B =30°,△ABC 的面积为32,那么b 等于( )A .1+32B .1+ 3C .2+22D .2 3B [∵S △ABC =12ac sin B ,∴ac =6.又∵b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac ·cos 30°=4b 2-12-63, ∴b 2=4+23,∴b =1+ 3.]7.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( )A .(2,+∞)B .(-∞,0)C .⎝ ⎛⎭⎪⎫-12,0D .⎝ ⎛⎭⎪⎫12,+∞D [由正弦定理得:a =mk ,b =m (k +1),c =2mk ,(m >0), ∵⎩⎨⎧a +b >c ,a +c >b ,即⎩⎨⎧m (2k +1)>2mk ,3mk >m (k +1), ∴k >12.]8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A 2=c -b2c ,则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形B [由已知可得1-cos A 2=12-b 2c ,即cos A =bc ,b =c cos A .法一:由余弦定理得cos A =b 2+c 2-a 22bc ,则b =c ·b 2+c 2-a 22bc , 所以c 2=a 2+b 2,由此知△ABC 为直角三角形. 法二:由正弦定理,得sin B =sin C cos A . 在△ABC 中,sin B =sin(A +C ),从而有sin A cos C +cos A sin C =sin C cos A , 即sin A cos C =0.在△ABC 中,sin A ≠0,所以cos C =0.由此得C =π2,故△ABC 为直角三角形.]9.已知圆的半径为4,a ,b ,c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2C . 2D .22C [∵a sin A =b sin B =c sin C=2R =8, ∴sin C =c 8,∴S △ABC =12ab sin C =abc 16=16216= 2.]10.在△ABC 中,三边长分别为a -2,a ,a +2,最大角的正弦值为32,则这个三角形的面积为( )A .154B .1534C .2134D .3534B [∵三边不等,∴最大角大于60°.设最大角为α,故α所对的边长为a +2,∵sin α=32,∴α=120°.由余弦定理得(a +2)2=(a -2)2+a 2+a (a -2),即a 2=5a ,故a =5,故三边长为3,5,7,S △ABC =12×3×5×sin 120°=1534.]11.如图,海平面上的甲船位于中心O 的南偏西30°,与O 相距15海里的C 处.现甲船以35海里/小时的速度沿直线CB 去营救位于中心O 正东方向25海里的B 处的乙船,则甲船到达B 处需要的时间为( )A .12小时 B .1小时 C .32小时D .2小时B [在△OBC 中,由余弦定理,得CB 2=CO 2+OB 2-2CO ·OB cos 120°=152+252+15×25=352,因此CB =35,3535=1(小时),因此甲船到达B 处需要的时间为1小时.]12.如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为()A .33B .36C .63D .66D [设BD =a ,则BC =2a ,AB =AD =32a . 在△ABD 中,由余弦定理,得cos A =AB 2+AD 2-BD 22AB ·AD =⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫32a 2-a 22×32a ·32a =13.又∵A 为△ABC 的内角,∴sin A =223. 在△ABC 中,由正弦定理得,BC sin A =ABsin C . ∴sin C =AB BC ·sin A =32a 2a ·223=66.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知△ABC 为钝角三角形,且C 为钝角,则a 2+b 2与c 2的大小关系为________.a 2+b 2<c 2[∵cos C =a 2+b 2-c 22ab ,且C 为钝角,∴cos C <0,∴a 2+b 2-c 2<0,故a 2+b 2<c 2.]14.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.2π3 [由3sin A =5sin B ,得3a =5b .