烧结余热回收利用途径
- 格式:pdf
- 大小:268.73 KB
- 文档页数:4
浅析钢铁厂余热回收应用技术陈冲王伟石小旭(中冶沈勘秦皇岛工程设计研究总院有限公司河北·秦皇岛066000)摘要钢铁厂烧结工序需要消耗巨大的能量,一般为企业总能耗的9%~12%。
我国烧结工序的能耗指标与先进国家相比差距较大,每吨烧结矿的平均能耗要高20千克标准煤,节能潜力很大。
本文针对钢铁厂烧结工序余热回收的几种主要的应用技术进行了分析。
关键词钢铁厂烧结余热回收节能中图分类号:TK17文献标识码:A0前言钢铁工业是国民经济重要基础产业,能源消耗量约占全国工业总能耗的15%,钢铁烧结工序能耗仅次于炼铁工序,居第二位,一般为企业总能耗的9%~12%。
我国烧结工序的能耗指标与先进国家相比差距较大,每吨烧结矿的平均能耗要高20千克标准煤,节能潜力很大。
与国际先进水平相比,国内钢铁企业在烧结过程中对余热资源的回收利用比例较低,采用合适的余热回收技术最大化回收余热资源,提高资源利用率,对钢铁厂企业效益提高及节能环保都有重要意义。
1烧结工序余热资源概况多年来,国内外对烧结工序余热回收进行了大量的研究。
据日本某钢铁厂热平衡测试数据,烧结机热收入中88%的热能由焦粉燃料提供,其余,点火用烟气带入6%,高炉煤气中的炭燃烧带入4%;热支出项目中,水分蒸发耗热占18.2%,石灰石分解热占15.2%,烧结矿显热占28.2%和废气显热占31.8%。
由此可见,烧结工序余热回收的重点应为烧结废气余热回收和烧结矿显热回收。
烧结工序余热资源主要有三方面:一是烧结机大烟道烟气余热,所含显热约为烧结工序能耗总热量的15%~20%左右;二是冷却机废气余热,冷却机废气温度在100℃-400℃之间,显热资源约占烧结工序能耗总热量的28%-35%;三是烧结机尾排料废气余热。
此处由于粉尘含量高,温度波动大,目前尚未有高效的利用方式。
因此,烧结工序余热利用资源主要集中在烧结机大烟道烟气余热及冷却机废气余热两方面。
2烧结余热利用技术国内烧结余热回收利用主要有三种方式:一是直接将废气经过净化后用于预热混合料或进行热风烧结,以降低燃料消耗;二是将废烟气通过热管或余热锅炉产生蒸汽,进行利用或并入全厂蒸汽管网;三是将余热锅炉产生蒸汽用于驱动汽轮机组发电。
[键入文字]【技术】大型烧结设备余热整体利用方案讯:摘要:根据烧结余热特点和余热品质分析,提出了将余热进行分段回收、有效利用、优化用能的技术方案,即同时采用余热发电和热风点火、热风烧结以及料矿加热等多种有效的回收形式对烧结余热加以综合利用的整体解决方法,可将大型烧结设备产生的余热最大限度地加以回收利用。
关键词:烧结余热分区回收有效利用优化用能1 前言随着冶金生产规模化的不断扩大,烧结设备也不断向大型化发展,该流程所伴有的工艺余热量也将大量产生。
在带冷工艺过程中,成矿显热所带走的热量可占全部烧结机热平衡的40%左右,这部分热量在烧结矿冷却过程中大部分转变为热废气而排入大气。
以300m2 级的烧结机为例,温度为200~450℃的工艺冷却风量在1.26 乘以106m3/h 以上, 余热排放量可达5.0 乘以105MJ/h 之多,这部分余热资源数量极大,仅采用以往单一的余热回收利用方式已远远不能适应当今烧结设备大型化生产的节能需要。
因此,研究其整体利用技术并加以综合回收利用,对冶金生产的节能降耗具有重要的现实意义。
传统的烧结带冷废气余热利用,国内大都是采用余热锅炉产生蒸汽的方法来加以回收。
由于蒸汽品质等各种原因,真正并使用的不多,大部分是就地自用。
而对于烧结工序来说,工艺本身蒸汽需要量并不大,因此,除冬季采暖使用以外,蒸汽的季节性饱和问题十分突出,以致造成蒸汽资源和软水的二次浪费,实际节能效果并不太好。
2 烧结余热整体利用方案对于大型烧结机数量庞大的余热资源来说,仅靠以往单一的余热回收利用方式是根本无法满足当今烧结设备大型化生产的节能需要。
因此,必须根据烧结余热资源特性和工艺过程,采取多种技术方法加以整体解决,以将大型烧结设备产生的余热最大限度加以回收利用。
根据已应用的项目实践和余热利用方式的现有技术水平,在此提出如下的大型1。
