树脂基复合材料
- 格式:doc
- 大小:32.50 KB
- 文档页数:10
树脂基复合材料随着科学技术的不断发展,材料科学领域也在不断取得突破性进展。
树脂基复合材料作为一种重要的功能材料,在航空航天、汽车制造、建筑等领域得到了广泛的应用。
它具有重量轻、强度高、耐腐蚀、设计自由度大等优点,因此备受青睐。
本文将就树脂基复合材料的概念、分类、制备方法、性能及应用进行介绍。
一、概念。
树脂基复合材料是由树脂作为基体,再加入填料、增强材料等组成的一种复合材料。
树脂通常选择环氧树脂、酚醛树脂、不饱和聚酯树脂等,而填料和增强材料则有玻璃纤维、碳纤维、芳纶纤维等。
树脂基复合材料具有优异的力学性能和耐腐蚀性能,广泛应用于航空航天、汽车制造、建筑等领域。
二、分类。
树脂基复合材料可以根据树脂的种类、增强材料的种类、制备工艺等进行分类。
按照树脂的种类,可以分为环氧树脂基复合材料、酚醛树脂基复合材料、不饱和聚酯树脂基复合材料等。
按照增强材料的种类,可以分为玻璃纤维增强树脂基复合材料、碳纤维增强树脂基复合材料、芳纶纤维增强树脂基复合材料等。
根据制备工艺的不同,可以分为手工层叠法、预浸法、注射成型法等。
三、制备方法。
树脂基复合材料的制备方法多种多样,常见的包括手工层叠法、预浸法、注射成型法等。
手工层叠法是最早的制备方法,其工艺简单,成本低,但生产效率低,质量不稳定。
预浸法是将增强材料浸泡在树脂中,然后烘干成型,工艺复杂,但成型速度快,质量稳定。
注射成型法是将树脂和增强材料混合后通过模具注射成型,工艺复杂,但成型速度快,适用于大批量生产。
四、性能。
树脂基复合材料具有优异的力学性能和耐腐蚀性能。
其强度和刚度远高于金属材料,比重却只有金属的三分之一至四分之一。
同时,树脂基复合材料具有优异的耐腐蚀性能,不易受到化学物质的侵蚀。
此外,树脂基复合材料还具有设计自由度大、成型工艺灵活等优点。
五、应用。
树脂基复合材料在航空航天、汽车制造、建筑等领域得到了广泛的应用。
在航空航天领域,树脂基复合材料被用于制造飞机机身、飞机翼、航天器外壳等部件,以减轻重量、提高飞行性能。
解析树脂基复合材料的性能及其有效应用1. 引言1.1 背景介绍树脂基复合材料是一种由树脂和增强材料混合制成的高性能材料,具有轻质、高强度和耐腐蚀等优点,被广泛应用于航空航天、汽车、船舶、建筑等领域。
随着科技的不断发展,树脂基复合材料在新材料领域中扮演着越来越重要的角色。
树脂基复合材料的发展源远流长,早在上世纪50年代就开始被广泛研究和应用。
随着工业化进程的不断加快,人们对材料性能的要求也越来越高,推动了树脂基复合材料领域的发展。
树脂基复合材料既可以利用各种类型的树脂和各种增强材料进行组合,也可以通过改变其制备工艺来实现更高级的性能要求。
在当前社会环境下,对资源和环境的保护意识日益增强,树脂基复合材料的轻质优势也得到了更多的关注。
通过优化设计和制备工艺,可以进一步提高树脂基复合材料的性能,拓展其应用领域。
对树脂基复合材料的研究和应用具有重要的意义,有望推动新材料领域的发展。
1.2 研究意义树脂基复合材料是一种由树脂基体与增强材料组成的新型材料,具有轻质、高强度、耐腐蚀等优点,在航空航天、汽车制造、建筑等领域有着广泛的应用前景。
研究树脂基复合材料的性能及其有效应用具有重要的意义。
通过深入研究树脂基复合材料的性能特点,可以为工程设计提供科学依据。
了解树脂基复合材料的强度、刚度、耐热性等性能参数,有助于工程师选择合适的材料,设计出更加轻量化、高效率的产品,提高产品的竞争力。
研究树脂基复合材料的有效应用可以促进材料科学技术的发展。
随着科技的不断进步,树脂基复合材料在各个领域的应用也在不断扩大和深化。
深入研究其应用技术,可以促进新材料的研发和创新,推动材料领域的发展。
研究树脂基复合材料的性能及其有效应用对于推动材料科学技术发展、提高产品性能、推动工程设计创新具有十分重要的意义。
希望通过本次研究,能够为树脂基复合材料的应用提供新的思路和方法,促进相关领域的发展。
2. 正文2.1 解析树脂基复合材料的性能解析树脂基复合材料是由树脂和增强材料组成的复合材料,具有独特的性能优势。
