油水井破损套管堵漏修复技术
- 格式:doc
- 大小:1.74 MB
- 文档页数:8
反注水泥修补泄漏套管案例由于腐蚀造成的套管损坏可能使油井在完全枯竭之前就报废了。
解决这个问题的方法:一是花大代价打替换井;二是封隔套管泄漏层段或修复破损处。
套管贴补技术修复起来快,但其受井径限制,并且受套管本身破坏条件的限制不适用于较大程度的损坏处。
有些情况下采用一根内管柱将破损部分隔开的做法效果较好。
这可使套管完整无损,但却进一步限制了内径。
1油井历史FF—1井位于得克萨斯州crane县境内的31区块,于1948—1949年钻成,完井后作为泥盆系地层的一口生产井。
1951年加深钻至9026ft并转为注气井。
1982年进行修井作业,对51/2in套管从4984~5410ft挤注水泥,并且替换了油管。
1983年在生产套管7850ft、3000ft及1000ft深度挤注水泥。
在1989—1991年期间的又两次修井作业中,完成了三次套管挤水泥作业,其中两次是从4546—4578ft井段,一次是从1010—1020ft井段。
1992年决定安装一个4in的内管柱,使该注入井具有一个完整的环形空间,以符合管理机构的要求(即:环空套管压力必须等于0psi)。
由于原来管柱被腐蚀,套管从顶部到底部均要挤注水泥。
如果采用常规施工方法,计算的注水泥压力将超过使用了44年的J—55型套管、51/2in、17ppf的破裂强度(新管线额定压力为5320psi)。
2油井准备工作及内管安装首先将27/8in完井装置起出(见图1),然后将45/8in钻头接在27/8in的冲洗柱上,冲洗至8906ft深度(原有落鱼顶部)。
下一步用打捞筒和抓捞工具取出落鱼。
然后用45/8in钻头清除到8950ft深度。
然后用钢丝绳将51/2in的铸铁桥塞封堵在8620ft深处,隔开泥盆系A、B、C层。
一个令人担心的问题是很难用31/4in钻头完全钻碎51/2in铸铁桥塞,这个问题在其他地区可能不常遇到,但在西得克萨斯州的钻井作业中是很普遍的。
然而正如下面所讲到的,利用钻头的摆动来清除钻头外径(OD)与套管内径(ID)区域的技术是成功的。
探讨套管损坏原因及修井作业技术发布时间:2022-08-16T02:03:57.856Z 来源:《工程管理前沿》2022年第4月7期作者:张琦[导读] 在油田正常生产过程中,张琦大港油田采油一厂天津市300280摘要:在油田正常生产过程中,一旦油水井套管损坏,注采井网就会损坏,严重影响油田的正常生产。
为了恢复油水井的正常生产,通常需要对损坏的套管进行修复,以有效避免油水井因套管损坏而停产。
这对油水井的正常生产,提高油田开发的经济效益具有重要的现实意义。
套管损坏的原因多种多样,由于套管损坏的原因不同,采用的修复技术也不同。
因此,有必要根据套管损坏程度合理选择修复工艺。
关键词:套管损坏;原因修井作业;操作技术介绍随着油田勘探开发的不断深入,目前我国大部分油田已进入开发中后期。
油水井经过长时间的生产后,容易发生套管损坏,导致其无法正常生产,严重影响油田的正常生产。
分析了套管损坏的原因,研究了套管损坏的预防措施,探讨了常见的套管损坏修复技术,以供参考。
1、套管损坏原因分析1.1物理因素在井下作业过程中,套管会受到各种力的影响,这些力来自不同的方向。
如果力超过套管的允许极限强度,则套管会损坏。
因此,在下套管设计过程中,必须合理选择套管材料及其强度。
然而,由于我国大多数油田地质条件复杂,很难预测套管的井下条件。
此外,在油水井井下作业过程中,一些井下工具经常与套管发生碰撞或划伤,也会对套管质量造成一定的损坏。