上置式烧结余热锅炉在环冷机余热回收利用实践摘要:宁钢2号烧结机通过采用“上置式烧结余热锅炉在环冷机余热回收利用技术”解决了2号烧结机因烧结机区域空间狭小无法安装余热回收利用设备的难题,实现了2号烧结机环冷机的余热回收利用,取得了显著的经济效益和社会效益,具有广泛的推广应用价值。
关键词:上置式余热锅炉;烟气余热回收;烟罩改造,环冷机密封改造。
前言:宁钢目前有2台470m2烧结环冷机,其中1号烧结机于2005年投产运行,2号烧结机于2012年投产运行,采用2台470m2,供2座2500m3高炉的生产模式。
2010年通过技术改造实现了对1号烧结机环冷机的余热回收利用,并取得了显著的经济效益和社会效益。
虽然在2号烧结机设计建设时就同步考虑了对环冷机的余热回收利用,但随着国家对钢铁企业环保要求的不断提高,对2台烧结机增加了烟气脱硫脱硝工艺系统,使得本身空间就比较狭小的烧结机区域显得更加拥挤,没有空间位置安装环冷机余热回收利用系统设备。
直到2019年,采用上置式环冷机余热回收锅炉技术实现了2号烧结环冷机余热回收利用,并取得了很好的经济效益。
1.工艺方案:1.1设备改造:(1)环冷机上部烟罩的改造:在环冷机高温段上部烟罩的上部开孔引出烟气管道,在引出管道上安装DN3000电动蝶阀用于控制烟气流量,在烟气出口下游的高温段烟罩的顶部安装一块隔热挡板,用于隔断高温烟气气流,防止高温烟气窜入低温段,提高高温烟气的回收量。
(2)余热锅炉换热器采用横跨在环冷机两侧的四根钢结构立柱支撑安装在环冷机高温烟罩的上部,烟气管道由DN3000电动蝶阀出口直接接到换热器入口,再从换热器烟气管道上部出口接到循环风机入口,最后从循环风机出口返回环冷机的下部。
(3)取消原环冷机的1号空气鼓风机(电动机额定功率1000kW),在原1号鼓风机的基础上安装本系统所需要烟气循环风机(电动机额定功率1120kW),风机改造后,电动机的功率增加了120kW,但同时也取消了常规环冷机余热回收系统的外置循环风机,宁钢1号烧结环冷机余热回收系统烟气循环风机的电动机功率为3800kW,本系统所需电动机的实际功率明显降低。
浅析钢铁厂烧结余热回收利用作者:李玉清来源:《中国化工贸易·中旬刊》2017年第03期摘要:众所周知,钢铁企业烧结工序需要巨大的能耗,通常都能够占到总能耗的10%-20%,仅次于炼铁工序。
基于此,文章对钢铁厂烧结余热回收利用的相关内容进行了分析和总结,从而有效的节约能源。
关键词:钢铁厂;烧结;余热回收;利用1 前言钢铁生产过程中,烧结工序的能耗约占冶金总能耗的12%,仅次于炼铁工序。
钢铁工业烧结厂余热资源有三个:一是烧结机大烟道烟气余热,所含显热约占烧结工序能耗总热量的15%-20%左右;二是冷却机废气余热,冷却机废气温度在100℃-400℃之间,其显热约占烧结工序能耗总热量的28%-35%。
三是排矿端废气余热,排矿端废气粉尘含量较高,且温度波动较大,由于受技术及设备的限制,现阶段该系统烟气余热未进行收集及利用。
因此烧结余热利用潜力巨大,有很好的经济效益和社会效益,具有良好的推广前景。
2 烧结余热回收中出现得较为普遍的问题2.1漏风现象在余热回收系统中的漏风问题主要是通过台车与烟罩之间的密封以及台车与风箱之间的密封体现出来的。
因为烟气系统属于全闭路式循环,台车与烟罩、台车与风箱都是在实际运转过程中进行相互配合的,风箱中一般为正压3000PA-4000PA之间,眼罩中为负压-100PA-400PA。
结果已经表明,如果漏风问题不能够得到妥善解决的话,就会直接导致吸冷风和热风外溢等问题,很大程度上都会影响到余热回收效果,与此同时烟气外溢也会直接导致环冷机场地内出现数量较大的灰尘,问题严重的情况下还会影响到岗位工人的正常操作。
2.2灰尘磨损现象因为回热式烧结余热回收烟气系统一般都是全闭路循环系统,当热废气穿透料面后经过烟气管道和环冷罩以后进入锅炉,这个时候整个流程废气都会呈现高速流动状态。
而且废气中所夹带的颗粒粉尘还没有沉降就都已经进入到锅炉和风机当中。