树脂基复合材料和应用树脂基复合材料是由树脂(如环氧树脂、聚酯树脂等)作为基体以及增强材料(如玻璃纤维、碳纤维等)混合而成的一种材料。
由于树脂基复合材料具有良好的机械性能、化学稳定性和耐腐蚀性能,广泛应用于航空航天、汽车、建筑、电子等领域。
首先,树脂基复合材料在航空航天领域中应用广泛。
传统的金属材料由于其密度高、强度低,在飞行器的设计中存在很多限制。
树脂基复合材料具有高强度、低密度的特点,可用于制造飞行器的结构件,如机翼、机身等。
他们不仅能够减轻飞行器的重量,还可以提高其机动性和燃油效率。
其次,树脂基复合材料在汽车制造领域具有广泛的应用前景。
汽车行业对材料的要求是具有足够的强度和刚度,同时要求材料重量轻、耐腐蚀且易加工。
树脂基复合材料正好具备这些特点。
例如,碳纤维增强树脂基复合材料可以用于制造汽车的车身和底盘,可以有效提高车辆的安全性和燃油经济性。
此外,树脂基复合材料在建筑领域也有广泛应用。
传统的建筑材料如砖、混凝土等重量大、强度低。
而树脂基复合材料由于其轻质、高强度的特点,逐渐成为建筑行业的新宠。
例如,玻璃纤维增强聚酯树脂基复合材料可用于制造建筑外墙板、屋顶、地板等。
这不仅可以提高建筑物的结构强度,还可以减轻建筑物自身的负载。
最后,树脂基复合材料在电子行业中也有广泛的应用。
电子产品对材料要求很高,需要具有良好的绝缘性能、尺寸稳定性和导热性能。
树脂基复合材料可以满足这些要求。
例如,环氧树脂基复合材料可用于制造电子元器件的外壳,可以有效地隔离电器元件和外界环境,提高电器元件的稳定性和可靠性。
总的来说,树脂基复合材料具有广泛的应用前景。
随着科技的不断进步和发展,树脂基复合材料将得到越来越广泛的应用,为人类创造更多的奇迹和贡献。
树脂基复合材料树脂基复合材料是一种将多种共性结合在一起的新型材料,由纤维增强树脂基体和复合材料完成。
复合材料有着良好的力学性能、较少的收缩性和减震性,具有重量轻、抗拉强度高的特点,是现代航空航天设计中非常重要的一种材料。
树脂基复合材料是由聚合物树脂和纤维材料组成的。
聚合物树脂能够在正常使用温度范围内具有很好的机械性能和耐久性,而纤维材料则使电性能、热稳定性和疲劳耐久性等性能得到明显提高。
加工过程中,纤维材料能够把聚合物树脂均匀地分散在一起,这样可以使复合材料具有更高的强度和更强的感应响应。
树脂基复合材料具有很多优势。
首先,它具有较高的强度与轻质,重量轻,耐腐蚀,耐冲击,电气绝缘,耐湿热,机械性能稳定,施工容易,可再利用,价格低,安全性高等特点,激发了工程师的创新精神,从而使得复合材料在现代航空行业中变得越来越受欢迎。
其次,复合材料还具有很好的机械性能,其附加的纤维材料提高了韧性、抗拉强度、耐水蚀等特性,可以有效地提升工程结构的强度,从而实现高效可靠的航空设计。
复合材料也有一些缺点,其中最重要的是它的价格较高。
现代航空航天设计中经常使用复合材料,但由于它的价格昂贵,往往会给航空公司造成负担,削弱它们的竞争力。
另外,由于复合材料表面细小的纤维以及其物理性质的不稳定性,树脂基复合材料的力学性能也存在一定的局限性。
尽管复合材料存在一些缺点,但其积极的作用和优点已经被广泛地认识到。
复合材料表现出良好的机械性能和耐久性,并且具有体积小、质量轻、力学性能高、价格低等特点,运用在航空航天设计中得到广泛应用,其应用将使航空航天工程的范围更加广泛。
综上所述,树脂基复合材料是一种具有很多优势的新型材料,具有良好的力学性能、较少的收缩性和减震性,并且还具有重量轻、抗拉强度高等优点,在现代航空航天设计中得到广泛应用,它的应用将为航空航天研究和设计带来更多可能性。
树脂基复合材料
树脂基复合材料是一种性能优越的材料,由树脂基体和增强材料组成。
树脂基体通常是一种高分子化合物,如环氧树脂、聚丙烯、聚酰胺等,而增强材料可以是碳纤维、玻璃纤维等。
树脂基复合材料具有轻质、高强度、耐磨、耐腐蚀等优点,在航空航天、汽车制造、建筑等领域有广泛应用。
首先,树脂基复合材料具有轻质的特点。
由于树脂基体是一种轻质的高分子化合物,与金属相比,树脂基复合材料的密度较低。
这使得树脂基复合材料在航空航天等领域中得到广泛应用,能够减轻飞机、卫星等载具的重量,提高载具的性能。