又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b =-12.因为C ∈(0,π),所以C =2π3.]15.在锐角△ABC 中,BC =1,B =2A ,则ACcos A 的值等于________,AC 的取值范围为________.2 (2,3) [设A =θ⇒B =2θ. 由正弦定理得AC sin 2θ=BCsin θ, ∴AC 2cos θ=1⇒ACcos θ=2.由锐角△ABC 得0°<2θ<90°⇒0°<θ<45°. 又0°<180°-3θ<90°⇒30°<θ<60°, 故30°<θ<45°⇒22<cos θ<32, ∴AC =2cos θ∈(2,3).]16.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B =________.4 [∵b a +ab =6cos C , ∴a 2+b 2ab =6·a 2+b 2-c 22ab , ∴2a 2+2b 2-2c 2=c 2,又tan C tan A +tan C tan B =sin C cos A sin A cos C +sin C cos B sin B cos C =sin C (sin B cos A +cos B sin A )sin A sin B cos C =sin C sin (B +A )sin A sin B cos C =sin 2C sin A sin B cos C =c 2ab cos C =c 2ab a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=4.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[解](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.18.(本小题满分12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos B=3 5.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.[解](1)∵cos B=35>0,且0<B<π,∴sin B=1-cos2B=4 5.由正弦定理得asin A=bsin B,sin A=a sin Bb=2×454=25.(2)∵S △ABC =12ac sin B =4, ∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17. 19.(本小题满分12分)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b =2,求c 的值. [解] (1)∵cos A =2cos 2A2-1, ∴2cos 2A2=cos A +1.又2cos 2A2+cos A =0,∴2cos A +1=0, ∴cos A =-12,∴A =120°.(2)由余弦定理知a 2=b 2+c 2-2bc cos A , 又a =23,b =2,cos A =-12, ∴(23)2=22+c 2-2×2×c ×⎝ ⎛⎭⎪⎫-12,化简,得c 2+2c -8=0, 解得c =2或c =-4(舍去).20.(本小题满分12分)某观测站在城A 南偏西20°方向的C 处,由城A 出发的一条公路,走向是南偏东40°,在C 处测得公路距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时C 、D 间的距离为21千米,问这人还要走多少千米可到达城A ?[解] 如图所示,设∠ACD =α,∠CDB =β. 在△CBD 中,由余弦定理得 cos β=BD 2+CD 2-CB 22BD ·CD=202+212-3122×20×21=-17,∴sin β=437.而sin α=sin(β-60°)=sin βcos 60°-sin 60°cos β=437×12+32×17=5314.在△ACD 中,21sin 60°=ADsin α,∴AD =21×sin αsin 60°=15(千米).所以这人还要再走15千米可到达城A .21.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2C +22cos C +2=0.(1)求角C 的大小;(2)若b =2a ,△ABC 的面积为22sin A sin B ,求sin A 及c 的值. [解] (1)∵cos 2C +22cos C +2=0, ∴2cos 2C +22cos C +1=0, 即(2cos C +1)2=0, ∴cos C =-22. 