但是值得注意的是,我国除尘器大部分还是采用惯性除尘器,它只能祛除废气当中的那些大颗粒,而且这些大颗粒废弃物在经过一段时间的运行以后风机叶轮、锅炉管束以及机壳等部位都会出现不同程度的磨损,大大影响系统的正常运转。
钢铁企业烧结余热利用与发电技术l 摘要:钢铁企业烧结工序的能耗仅次于炼铁工序,一般为钢铁企业总能耗的10%~20%。
我国烧结工序的能耗与先进国家相比有较大差距,每吨烧结矿的平均能耗要高20kgce。
在烧结工序总能耗中,有近50%的热能以烧结机烟气和冷却机废气的显热形式排入大气,即浪费了热能又污染了环境。
据日本某钢铁厂热平衡测试数据表明,烧结机的热收入中烧结矿显热占28.2%、废气显热占31.8%。
可见,烧结厂余热回收的重点为烧结废(烟)气余热和烧结矿(产品)显热回收。
烧结余热也是目前我国低温余热资源应用的重点。
一、烧结余热利用方式与现状烧结余热主要利用方式有(1)在点火前对烧结料层进行预热;(2)送到点火器,进行热风点火;(3)实行热风烧结,回收烧结过程的热量和成品矿显热,降低烧结能耗;(4)利用余热锅炉回收烧结或冷却热废风,所产蒸汽用于预热烧结混合料或生活取暖等,或者进行蒸汽升值发电。
目前,我国大型烧结厂普遍采用了余热回收利用装置,但多数中、小烧结厂的余热仍未得到有效利用。
国内重点大中型企业,钢铁协会会员单位在2006年钢铁协会调研时,只有不到三分之一的烧结机配备了烧结余热利用设备,大部分是蒸汽回收并入全厂动力蒸汽管网,很少利用余热发电的。
近年来,随着低温烟气余热锅炉技术和低参数补汽式汽轮机技术的发展,使低温烟气余热发电成为可能。
二、烧结余热利用与发电技术目前我国烧结余热利用的重点和难点在于:由于存在漏风率高导致废气温度降低,又要保证进入除尘器前废气温度在露点以上等原因,回收利用烧结余热较困难。
因此,如何降低漏风率以提高烧结机烟气温度,以及在保证烧结废气除尘所需温度条件下,实现烧结机尾部高温段废气显热回收?烧结余热蒸汽发电核心技术的消化吸收和本土化,是烧结余热回收的重点。
如开发此技术将烧结矿余热充分利用,则钢铁行业年可节约能源约900万吨标准煤。
烧结余热发电是利用低温余热的一个有效途径,但目前来说应用很少,且存在一些问题,在运行过程中,由于烧结机和环冷机工况发生变化时,余热回收系统的工作参数也将随之变动,输出的蒸汽压力、温度、流量也将发生变化,从而影响发电机组的运行效率。
一、锅炉烟气余热回收简介:工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。
热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。
节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。
改造投资3-10个回收,经济效益显著。
(一)气—气式热管换热器(1)热管空气预热器系列应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。
设备优点:*因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍;*因为烟气在管外换热,有利于除灰;*因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀;*通过设计,可调节壁温,有利于避开露点腐蚀结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,见图1;热管倾斜放置型,烟气和空气反向垂直上下流动,见图2。
(二)气—液式热管换热器应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。
设备优点:*烟气侧为翅片管,水侧为光管,传热效率高;*通过合理设计,可提高壁温,避开露点腐蚀;*可有效防止因管壁损坏而造成冷热流体的掺混;结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置),如图3所示(三)气—汽式热管换热器应用场合:应用热管作为传热元件,吸收较高温度的烟气余热用来产生蒸汽,所产生的蒸汽可以并倂入蒸汽管网(需达到管网压力),也可用于发电(汽量较大且热源稳定)或其他目的。