其次,树脂基复合材料具有高强度的特点。
增强材料中的纤维是一种高强度的材料,能够提供较高的抗拉、抗压、抗剪强度。
而树脂基体的作用是将纤维固定在一起,形成一个更加坚固的结构。
因此,树脂基复合材料具有较高的强度,能够抵抗外力的作用,保证结构的稳定性。
此外,树脂基复合材料还具有耐磨、耐腐蚀的特点。
树脂基体能够起到保护纤维的作用,防止纤维受到磨损和腐蚀。
在汽车制造领域,使用树脂基复合材料能够延长汽车的使用寿命,提高汽车的耐久性。
在海洋工程中,树脂基复合材料可以取代传统的金属材料,有效解决腐蚀问题。
总之,树脂基复合材料具有轻质、高强度、耐磨、耐腐蚀等多种优点。
它在航空航天、汽车制造、建筑等领域有广泛应用,提高了产品的性能和使用寿命。
随着科技的不断发展,树脂基
复合材料的性能会进一步提升,为各个行业的发展带来更多的机遇和挑战。
树脂基复合材料名词解释树脂基复合材料是一类由树脂(resin)作为基体材料,通过与其他增强材料(如玻璃纤维、碳纤维等)混合形成的新型材料。
这种复合材料具有轻质、高强度、耐腐蚀等优点,因此在航空航天、汽车制造、建筑等领域得到广泛应用。
以下是树脂基复合材料相关的一些重要名词解释:1.树脂(Resin):树脂是树脂基复合材料的基体材料,一般为聚合物,如环氧树脂、不饱和聚酯树脂、酚醛树脂等。
树脂的选择会影响到复合材料的性能。
2.增强材料(Reinforcement):在树脂基复合材料中,增强材料起到增加材料强度和刚度的作用。
常用的增强材料包括玻璃纤维、碳纤维、芳纶纤维等。
3.层合板(Laminate):多层树脂基复合材料的构件,每一层由树脂和增强材料组成,通过层层叠加形成。
4.预浸料(Prepreg):预浸料是一种在生产过程中,树脂已经浸润到增强材料中的材料。
它通常在工厂中制备好,便于现场加工。
5.固化(Curing):树脂基复合材料在制备过程中,树脂需要固化(硬化),以形成最终的硬质结构。
这一过程通常通过加热或加入催化剂来实现。
6.热固性树脂(Thermosetting Resin):这类树脂在加热后会发生固化,形成硬而稳定的结构。
环氧树脂就是一种常见的热固性树脂。
7.热塑性树脂(Thermoplastic Resin):这类树脂在受热后可多次软化和固化,适用于多次成型。
聚酰亚胺树脂是一种常见的热塑性树脂。
8.复合材料的破坏模式:包括拉伸、压缩、剪切等多种破坏模式,根据应用需求选择合适的增强方向和层合结构。
树脂基复合材料的不同组合可以产生各种性能,使其成为许多工程应用中理想的材料之一。
树脂基复合材料树脂基复合材料是一种由树脂和增强材料组成的复合材料,具有轻质、高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、建筑材料等领域。
树脂基复合材料的制备工艺和性能表现对其应用具有重要影响,下面将对树脂基复合材料的制备工艺和性能进行详细介绍。
首先,树脂基复合材料的制备工艺包括树脂基体的选择、增强材料的选择、成型工艺等几个方面。
在树脂基体的选择上,常用的有环氧树脂、酚醛树脂、不饱和聚酯树脂等,根据具体的应用要求选择合适的树脂基体。
增强材料的选择主要包括玻璃纤维、碳纤维、芳纶纤维等,不同的增强材料对复合材料的性能有着不同的影响。
在成型工艺上,可以采用压缩成型、注塑成型、挤出成型等工艺,根据复合材料的形状和尺寸选择合适的成型工艺。
其次,树脂基复合材料的性能表现主要包括力学性能、耐热性能、耐腐蚀性能等几个方面。
在力学性能上,树脂基复合材料具有优异的强度和刚度,可以满足不同领域对材料强度的要求。
在耐热性能上,树脂基复合材料具有良好的耐高温性能,可以在高温环境下长期稳定工作。
在耐腐蚀性能上,树脂基复合材料具有优异的耐化学腐蚀性能,可以在恶劣环境下长期使用。
最后,树脂基复合材料在航空航天、汽车制造、建筑材料等领域具有广泛的应用前景。
在航空航天领域,树脂基复合材料可以用于制造飞机机身、发动机零部件等,可以减轻飞机重量,提高飞机的燃油效率。
在汽车制造领域,树脂基复合材料可以用于制造汽车车身、底盘等,可以提高汽车的安全性能和燃油经济性。