一般来说,套管损坏的物理影响因素主要包括地层移动产生的力引起的套管损坏和外力引起的套管损坏。
其中,地层力引起的套管损坏更为严重。
地层力引起的套管损坏主要包括以下几种情况:(1)岩层塑性流动引起的套管损坏。
(2)盐层坍塌造成套管损坏。
(3)套管故障。
(4)地层蠕变引起的套管损坏。
(5)环境因素造成的套管损坏。
外力引起的套管损坏有三种类型,即摩擦损坏、静水损坏和注水诱导力损坏。
1.2化学因素套管损坏的化学影响因素主要是指地层中的化学物质与套管材料发生化学反应造成套管出现腐蚀,从而形成套管损坏。
套损形式各异。
虽然套管损坏是一个普遍性的问题,但是不同的油气田,甚至同一油气田不同区块,其套损的形式都会不同。
主要失效形式如:过大变形、挤毁、错断、屈曲、弯曲、破裂、穿孔和密封失效等。
由于地理环境、钻井技术、设计手段、材料质量等方面的差异,虽然都有标准的套管设计方法,但是都没有考虑井下复杂地应力变化的影响,因此导致设计的套管柱使用寿命很难达到预期的效果。
常规方法:✦用通径规✦铅模打印✦取套观察✦封隔器验串✦薄皮管验弯✦井温找漏新的方法✦超声波彩色井壁成像✦“鹰眼”摄像✦多臂井径测量✦电磁探伤测量✦陀螺与多臂井径测量✦磁法—测壁厚✦套管破裂和错断,传统的方法是打铅印;✦腐蚀,主要用电、磁测井方法检测;✦变(缩)径,主要用多通道井径仪测量井径的变化情况;✦弯曲,国外和国内某些油田采用测井斜和方位变化来解决,传统的方法是用薄皮管验套或根据起出的油管弯曲情况直接观察;✦串漏,一般用井温测井和下封隔器试压验漏。
✦该仪器有四十个独立的井径臂,对应每个臂有一个独立的探头,可测量反映管柱内壁的四十条井径,地面处理后可成直观图像。
主要用于检测管柱内壁的腐蚀、变形及破损。
可提供套管腐蚀、变形及破损成像资料,图像直观,可以任意角度观察套管变形及破损情况。
✦优点:a.可直观成像;b.成像软件功能完备;c.测量精度高;d.测量井斜、方位;e.性能稳定成功率高。
✦缺点:容易在井下遇卡,测前必须通井。
超声波套管壁测厚该仪器在六个臂上共有六个探头,可测量反映管柱分区厚度的六条曲线,和四十臂成像测井结合使用,可准确反映套管的内、外壁腐蚀情况。
优点:a.可测量管柱分区厚度,检测管外壁腐蚀情况;b.适用范围宽可以通过油管;c.测井安全且成功率高。
缺点:a.四十臂成像结合使用,以准确判断内、外壁腐蚀;b.测量井段内须充满清水;c.受井内气体影响大。
注水井压力突然降低,而注水量增大;注水井注水压力突然降低而注水量却增大的异常现象,最大的可能便是发生了套管破损,井下存在漏失层。
油井套管损坏原因分析及修复技术摘要:本文对油井套管损坏的原因进行分析,对此类井的修复技术进行综合研究,从而为油井作业提供较好的技术支持。
关键词:套管损坏修复分析一、套管损坏的原因综合分析1.生产方式不当,生产压差过大。
盲目快速的开采,破坏了地层结构,大量的地层砂涌入井筒。
不但影响了油井的正常生产,还使近井地带严重亏空,地层坍塌,造成了套管错断或变形。
在井眼有一定的斜度、有坍塌的大洞、固井质量差、水泥返高低的情况下,注汽时套管遇热伸长,在压缩应力的作用下产生弯曲。
2.增产、增注措施不当,高压施工造成原以强度降低的套管损坏。
压裂、酸化施工时压力过高,造成地层串通。
外来水及注汽冷却水的侵入,破坏了地层原有稳定的胶结结构及套管外水泥环,水矿物质对套管造成一定的腐蚀,强度下降。
岩石有蠕变和应力松弛的特性,外来水引起岩石膨胀,当蠕变和膨胀超过套管的抗压强度时,套管就会被挤压变形甚至错断。