对钢厂,石化厂及工业窑炉而言,这是一种最受欢迎的余热利用形式。
烧结机节能降耗措施在建筑材料、化工等行业中,烧结机是一种常用的设备,用于将粉状或粒状原料加热至一定温度后烘干、烧结成固体,制成块状产品。
然而,烧结机的运行过程中会产生大量的能源消耗和环境污染。
因此,烧结机节能降耗已经成为了当前行业中的一个重要问题。
本文将介绍烧结机节能降耗的几种措施。
1. 采用高效热交换技术烧结机内部的热量分布不均,导致了很大一部分热量的浪费。
此时,可以采用高效的热交换技术,将一部分废热收集起来,用于预热后续的原料,从而提高了热能的利用率。
例如,可以在烧结机的烟囱上安装烟囱热交换器,将烟气中的热量通过水的循环来直接回收利用。
另外,还可以在烧结机的废气出口处安装余热回收设备,将排放的热量再利用起来。
2. 降低热损失烧结机在运行过程中会产生大量的热损失,这也是造成能源浪费的重要因素。
因此,降低热损失是节能降耗的重要措施之一。
可以在烧结机的内部加装热防护材料,减少热量的散失,从而提高了热能的利用效率。
此外,还可以在烧结机的内部加装隔热板,减少热量的传导和散失,降低能源的消耗。
3. 优化燃料燃烧燃料燃烧是烧结机中能源消耗的主要来源之一。
因此,优化燃料燃烧也是节能降耗的重要措施。
可以采用合理的燃烧方式,如改善燃烧空气调节和混合方式,从而提高燃烧效率。
此外,还可以采用节能型的燃烧设备,例如采用带有预热功能的燃烧系统,利用废气回收设备对未燃烧的燃料进行再次燃烧,从而降低了能源的消耗。
4. 减少机械损失烧结机在运行过程中,机械损失也会导致能源消耗。
因此,减少机械损失也是节能降耗的重要措施。
可以采用精密的机件和材料,提高烧结机的精度和韧性。
此外,还可以加强运行维护和保养,定期检查和更换机件,避免机件的磨损和损坏,从而降低了运行时的能源消耗。
5. 提高运行效率在烧结机的运行过程中,提高运行效率也是一种节能降耗的重要措施。
可以采取以下方法:•加强设备的操作培训和技能提升,提高员工对设备的理解和操作技能;•采用自动化控制系统,利用先进技术对烧结机的运行进行监测和控制,提高了运行效率;•合理规划烧结机的生产计划,避免重复性操作和浪费。
(完整版)钢铁行业余热回收烧结线余热烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。
用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。
据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电300kW,折合标煤120kg/h。
转炉余热转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。
每炼1t钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。
转炉煤气经过汽化冷却烟道冷却后温度仍高达800~900℃,采用我公司的干法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。
电炉余热电炉冶炼过程中产生200~1000℃的高温含尘废气,采用余热锅炉将其回收,电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。
加热炉余热加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是烟道高温烟气。
根据炉型不同,加热炉的烟气量在7000~300000Nm3/h,若用来发电,以烟气量10万Nm3,烟气温度400℃计算,发电量约2000kWh,折合标煤0.8t;汽化冷却系统可生产0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。