在建筑材料领域,树脂基复合材料可以用于制造建筑结构材料、装饰材料等,可以提高建筑物的抗风、抗震性能,延长建筑物的使用寿命。
综上所述,树脂基复合材料具有重要的应用价值和发展前景,对其制备工艺和性能进行深入研究,可以推动树脂基复合材料在各个领域的应用和发展。
希望本文对树脂基复合材料的相关研究和应用有所帮助。
树脂基复合材料和碳中和的区别树脂基复合材料和碳中和,说起来好像很高大上,但其实一点也不难懂。
我们聊聊树脂基复合材料。
这个名字听上去像是从科幻电影里走出来的东西,但其实它就是一种由树脂和各种强化材料(比如玻璃纤维、碳纤维等)组成的材料。
简单来说,就是把树脂当作“胶水”,然后用它把一些非常结实的东西“粘”在一起,形成一个又轻又强的复合材料。
这种材料在汽车、飞机、风电叶片等领域特别受欢迎。
你看,为什么大家都喜欢它?因为它不仅轻巧,还特别耐用,甚至比钢铁还坚硬呢!如果说钢铁是“铁骨铮铮”的话,那树脂基复合材料就是“轻巧而坚韧”。
而且它在某些高温或者恶劣环境下,也能表现得相当稳定。
可是,树脂基复合材料的问题也不小。
你可别以为它是完美无缺的,没那么简单!这玩意儿的生产过程很费力气,而且有时候会对环境产生不小的影响,尤其是它的原料合成过程中可能会排放出一些有害气体。
你说,这不就跟我们平时过日子,买东西的时候看到“环保”两个字,心里总是忐忑一样吗?毕竟,环保这事儿,谁都想做,谁做得好才是硬道理。
再说碳中和,哎呀,这个话题可真是大家茶余饭后的热点了。
碳中和说白了,就是把人类排放到大气中的二氧化碳量给“补偿”回去。
听起来是不是很像某种“还债”计划?没错,咱们现在的日常生活、工业生产都离不开碳的排放,不管是开车、做饭还是生产商品,都会把二氧化碳排放到空气中。
可是,二氧化碳这个东西对地球可不是个好朋友,过多的二氧化碳会导致气候变暖、冰川融化、极端天气……反正一大堆环境灾难。
所以,“碳中和”就成了我们要追求的目标。
不过你可能要问了,碳中和和树脂基复合材料有什么关系呢?好问题!树脂基复合材料的生产过程虽然让人看了眼前一亮,但它的制造方式和用料在一定程度上会增加二氧化碳的排放。
像那些需要高温高压的生产工艺,燃料一烧,那排放的二氧化碳可是不会少。
你想,做一辆车,用这种复合材料,虽然车身轻便、抗压强度高,但它的生产过程也可能“污染”了环境。
树脂基复合材料树脂基复合材料》是一种具有广泛应用潜力的新型材料。
它是由树脂基质和增强材料组成的复合材料,兼具树脂的优良性能和增强材料的高强度特性。
树脂基复合材料在现代工程和科技领域中得到了广泛应用。
它的出现主要是为了解决传统材料的局限性,例如金属材料的重量和腐蚀问题,以及陶瓷材料的脆性。
树脂基复合材料具有优异的物理性能和化学稳定性,能够满足多种应用需求。
树脂基复合材料的基本结构包括树脂基质和增强材料。
树脂基质通常是一种聚合物,如环氧树脂、聚酯树脂或聚丙烯等。
增强材料可以是纤维(如碳纤维、玻璃纤维)或颗粒(如陶瓷颗粒、金属颗粒)等。
通过将树脂基质与增强材料结合起来,形成了具有优异性能的树脂基复合材料。
树脂基复合材料具有许多优点。
首先,它们具有较低的密度和高强度,使其成为替代传统材料的理想选择。
其次,树脂基复合材料具有良好的耐腐蚀性和耐热性,在恶劣环境下仍能保持稳定性。
此外,它们还具有良好的可加工性,可以通过各种加工方法制备成不同形状和尺寸的产品。
总之,《树脂基复合材料》是一种具有广泛应用潜力的新型材料,通过将树脂基质与增强材料结合,能够满足多种工程和科技领域的需求。
树脂基复合材料主要由树脂和增强物构成。
树脂是树脂基复合材料的主要基质,在其中起到粘结和固化增强物的作用。
树脂可以是不同类型的聚合物,如环氧树脂、酚醛树脂、聚酰亚胺树脂等。
这些树脂具有良好的粘结性和成型性,能够满足不同应用需求。
增强物是树脂基复合材料中的另一个关键组成部分,用于增强材料的机械性能和耐久性。
常见的增强物包括纤维材料、颗粒材料和填料等。
纤维材料常用的有玻璃纤维、碳纤维和芳纶纤维等,它们具有较高的强度和刚度,可在复合材料中增强和增加承载能力。
颗粒材料可用于提高复合材料的硬度和耐磨性。
填料可以改善复合材料的流动性和加工性能。