又C ∈(0,π),∴C =3π4.(2)∵c 2=a 2+b 2-2ab cos C =3a 2+2a 2=5a 2, ∴c =5a ,即sin C =5sin A , ∴sin A =15sin C =1010. ∵S △ABC =12ab sin C ,且S △ABC =22sin A sin B , ∴12ab sin C =22sin A sin B ,∴absin A sin B sin C =2,由正弦定理得 ⎝ ⎛⎭⎪⎫c sin C 2sin C =2,解得c =1. 22.(本小题满分12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足sin A +3cos A =2.(1)求角A 的大小;(2)现给出三个条件:①a =2;②B =π4;③c =3b .试从中选出两个可以确定△ABC 的条件,写出你的方案并以此为依据求△ABC 的面积.(写出一种方案即可)[解] (1)依题意得2sin ⎝ ⎛⎭⎪⎫A +π3=2, 即sin ⎝ ⎛⎭⎪⎫A +π3=1,∵0<A <π,∴π3<A +π3<4π3,∴A +π3=π2, ∴A =π6.(2)参考方案:选择①②.由正弦定理a sin A =b sin B ,得b =a sin Bsin A =2 2. ∵A +B +C =π,∴sin C =sin(A +B )=sin A cos B +cos A sin B =2+64,∴S △ABC =12ab sin C =12×2×22×2+64=3+1.。
课题:解三角形一、基础梳理1、正弦定理和余弦定理?2、正弦定理和余弦定理可以解决的问题?3、在ΔABC 中,已知a,b 和A 时,解的情况?4、三角形形状如何判断?5、、三角形中的一些常用结论:在⊿ABC 中,设角A 、B 、C 的对边长度分别为(1)三角形内角和定理(2)三角形中的诱导公式(3)三角形中的边角关系(4)A >B >C ⇔sinA >sinB >sinC;二、基础自测1、已知△ABC 中,a=c=2,A=30°,则b=( )【解析】选B.∵a=c=2,∴A=C=30°,∴B=120°. 由余弦定理可得.=b 232、在△ABC 中,已知A=60°, ,=b 43为使此三角形只有一个,a 满足的条件是( ) (A) 0a 43<< (B)a=6 (C) ≥a 43或a=6 (D) ≤0a 43<或a=6【解析】选C.三角形有唯一解时,即由a,b,A 只能画唯一的一个三角形(如图).所以a=bsinA 或a ≥b,即a=6或≥a 433、已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC=120°,则A ,C 两地的距离为( )(A )10 km (B )103km(C )510km (D )710 km解析:选D.如图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700().∴=AC 107km4、在△ABC 中,根据下列条件解三角形,则其中有两个解的是 ( )A .b = 10,A = 45°,B = 70° B .a = 60,c = 48,B = 100°C .a = 7,b = 5,A = 80°D .a = 14,b = 16,A = 45°答案: D5、设f(x)=a 2x 2-(a 2-b 2)x-4c 2,其中a,b,c 分别为△ABC 中角A ,B ,C 的对边,若f(2)=0,则角C 的取值范围是________.【解析】由f(2)=0得a 2+b 2=2c 2, .+-+∴==≥=22222a b c a b 2ab 1cosC 2ab 4ab 4ab 2又∵0<C<π,∴.π<≤0C 3 答案:.π<≤0C 3课题:解三角形一、当堂检测1、在△ABC 中,角A ,B ,C 的对边为a,b,c ,若︒===45,2,3B b a ,则角A=( )A . 60°或120°B .30°或105°C .60°D . 30°答案:A2、在△ABC 中,+=2B a c cos 22c(a,b,c 分别为角A,B,C 的对边),则△ABC 的形状为( ) (A )等边三角形 (B )直角三角形(C )等腰三角形或直角三角形 (D )等腰直角三角形【解析】选B.∵ +=2B a c cos 22c ,,,.+∴-=-∴=+-∴=∴=+2222222B a c a 2cos 11cosB 2c c a c b a c a b 2ac c ∴△ABC 为直角三角形.3、在ABC △中,若43tan =A , ︒=120C ,32=BC ,则边长AB 等于( )A.3B.4C.5D.6答案:C4、已知A 船在灯塔C 北偏东80°处,且A 船到灯塔C 的距离为2 km,B 船在灯塔C 北偏西40°处,A 、B 两船间的距离为3 km,则B 船到灯塔C 的距离为____km.