高炉冲渣水用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。
每吨铁排出约0.3t渣,每吨渣可产生80~95℃,5~10t 的冲渣水,将这部分热水减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。
每吨90℃热水可发电1.5kWh,折标煤0.6kg,80℃热水可发电1kWh,折标煤0.4kg。
干法熄焦采用惰性气体来冷却红焦,加热后的气体在余热锅炉中产生蒸汽,蒸汽可发电或并入蒸汽管网。
吨焦可生产3.9Mpa、300℃的蒸汽0.45t~0.6t,可发电85~115kWh,折合标煤35~46kg。
烧结余热锅炉的工作原理
首先,烧结机产生的高温烟气被引导到余热锅炉的烟气进口处。
这些
烟气通常具有较高的温度和压力,因此,在进入余热锅炉前需要通过一个
多级除尘器进行处理,以去除其中的颗粒物和有害气体,保证烟气的干净。
接下来,经过除尘后的烟气进入余热锅炉的余热换热器。
余热换热器
中通常安装有多组烟气余热回收管束,用于与锅炉中的介质进行换热。
这
些管束一般采用强化传热方式,以提高热量传递效率。
同时,余热换热器
的结构也有多种,常见的有壳管热交换器、板式热交换器等等。
在余热换热器中,烟气的热量被传递给介质,使介质升温,而烟气在
传热过程中则降温。
一般而言,介质是水,因此烟气经过余热换热器后会
降温,形成冷烟气。
接着,烟气从余热换热器中排出,并通过烟气出口排放到大气中。
在
这个过程中,通过余热回收,烟气中的热量被充分利用,大大减少了能源
的浪费。
另一方面,介质在余热换热器中被加热,并变为高温高压蒸汽。
这些
蒸汽可以用于多种应用,比如在工业生产中驱动蒸汽涡轮发电机组,产生
电力;也可以用于供热,如为居民供应热水和供暖。
总的来说,烧结余热锅炉的工作原理是通过将烧结机产生的高温烟气
中的热量通过余热换热器传递给介质,使介质升温并转化为蒸汽,从而利
用热能,并将冷烟气排出。
通过这种方式,烧结机的余热得到了充分回收
利用,减少了资源的浪费和环境污染,实现了能源的有效利用。
烧结机余热发电技术一.概述余热发电是利用强制循环余热锅炉回收废气余热,生产中压饱和蒸汽,配套饱和蒸汽汽轮机组,发电机组抽汽供热,实现供热、电联产,最大限度提高余热蒸汽利用效率。
而对于烧结机余热发电来说是通过钢厂烧结机所产生的冶炼烟气余热强制循环余热锅炉回收利用,生产中压饱和蒸汽,配套饱和蒸汽轮机组,抽取供热发电。
通过对烧结机烟气的回收利用,一方面减少了对大气环境的污染(主要是二氧化碳,一氧化碳),另一方面,从某种程度上也节约了生产成本。
其所产生的蒸汽可进行对外供热,电联产,节省了企业的生产成本,也迎合当今社会节能减排的主题。
二.工艺原理1.烟气循环:烧结机所产生的烟气分为高低烟温段,共同进入余热锅炉烟道口,并且通过高功率循环风机强制其烟气循环,加热其中低压汽包,产生蒸汽。
当高低段烟道阀门打开时,烟气就进入锅炉烟道口,同时1#,2#烟囱也随之关闭,旁路烟关闭,补冷风口根据烟气温度自行调节其开度。
1#和2#环冷机的出口电动阀打开,循环风机的风流将进入环冷机内,代替环冷风机的风流,使得烧结工序能正常运行。
在此工序中循环风机是主体,因此循环风机的效率直接影响到烧结和锅炉蒸汽产生的效率,进一步影响发电效率。
2.中压水循环:中压锅筒给水是来自汽机房凝结水经过低压除氧器处理后,由中压给水泵打入中压锅筒。
中压给水调节中最为重要的是给水三冲量调节,其调节方式是通过汽包水位,给水流量,主蒸汽流量。
给水三冲量调节中,给水流量的准确度直接影响到调节的准确和稳定度。
因此要进行三冲量的调节,给水流量和蒸汽流量以及水位的校验非常重要。
当主蒸汽温度达到一定值(主要由进入汽机的蒸汽温度决定)时,需要打开减温水调节阀来冷却中压减温汽,降低蒸汽温度,符合进入汽机蒸汽温度的要求。
烧结冷却机余热回收热力计算及应用烧结是一种重要的冶金工艺,它是以某些熔融有色金属作为原料,加入不同的合金原料后经过冷却和硬化,使其在将白色粉末熔融、饱和及冷却后,制成可在高温下烧结硬化的金属块体。