3.频繁的修井作业施工。
油田生产的中后期,地层压力普遍降低,漏失严重。
洗井、冲砂作业时,修井液大量的进入地层,造成地层破坏,套管腐蚀损坏。
4.套损井不能及时修复,带病生产,地层水和注入水会进入错断口地层,使地层产生蠕动,重新损坏本井套管,导致套损进一步加重。
不仅如此,还会由于地层的蠕动损坏临井的套管,象瘟疫一样形成套损的恶性蔓延。
5.高压注水、注汽,高温增产措施是造成高采地区套管损坏的主要原因。
高压注水是油田增产、稳产的重要措施,注汽是稠油开采的主要方法,但高压注水及注汽的副作用也是显著的。
资料表明,注水压力越高,套管损坏越多。
注汽轮次越多,套管损坏越严重。
当应力大大超过了套管强度,引起套管接箍或本体断裂。
二、套损修复技术研究套管修复工艺技术已经日趋完善,但现场能够有效使用的工具不多,修复效果不理想。
套管修复技术包括套管诊断技术、套管内打通道技术、套管回接取套换套技术。
1.套管诊断技术为了节约成本,加快工作时效往往采用铅模打印进行判断或者采用经验法对套管进行诊断。
浅析油水井管线穿孔堵漏焊接技术采油矿在生产中经常遇到各种油,水管线渗漏穿孔,需要停泵停井影响产量。
为了保证油水井管线正常运行,不影响正常生产,就要把泄漏的管线及时进行焊补,在补焊中有时管道中压力卸不净,就要想各种办法短时间内焊补上。
本文主要介绍了油田在油水井管线穿孔渗漏的特点和原因,常用的堵漏操作方法、注意事项。
标签:油水管线堵漏焊接1.管线穿孔渗漏的特点和原因1.1渗漏的特点油田集输运行系统和注水工艺系统大多采用钢铁材质管线流程,管线之多,距离之长,并且随着油田开发时间的延长,管线腐蚀穿孔渗漏越来越多,严重影响油水井站的正常生产。
焊接漏点成为采油矿电焊维修班的工作重点。
金属管线发生穿孔分地面和地下两部分,大多数发生的穿孔在地面以下。
1.2造成渗漏的原因大多数油水井铁质管线焊接连接工艺,埋在地下1.2-2米深的管线沟里,管线受到周围土壤中酸碱性离子的不断腐蚀,管壁逐渐变薄,管线中流动的液体含有的硫化物也在不断对管材内壁进行化学和应力腐蚀,在工作压力下管线个别材质薄的地方就容易腐蚀穿孔,形成漏点,是穿孔形成的主要原因。
管线工艺焊接连接时施焊标准不严形砂眼和管线焊接后防腐工作没有做到位是产生渗漏穿孔的另一个原因。
2.焊接前的准备及焊接材料的选择2.1焊接设备的选择常用的焊接设备是电焊工程车的旋转直流焊机,或者是ZX7系列具有陡降外特性的弧焊逆变焊机。
2.2焊接材料、工用具的选择在进行管线堵漏焊接时,大多时都有水油和压力,所以要选择对油、水和铁锈都不敏感的酸性焊条。
一般我们都会选用型号为GBE4303(J422)酸性焊条,规格为直径2.5毫米和直径3.2毫米的电焊条。
焊接漏点前还应准备的辅助工具有:工服、工鞋、手套、电焊面罩、钢丝刷子、尖头锤等。
2.3操作施工现场的情况焊接穿孔管线的操作坑要满足焊工操作方便,坡度符合安全要求,油水管线阀门是否关闭,管线里压力尽可能卸掉,如操作坑里有水和原油需要清理干净。
油气水井套管修理工艺流程及质量要求1.检查井口并清除杂物,确保井口清洁无障碍。
Inspect the wellhead and remove debris to ensure it is clean and unobstructed.2.进行井口草图记录,包括套管径向和深度等参数。
Record the wellhead sketch, including casing diameter and depth parameters.3.采用封堵剂对井口进行封堵处理,以防止漏油或污染。