树脂和增强物的选择根据应用需求和性能要求而定,通过合理的配方可以获得具有优异性能的树脂基复合材料。
这种复合材料在航空航天、汽车、建筑和电子等领域具有广泛的应用前景。
解析树脂基复合材料的性能及其有效应用树脂基复合材料是指以树脂为基体,通过加入不同类型的增强材料组成的一种材料。
树脂基复合材料具有许多优异的性能,因此被广泛应用于各个领域。
树脂基复合材料具有良好的机械性能。
通过选择不同类型的树脂和增强材料,可以调控复合材料的强度、刚度和韧性。
常用的树脂包括环氧树脂、聚酰亚胺树脂和酚醛树脂等,常用的增强材料包括玻璃纤维、碳纤维和芳纶纤维等。
树脂基复合材料的强度和刚度往往优于传统的金属材料,同时具有较好的抗冲击性能。
树脂基复合材料具有良好的耐腐蚀性能。
树脂基复合材料的树脂基体可以提供良好的抗腐蚀能力,使其在恶劣的环境条件下使用。
增强材料的存在还能有效抵抗冲蚀和化学腐蚀的侵害,提高复合材料的使用寿命。
树脂基复合材料还具有较低的密度和良好的阻尼性能。
树脂基复合材料相比传统的金属材料具有较低的密度,有利于减轻结构的质量,提高材料的比强度。
树脂基复合材料还具有良好的阻尼性能,能够有效吸收机械振动,降低结构的噪声和振动。
树脂基复合材料的有效应用广泛存在。
由于其良好的性能,树脂基复合材料被广泛应用于航空航天、汽车工业、建筑工程和体育用品等领域。
在航空航天领域,树脂基复合材料被广泛应用于飞机结构零件的制造,能够提高飞机的燃油效率和飞行性能。
在汽车工业领域,树脂基复合材料被应用于制动系统、传动系统和车身结构等部件的制造,能够提高汽车的安全性和燃油经济性。
树脂基复合材料具有优异的性能,并且在各个领域有广泛的应用前景。
通过不断的研究和创新,相信树脂基复合材料的性能还将不断提高,为人类社会的发展做出更大的贡献。
树脂基复合材料的研究进展摘要:树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。
由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。
目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。
关键字:树脂基复合材料,材料性能,应用领域一、前言复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。
树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。
其中热固性树脂是以不饱和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。
树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。
树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。
这类材料既可制作结构件,又可用于功能件及结构功能件。
(2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。
以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。
众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。
随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并逐渐成为主要应用领域,且研究投入越来越大。
树脂基复合材料除在航空航天、国防科技领域应用外,其他行业领域的应用也十分广泛。
二、综述树脂基复合材料的应用目前常用的树脂基复合材料有:、,以及各种各样改性或共混基体。
热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。
热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。
随着复合材料工业的迅速发展,树脂基复合材料以其优越的性能和特点将应用于各个领域。