【解析】如图,由题意可得,∠ACB=120°,AC=2,AB=3. 设BC=x,则由余弦定理可得:AB2=BC2+AC2-2BC ·ACcos120°,即32=22+x2-2×2xcos120°,整理得x 2+2x=5, 解得=-x 61(另一解为负值舍掉).答案: -61二、课后巩固1.在△ABC 中,已知a=5 2 , c=10, A=30°, 则∠B= ( )(A) 105° (B) 60° (C) 15° (D) 105°或15°2.在△ABC 中,若a=2, b=2 2 , c= 6 + 2 ,则∠A 的度数是 ( )(A) 30° (B) 45° (C) 60° (D) 75°3.在△ABC 中,已知三边a 、b 、c 满足(a+b+c)·(a+b -c)=3ab, 则∠C=( )(A) 15° (B) 30° (C) 45° (D) 60°4.边长为5、7、8的三角形的最大角与最小角之和为 ( )(A) 90° (B) 120° (C) 135° (D) 150°6.在平行四边形ABCD 中,AC= 3 BD, 那么锐角A 的最大值为 ( )(A) 30° (B) 45° (C) 60° (D) 75°7. 在△ABC 中,若cos 2aA =cos 2bB =cos 2cC ,则△ABC 的形状是 ( )(A) 等腰三角形 (B) 等边三角形 (C) 直角三角形 (D) 等腰直角三角形8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定答案:1. D;2.A;3.D;4.B;5.C;6.C;7.B;8.A; 在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a =cos B b. (Ⅰ)求sin sin C A的值; (Ⅱ)若cosB=14,b=2, 求△ABC 的面积S. 【思路点拨】(1)本题可由正弦定理直接转化已知式子,然后再由和角公式及诱导公式易知sin sin C A=2. (2)应用余弦定理及第一问结论易知a 和c 的值,然后利用面积公式求解.【精讲精析】(Ⅰ)在ABC ∆中,由cos 2cos 2cos A C c a B b--=及正弦定理可得 cos 2cos 2sin sin cos sin A C C A B B--=, 即cos sin 2cos sin 2sin cos sin cos -=-A B C B C B A B则cos sin sin cos 2sin cos 2cos sin +=+A B A B C B C Bsin()2sin()A B C B +=+,而A B C π++=,则sin 2sin C A =, 即sin 2sin C A=. 另解1:在ABC ∆中,由cos 2cos 2cos A C c a B b--=可得 cos 2cos 2cos cos b A b C c B a B -=-由余弦定理可得22222222222222b c a a b c a c b a c b c a a c +-+-+-+--=-, 整理可得2c a =,由正弦定理可得sin 2sin CcA a ==.另解2:利用教材习题结论解题,在ABC ∆中有结论cos cos ,cos cos ,cos cos a b C c B b c A a C c a B b A =+=+=+. 由cos 2cos 2cos A Cc aB b --=可得cos 2cos 2cos cos b A bC c B a B -=-即cos cos 2cos 2cos b A a B c B b C +=+,则2c a =, 由正弦定理可得sin 2sin CcA a ==.(Ⅱ)由2c a =及1cos ,24B b ==可得22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =, S 21115sin 121cos 224ac B B ==⨯⨯⨯-=,即154S =.。
用心 爱心 专心
(数学必修5)第一章:解三角形
[提高训练C组]
一、选择题
1.A为△ABC的内角,则AAcossin的取值范围是( )
A.)2,2( B.)2,2(
C.]2,1( D.]2,2[
2.在△ABC中,若,900C则三边的比cba等于( )
A.2cos2BA B.2cos2BA
C.2sin2BA D.2sin2BA
3.在△ABC中,若8,3,7cba,则其面积等于( )
A.12 B.221
C.28 D.36
4.在△ABC中,090C,00450A,则下列各式中正确的是( )
A.sincosAA B.
sincosBA
C.sincosAB D.