Use sealing material to seal the wellhead to prevent oil leakage or contamination.4.检查套管的外观和厚度,确保套管表面光滑无裂纹。
Inspect the appearance and thickness of the casing to ensure the surface is smooth and free of cracks.5.进行非破坏性检测,检查套管的内部质量和结构。
Perform non-destructive testing to inspect the internal quality and structure of the casing.6.进行套管的清洗工作,确保内部无杂质和油污。
Clean the casing to ensure there are no impurities or oil residue inside.7.进行套管的维修和焊接,修补裂纹或损坏部位。
Repair and weld the casing to fix cracks or damaged areas.8.进行套管的磁粉探伤检测,确认修复效果。
Perform magnetic particle inspection on the casing to confirm the repair effectiveness.9.进行套管的防腐蚀处理,提高套管的耐腐蚀能力。
油水井套管错断治理技术研究与应用油水井套管错断是指井下套管发生错断现象,即套管在井下断裂或者错位,导致井口和井身之间出现泄漏问题。
油水井套管错断是常见的井下事故之一,对于油田开发和生产带来了严重的影响,因此研究和应用油水井套管错断治理技术十分重要。
一般来说,油水井套管错断的治理技术可以分为两大类:修复类和防治类。
修复类的技术主要是针对已经发生错断的套管进行修复和恢复工作;防治类的技术则是为了预防套管错断事故的发生,减少井下工作的风险。
修复类技术主要包括套管修复和井口修复两类。
套管修复技术是通过使用各种工具和装置将断裂或错位的套管重新连接和固定,以实现套管的连续性和完整性。
井口修复技术则是通过修复和加固井眼和井口区域,防止套管错位和断裂。
这些修复技术需要在井下进行,操作复杂,对工作人员的技术要求较高。
防治类技术主要包括预防措施和监测技术。
预防措施包括加强井口工程质量管理,确保套管的质量和安全性;合理设计井眼结构,降低井下应力对套管的影响;采用高精度的钻井和固井技术,提高套管的质量和完整性;加强井口和井身的监测,及时发现和处理潜在的问题。
监测技术包括井下和井口监测技术,通过传感器等设备实时监测套管的状态和变化,及时发现和处理异常情况。
油水井套管错断治理技术的应用需要结合具体的井下环境和条件进行选择和实施。
在选择治理技术时,需要考虑井口和井身的情况、套管的状态和位置、井下工作区域的限制等因素。
在实施过程中需要严格按照操作规程进行,确保施工安全和治理效果。
油水井套管错断是油田开发和生产中常见的事故,对于油田的安全和生产带来了很大的风险。
研究和应用油水井套管错断治理技术是非常必要和重要的,能够有效地降低事故的发生率,提高井口和井身的安全性和可靠性。
浅谈油水井管线腐蚀漏的修补方式及技巧油水井管线腐蚀漏是油田开发中常见的问题。
一旦发现,必须及时采取有效的修补措施,以免造成更大的损失。
本文将围绕油水井管线腐蚀漏的修补方式及技巧进行探讨。
一、修补方式1. 焊接法对于较大的漏洞,采用焊接法进行修补是比较常见的做法。