以下将简介树脂基复合材料的应用。
2.1热固性树脂基复合材料的应用复合材料的树脂基体,目前以热固性树脂为主。
早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。
60年代美国在F-4、F-11等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。
在导弹制造方面,50年代后期美国中程潜地导弹“北极星A-2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A-3”,使壳体重量较钢制壳体轻50%,从而使“北极星A-3”导弹的射程由2700千米增加到4500千米。
70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻[4-6]。
碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。
例如树脂基复合材料在弹体上的应用[7]。
弹体是用于构成导弹外形连接和安装弹上各部分系统且能承受各种载荷的整体结构。
采用树脂基复合材料做弹体的主要目的是为了最大限度的减轻导弹的结构质量、简化生产工艺、降低成本。
进一步提高导弹战术性能更重要的是,采用树脂基复合材料技术有利于整体成形有复杂形状、光滑表面和气动外形流畅的弹体,可以形成金属壳体难飞航导弹,以达到的隐身性能。
目前,国外巡航导弹在设计研制时,都特别重视大量采用树脂基复合材料结构。
2.2热塑性树脂基复合材料的应用近年来,由于热塑性树脂基复合材料具有韧性好,疲劳强度高,耐湿热性好,预浸料可以长期存放,可以重复成形,环境污染少等优点,使其在航空航天、汽车、电器、电子、建材、医药等行业得到广泛的应用。
随着PPO、PEEK、PPS、PSF等高性能热塑性树脂的开发得到快速发展,使得热塑性复合材料的应用更加广泛,其中在汽车行业中的应用最为突出[8]。
当前,世界汽车材料技术发展的主要方向是轻量化和环保化。
减轻汽车自重是降低汽车排放,提高燃烧效率的最有效措施之一,汽车的自重每减少10%,燃油消耗可降低6%~8%。
为此,增加热塑性复合材料在汽车中的使用量,便成为降低整车成本及其自重,增加汽车有效载荷的关键。
由于热塑性树脂基复合材料具有比强度和比刚度高,断裂韧性、疲劳强度、耐热、耐腐蚀等性能好,以及可重复成型等优点,在飞机上也得到一定应用[9-10]。
在航空工业中,树脂基复合材料用于制造飞机机翼、机身、鸭翼、平尾和发动机外涵道;在航天领域,树脂基复合材料不仅是方向舵、雷达、进气道的重要材料,而且可以制造固体火箭发动机燃烧室的绝热壳体,也可用作发动机喷管的烧蚀防热材料。
近年来研制的新型氰酸树脂复合材料具有耐湿性强、微波介电性能佳、尺寸稳定性好等优点,广泛用于制作宇航结构件、飞机的主次承力结构件和雷达天线罩。
美国F-22飞机热塑性复合材料使用量大于1%,其它民用飞机上热塑性复合材料的使用量则更多。
由于热塑性复合材料具有独特的优点,使其在军事领域中也得到广泛应用。
主要有枪用材料、弹用材料、以及地面车辆、火炮、舰船等部分零部件用材料。
另外,热塑性复合材料在其它领域的应用也十分广泛。
在建筑行业,产品有管件阀门、管道、百叶窗等部件;在机械工业方面,产品有水泵叶轮、轴承、滚轮、电机风扇、发动机冷却风扇空气滤清器、音响零件等;在油田领域,近年来,热塑性复合材料在油田中应用也越来越广泛,其中用于扶正器的玻纤增强PA 材料年消耗量近万吨[11-13]。
另外,树脂基复合材料在电子、能源、生物医学、体育运动器材、船舶制造等领域也有广泛的应用。
三、展望树脂基复合材料良好的发展和应用前景决定了人们将继续重视发展树脂基复合材料的研究与开发。
树脂基体的发展趋势是继续提高耐热和耐湿热性,以满足战机导弹超声速巡航及未来用材需求,目标是在可成型大型复杂构件的前提下,基体的湿态耐热进一步提高。
在开发高性能增强纤维,如纳米材料的同时,主要通过基体增韧,继续提高复合材料的抗冲击韧性。
树脂基复合材料的应用向着高性能化方向发展,旨在追求高的减重效率。
重视制造技术研究、生产改造和综合配套。