由于烧结工艺中要耗费大量的热能,因此,相应的冷却设备及热能回收设备也就成为了该工艺必不可少的组成部分。
冷却机是用于冷却烧结料料的重要设备,它可以将熔融料料的温度从熔点以上快速降温到令其可以烧结硬化的温度,从而形成烧结块体。
其原理是将烧结料料通过冷却水冷却,从而实现对熔融料料的快速冷却。
此外,冷却机还可以搭配特殊的热力回收系统,将料料冷却过程中产生的大量热量回收利用,从而尽可能地减少能源的消耗,有效的提高烧结生产的能效。
余热回收系统是指将冷却机的热量回收利用的技术系统。
其原理是,在冷却层外侧装有较多的热交换面积,由冷却介质(一般是水)流经烧结料料的外壳,从而实现冷却水与烧结料料之间的换热。
当冷却水流经烧结料料外壳时,可以将外部环境的热量经热交换器传给冷却水,同时,将熔融料料中的余热也经热交换器传送给冷却水,而冷却水在冷却过程中获得的大量热能,则可以被利用来驱动热泵,将外部环境中较低温度的热量转移到熔融料料中,从而实现节能环保的目的。
热力计算是余热回收系统的重要步骤,也是检查烧结冷却机各部件的正确性的关键环节。
对余热回收系统进行热力计算,其原理为在烧结料料的冷却过程中,以烧结料料的温度和物理量为自变量,即可计算出烧结料料在各个温度下的热量、物质量以及传热系数,以此来检验冷却机各部件的正确性及性能。
热力计算虽然算法比较复杂,但通过对其系统的模型化、数学化,以及热力学的原理,可以相对简单的进行烧结冷却机余热回收计算。
同时,也可以通过设定不同的参数和条件,研究烧结冷却机余热回收系统的性能,从而提供良好的烧结冷却机余热回收应用平台。
热力计算可以用来对烧结冷却机余热回收应用进行优化。
烧结冷却机余热回收应用优化的目标是最大限度地回收余热,以此来节约能源,提升烧结生产的能效,进一步促进烧结行业的可持续发展。
烧结大烟道余热回收设备工艺原理引言伴随着工业化进程的不断加快,工业排放的大量烟尘和高温废气对人类的生存环境造成了很大的危害。
为了减轻环境负担,提升资源利用效率,烧结大烟道余热回收设备逐渐受到广泛关注。
本文将就此设备的原理及其重要性进行详细探讨。
烧结大烟道余热回收设备的定义大烟道排放的烟气温度一般在1000℃左右,所含热量是废气中有机物可燃部分和无机物热辐射吸收的热量。
烧结大烟道余热回收设备利用这一热源,通过热交换,将废气中的热量转移至其他工艺流体,从而实现能量回收和资源利用。
设备组成烧结大烟道余热回收设备主要由余热烟道、余热锅炉、余热水箱、余热回收装置和自控系统组成。
其中,余热烟道是流经余热回收装置的废气通道;余热锅炉的作用是将经过余热回收装置的热水、蒸汽或气体加热至一定温度;余热水箱是储存余热水的设备;余热回收装置是实现废气余热回收的核心设备;自控系统是设备的智能控制中心,实现设备运行的自动化和安全性控制。
烧结大烟道余热回收设备的工艺原理主要包括废气预处理、热回收和余热利用。
在每个步骤中,有必要采用科学的技术措施,以保证设备的稳定性和效率。
1. 废气预处理烧结大烟道排放出的废气含有很高的水分和烟尘等有害物质,对设备正常运行及其余热回收产生不利影响。
因此,为了减少废气的污染物质,需要先对废气进行预处理。
这个过程中可以采用干燥和除尘装置,将废气的温度降低到可以处理的范围内,并去除其中的烟尘和杂质。
2. 热回收废气进入余热回收装置之后,通过导热、对流和辐射等多种方式,将烟气中的热量传递给热介质,以获得所需的热量。
热介质可以是流体、气体或蒸汽等,在传递热量的过程中,需要适当控制热介质流速和传热面积大小,以实现较高的热回收效率。
3. 余热利用热介质在获得热量之后,即可利用余热锅炉进一步提取能量。
通过余热锅炉将热介质加热,使其达到蒸汽或热水的有效温度,进而与其他工艺流体进行热交换。
这样就可以将大烟道排放的废气中的热能重新利用起来,减少能源浪费,提高能源利用效率。
烧结余热利用技术开发及应用摘要:近年来,能源短缺和环境污染严重的问题受到社会各界的高度重视,节能、减排、降耗已成为一个全球性的焦点话题。
我国的钢铁工业是能耗大户,约占全国总能耗的15%,而烧结工序生产过程中能耗约占钢铁企业总能耗的10%~20%,比炼铁工序略低。