具体过程是先将漏洞周围较大的部分切除,然后用焊接设备焊接补缀。
但需要注意的是,这种方式需要使用特殊的焊接设备和材料,并且对施工人员的技能要求较高,否则可能会出现隐患。
2. 拉管法拉管法是另一种修补漏洞的方法。
具体过程是在管道漏洞处引入一根更粗的管道,将其覆盖住漏洞,然后把两端用螺栓固定。
这种方法虽然相对简单,但是需要有足够的材料和设备,以确保安装的牢固性和密封性。
3. 贴片法对于一些小型的漏洞,可以采用贴片法进行修补。
具体过程是在漏洞处粘贴一种特殊的密封材料,以达到修补的目的。
该方法成本低,施工简单,但是其密封性和耐久性较差,只适用于临时修补。
二、技巧1. 对腐蚀的及时诊断在修补之前,必须先进行腐蚀的及时诊断。
通过检查井、扫描设备等多种方式,了解管线的内部情况,找到漏洞的具体位置和大小,以便采取正确的修补方式。
2. 选择合适的修补方法针对不同的漏洞,选择不同的修补方法。
如对于较大的漏洞,可以采用焊接或拉管法进行修补;对于较小的漏洞,则可以采用贴片等方法修补。
避免因采用错误的修理方法而使情况恶化。
在修补时,必须选择合适的材料。
对于耐高温、耐腐蚀性能好的材料,可提高修补效果和使用寿命。
4. 保证施工质量修补工作中,必须保证施工质量,确保修补后的管道具有良好的牢固性和密封性。
如需进行现场焊接,必须进行良好的防护措施,避免污染环境。
总之,油水井管线腐蚀漏的修补方式及技巧是一个较为复杂的问题。
在实际操作中,应根据具体情况进行选择,保证修补的效果和质量。
同时,也需要加强对管道的维护和保养,及时发现和修补漏洞,防止腐蚀加剧,从而延长管道的使用寿命,提高生产效益。
套损井挤水泥封固技术简介油田油、气水井在开发生产过程中,由于受油、气、水运移及各种应力、腐蚀、地质结构及施工措施诸因素的影响,一方面使新打井水泥返高不够,固井质量不合格;另一方面使生产井原固井水泥环遭到破坏,或造成油层窜通或地层胶结物被破坏,近井地带形成空洞,或因地层出水,套管破漏使油水井不能正常生产,通过挤水泥工艺技术,可使固井质量不合格井、窜槽井,套管破漏的油、气、水井恢复正常生产。
1挤水泥的目的方法及应用范围挤水泥工艺是利用液体压力挤入一定规格、数量的水泥浆,使之进入地层缝隙或多孔地带,套管外空洞、破漏处等目的层,达到在地层或地层与套管之间形成密封带,以承受各种应力,满足油、气、水井注采需要及生产措施的一种工艺技术。
1.1挤水泥的目的及作用挤水泥工艺技术作为油水井大修基本工序,其目的是恢复油、气、水井正常生产。
1.1.1对油、气、水井封堵某一出水层位或高含水层,解决在生产过程中注水开发形成的矛盾。
1.1.2对油、气、水井层间窜通,油层与非油层窜通,生产井与邻井窜通,通过挤水泥封窜槽。
1.1.3通过挤水泥弥补油水井因套管破损不能承受各种应力作用,填补地层亏空。
1.1.4封堵某井段漏失,保护油气资源。
1.1.5对固井质量不合格的油、气、水井,通过挤水泥使其达到完井质量标准。
1.1.6对油、气、水井地层出砂井段,采用挤水泥及其添加剂实现人工井壁防砂。
1.1.7对某些因地质、工程因素需暂闭井及油田井网,生产层调整需上返的油水井进行挤封。
1.2挤水泥的方法及应用范围挤入方法是挤水泥施工作业中采取相应工艺,使水泥浆到达目的层的一种工艺措施。
按挤入方法分有挤入法、循环挤入法、控制挤入法。
按挤封结构分有空井筒、钻具(油管)、封隔器等。
1.2.1挤入法挤入法就是在井口处于控制状态下,通过液体的一定挤入压力将水泥浆替挤到目的层的方法。