开发材料设计及制备过程的计算机模拟软件,对产品设计和成型工艺进行优化,提高产品的先进性、可靠性,并最大限度的降低成本[14]。
制约复合材料扩大应用,特别是在民用领域应用的主要障碍仍是成本太高,因此降低成本是当务之急。
复合材料的发展应以市场为导向,加大创新力度,加强基础性研究和应用性研究,努力降低原材料成本,开拓新的应用领域;要通过产学研结合,立足自主开发,同时积极引进技术和资金,在科技攻关、项目建设、装置规模上要力求与国际接轨,以推动我国复合材料工业全面、快速、健康地发展。
随着飞行器向高空高速无人化智能化低成本化方向发展树脂基复合材料的地位会越来越重要。
国外预计在下一代飞机上复合材料将扮演主角[15]。
树脂基复合材料对于导弹、战机屏蔽或衰减雷达波或红外特征,提高自身生存和空防能力,具有至关重要的作用; 在实现战机、导弹轻量化、快速反应能力、精确打击等方面起着巨大作用,其用量已成为战机导弹先进性的一个重要标志。
树脂基复合材料技术不断发展更新其应用领域不断扩展并在能源电子汽车建筑桥梁环境和船舶等领域扮演着越发重要的角色。
高性能树脂基体及其改性是我门树脂行业的责任和义务,应该努力做好这方面的研发和产业化。
随着树脂基复合材料的性能进一步提高,使用经验进一步积累,低成本技术的发展,高效新结构的发展以及应用效能的提高,未来树脂基复合材料的应用领域将变得更加广泛。
四、参考文献1苏航,郑水蓉,孙曼灵,陈晓明等. 纤维增强环氧树脂基复合材料的研究进展[J]. 热固性树脂,2011,04:54-57.2吴良义,罗兰,温晓蒙等.热固性树脂基体复合材料的应用及其工业进展[J].热固性树脂,2008,23(z1):22-31.3沈军,谢怀勤.先进复合材料在航空航天领域的研发与应用[J].材料科学与工艺,2008,16(5):737-740. 4肖德凯,张晓云,孙安垣. 热塑性复合材料研究进展[J]. 山东化工,2007,02:15-215陶永亮,徐翔青. 树脂基复合材料在汽车上的应用分析[J]. 化学推进剂与高分子材料,2012,04:36-40.6陈平,于祺,孙明,陆春. 高性能热塑性树脂基复合材料的研究进展[J]. 纤维复合材料,2005,02:52-57.7黄晓艳,刘波. 先进树脂基复合材料在巡航导弹与战机上的应用[J]. 飞航导弹,2011,08:87-92.8马翠英,黄晖,王福生. 树脂基复合材料及其在汽车工业中的应用[J]. 汽车工艺与材料,2005,11:40-42.9陈祥宝,张宝艳,邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展,2009,06:2-12. 10陈祥宝. 先进树脂基复合材料的发展和应用[J]. 航空材料学报,2003,S1:198-204.11张文毓. 先进树脂基复合材料研究进展[J]. 新材料产业,2010,01:50-53.12陈祥宝,张宝艳,邢丽英. 先进树脂基复合材料技术发展及应用现状[J]. 中国材料进展,2009,06:2-12.13 Brouwer W D,van Herpt ECFC,Labordus A. Vacuum injection moulding for large structural ap-plications.Composites Part A- Ap-plied Science and Manufacturing,2003,34( 6) : 551- 55814李明明,王晓洁,刘新东. 树脂基复合材料耐海水性能研究进展[J]. 玻璃钢/复合材料,2011,02:60-64.15吴良义. 先进复合材料的应用扩展:航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料,2012,01:4-9+91.16王兴刚,于洋,李树茂,王明寅. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料,2011,02:44-47.17寇哲君龙国荣万建平姚学锋方岱宁.热固性树脂基复合材料固化变形研究进展[J].宇航材料工艺,2006(z1):7-11.。