在烧结生产过程中会产生大量的余热,由于受工艺和技术等因素的限制,目前余热利用率不足30%,浪费严重,与这方面做得比较好的发达国家相比,还有一定的差距,节能潜力很大。
从节省能源、降低能耗、保护环境、提高企业经济效益和社会效益出发,尽可能多的回收和利用烧结余热。
关键词:烧结余热;利用;技术开发;应用1 烧结余热的特点烧结工序中有两种能量可以被回收再次使用,分别是烧结烟气所蕴藏的热能和烧结环冷废气所释放的热能。
烧结烟气的最高温度约为150℃,它所蕴含的热量是总热能的24%,机尾烟气最高温度可达450℃(正常温度范围一般在260℃到450℃之间),在总热量中占了更大的比重,这些总热量具有以下几种特征:1.1温度随生产波动大烧结工序中,由于烧结矿在烧结机上的燃烧状况各有差异,烧结废气和冷却中释放的废气温度不一致;烧结矿燃烧不充分时,释放的废气温度过高,燃烧激烈时,冷却环节释放的废气温度较低,根据唐钢北区烧结的数据可知,剩余热量回收环节所产生的废气温度可达450℃,但最低温度却只有150℃。
由于温度波动幅度较大,不利于烧结剩余热量的回收再利用,同时这也是烧结余热回收环节所要重点关注和解决的难题。
1.2热源的连续性难以保证烧结余热能的主要来源途径是物理显热,在烟气回收时有持续跟进的烧结矿,烧结余热量才会持续不断的供给。
由于影响因素较多,烧结设备偶尔会出现短暂的停歇,热源的持续供给也难以100%得到保障,特别是近年来北方京津冀地区受环保限产影响很大,烧结机启停频繁,热源的连续性更是受到更多程度的限制。
2 烧结余热回收利用2.1烧结余热发电烧结余热发电是指烧结工艺生产过程中,烧结机尾落矿风箱及烧结环冷机密闭段产生大量的高温废气,由余热回收设备收集后,用引风机引入锅炉并加热锅炉内的水产生饱和蒸汽,推动汽轮机转动,带动发电机发电的技术。
4.3 400m2烧结环冷机尾部冷却风余热利用4.3.1 环冷机烟气系统400m2烧结机余热发电工程也是较早建成的同类项目,具备一定代表性。
它采用双压、双进气、一体化除氧器、自然循环余热锅炉;烟气侧采用开式系统+串级冷却方式,余热锅炉排出的烟气直接经引风机排至大气,环冷机高温段采用从低温段烟罩收集的热废气作为烧结矿的冷却风。
由于400m2烧结机规模较大,余热锅炉排出的烟气量约60万Nm3/h,温度130℃,仍有可观的可利用热量。
如果直接排放将造成很大的资源浪费。
本工程拟改变原环冷机烟气循环系统的循环方式,用原余热锅炉排放的烟气代替环冷机3#烟囱收集的低温烟气,作为环冷机1区的冷却风;重新核算风机能力,原1区的循环风机利旧。
3#烟囱收集的低温烟气进入新建设的热水锅炉产生热水进行采暖供热。
环冷机的烟罩第三区段已经进行了绝热、密封的设计,本工程不在对第三区段的烟罩进行改造,通过环冷机的3#烟囱收集的高温烟气引出至余热热水锅炉。
3#烟囱上设置四通管道,配置电动切换蝶阀,热水锅炉正常工作时,打开新增的烟气管道阀门,关闭烟囱阀门及原循环管道阀门,将烟气导入热水锅炉烟道;在热水锅炉停止运行时,关闭烟气进入余热锅炉的阀门,打开烟囱阀门,将烟气直接排入大气;或者打开原循环管道阀门进行原设计的烟气循环冷却。
从环冷机3#烟囱收集的高温烟气进入锅炉,在锅炉内充分换热,产生高温热水。
换热后的烟气降至90℃左右,经引风机后排放烟囱排入大气。
在原余热锅炉后烟囱上设置三通管道,配置电动切换蝶阀,如采用烟气循环方式时,关闭烟囱阀门将余热锅炉换热后的热废气,通过循环风机及烟气管道将烟气引入环冷机一区。
如采不用烟气循环方式时,打开锅炉后烟囱阀门,将烟气直接排空。
4.3.2环冷机烟气量分配在保证不影响原400m2烧结余热利用系统的情况下,采用合理的分区方法,尽可能多的利用环冷机三段的高温烟气及余热锅炉排放的烟气。
烧结矿的热力学数据模型热烧结矿平均比热经验公式为:CP=[0.115+0.257×10-3(T-373)-0.0125×10-5(T-373)2]×4.1868式中CP—烧结矿的平均比热,单位:kJ/(kg·℃)T—绝对温度,单位:K。