sincosBB
5.在△ABC中,若)())((cbbcaca,则A( )
A.090 B.060
C.0120 D.0150
6.在△ABC中,若22tantanbaBA,则△ABC的形状是( )
A.直角三角形 B.等腰或直角三角形
C.不能确定 D.等腰三角形
二、填空题
用心 爱心 专心
1.在△ABC中,若,sinsinBA则A一定大于B,对吗?填_________(对或错)
2.在△ABC中,若,1coscoscos222CBA则△ABC的形状是______________。
3.在△ABC中,∠C是钝角,设,coscos,sinsin,sinBAzBAyCx
则zyx,,的大小关系是___________________________。
4.在△ABC中,若bca2,则CACACAsinsin31coscoscoscos______。
5.在△ABC中,若,tanlgtanlgtanlg2CAB则B的取值范围是_______________。
6.在△ABC中,若acb2,则BBCA2coscos)cos(的值是_________。
三、解答题
1.在△ABC中,若)sin()()sin()(2222BAbaBAba,请判断三角形的形状。
1. 如果△ABC内接于半径为R的圆,且,sin)2()sin(sin222BbaCAR
求△ABC的面积的最大值。
2. 已知△ABC的三边cba且2,2CAbca,求::abc
4.在△ABC中,若()()3abcabcac,且tantan33AC,AB边上的高为
43
,求角,,ABC的大小与边,,abc的长
用心 爱心 专心
第一章 [提高训练C组]答案
一、选择题
1.C sincos2sin(),4AAA
而520,sin()144424AAA
2.B sinsinsinsinsinabABABcC
2sincos2cos222ABABAB
3.D 011cos,60,sin6322ABCAASbcA
4.D 090AB则sincos,sincosABBA,00045,A
sincosAA
,004590,sincosBBB
5.C 22222201,,cos,1202acbbcbcabcAA
6.B 22sincossincossin,,sincossincoscossinsincossinABABAAABBABBAB
sin2sin2,2222ABABAB或
二、填空题
1. 对 ,sinsinBA则22ababABRR
2. 直角三角形 21(1cos21cos2)cos()1,2ABAB
2
1
(cos2cos2)cos()0,2ABAB
2
cos()cos()cos()0ABABAB
coscoscos0ABC
3. zyx ,,sincos,sincos,22ABABABBAyz
,sinsinsin,,cabCABxyxyz
4.1 sinsin2sin,2sincos4sincos2222ACACACACACB
用心 爱心 专心
cos2cos,coscos3sinsin222222ACACACAC
则221sinsin4sinsin322ACAC
1
coscoscoscossinsin3ACACAC
22
(1cos)(1cos)14sinsin22ACAC
2222
2sin2sin4sinsin112222ACAC
5. )2,3[ 2tantantantantan,tantan()tantan1ACBACBACAC
2
tantantantan()tan1ACBACB
3
tantantantan2tantan2tanBBACACB
3
tan3tan,tan0tan33BBBBB
6.1 22,sinsinsin,bacBACBBCA2coscos)cos(
2
coscossinsincos12sinACACBB
coscossinsincos12sinsinACACBAC
coscossinsincos1ACACB
cos()cos11ACB
三、解答题
1. 解:22222222sin()sincossin,sin()cossinsinabABaABAabABbABB
cossin,sin2sin2,222cossinBA
ABABABAB或2
∴等腰或直角三角形
2. 解:2sinsin2sinsin(2)sin,RAARCCabB
222
sinsin(2)sin,2,aAcCabBacabb
222
2220
22,cos,4522abcabcabCCab
用心 爱心 专心
222
2,2sin2,22,sincRcRCRabRabC
2
222
2222,22R
Rabababab
2
1222sin,24422R
SabCab
2
max
2
12RS
另法:122sin2sin2sin244SabCabRARB
2
2
2sin2sin2sinsin4RARBRAB
2
1
2[cos()cos()]2RABAB
2
2
12
2[cos()]2222(1)22RABR
2
max
212SR
此时AB取得等号
3. 解:sinsin2sin,2sincos4sincos2222ACACACACACB
12147sincos,cos,sin2sincos222424224BACBBBB
3,,,24242BB
ACACBAC
33371sinsin()sincoscossin4444ABBB
71sinsin()sincoscossin4444CBBB
::sin:sin:sinabcABC
)77(:7:)77(
4. 解:22201()()3,,cos,602abcabcacacbacBB
tantan33tan(),3,1tantan1tantanACACACAC
用心 爱心 专心
tantan23AC,联合tantan33AC
得tan1tan23tan1tan23AACC或,即000075454575AACC或
当0075,45AC时,434(326),8(31),8sinbcaA
当0045,75AC时,4346,4(31),8sinbcaA
∴当00075,60,45ABC时,8,4(326),8(31),abc
当00045,60,75ABC时,8,46,4(31)abc。