1.2.1.1平推法1.2.1.1.1平推法在井内无任何结构,利用原油、气、水井套管作为挤水泥的通道,从井口直接挤水泥的方法。
应用小粒径水泥修补套管泄漏技术挤压水泥堵塞漏缝是常用的套管漏失修复方法。
用这种方法虽然已成功地修复了许多套管漏缝,但套管漏失有时太受限于流体的注入,以至用常规的水泥胶结法并不能修复。
这类套管漏缝可能太小,水泥颗粒无法渗入。
在许多情况下,要修复好需要进行多次作业,更糟的是,许多这种细微漏缝是不能修复的,致使油井报废。
针对这一问题,研制了细粒水泥,这项研究所依据的前提很简单:水泥浆中水泥颗粒的变小将提高水泥浆的穿透能力。
这样,常规水泥浆原来不能进入的细微漏缝,现在使用穿透力强的细粒水泥就能修复了。
1套管泄漏套管漏失及其修复在井筒的维护中是常见的问题。
造成漏失的原因很多:内外腐蚀、套管磨损、螺纹不严密、破裂以及套管缺陷等。
不管管子注没注水泥,漏失的类型及其位置是决定怎样修复的重要因素。
在还没注水泥的层段,尤其是当出现外腐蚀的时候,合适的做法是在套管外进行大量的水泥循环。
打开地表套管阀门,如能建立起循环的话,化学清洗后就应在受影响层段建立泥浆循环,然后关闭套管阀门,尝试进行挤压处理。
如果漏隙太细微不能建立注入速度,那么可以在该层段的下面射孔,然后按上述方法用水泥浆充填。
在已注过水泥的层段,如能建立注入速度,通常可用低失水水泥浆把漏隙堵死,然而如不能建立连续注入速度,要修复成功就很目难了。
这些细微的漏隙虽然限制水泥浆的通过,但却能降低测试压力(10~20min降低300~500psi),本技术讨论的就是如何修复这样的漏失,当把常规水泥塞钻碎并进行测试的时候,常会出现这种情况。
这种类型的漏失在生产井也许影响不大,但在注入井中却成了较大的问题。
大多数的调整措施都需要在每口注入井上进行日常机械完整性测试。
机械完整性测试要求在一定时间内,在一定压力下套管没有漏失或有很小漏失,如不能经济地修复这样的漏失,可能会使井报废。
2修复方法修复细微漏隙的方法有好几种,通常是注酸或加压使裂缝扩大,从而提高注入速度。
在许多情况下,套管的修复会变成重复循环:常规挤注、钻碎水泥塞、测试、用酸扩隙;再常规挤注、再钻碎、再测试,结果漏失依然严重。
浅谈油水井管线腐蚀漏的修补方式及技巧本文简单阐述了各采油队队部、采暖管线、清水管线、各泵站、计量间、油水井管线补漏的种类及其操作方式与技巧。
通过对我作业区30余座采油队、泵站1600余口油水井,多年来的补漏维修工作经验,具体分析并总结出在油田生产中,众多的管线经过长期的输送各种介质而产生的漏点,从这些漏点的位置和管线的腐蚀程度,施工的难易程度,归纳出简单有效的维修方式与技巧,并讲述了各种维修方式的优缺点。
标签:管线;腐蚀穿孔;维修施工方式一、漏点的产生原因:1.由于管线长年输送油气水等介质,它们对管线的腐蚀以及各种除垢剂、清蜡剂等对管线都有一定的腐蚀性。
2、油水井管线常年深埋地下,因防腐层损坏土壤里的湿气对管线外部的腐蚀。
3、输送压力对管线的冲击,各种地面施工对管线的挤压及破坏。
4、管材自身的质量缺陷,如:气孔、砂眼等。
这种种原因使许多管线逐渐出现各种不同程度上的腐蚀穿孔和漏点,给油水井正常生产带来了很大的影响,而且在环境上也造成了一定的污染和破坏。
二、漏点的挖掘及判断1、由于复杂的地势环境(沼泽地,沟渠,村屯等)地下管网的密布,使油水井管线补漏的工作异常辛苦,有时候管线互相叠加,不同深度的位置,还有多条不同方向的各种管线穿过,而且管材成份呈多样化(碳钢、玻璃钢、复合管等)各队部、中转站、联合站的采暖管线、清水管线星罗密布,错综复杂,挖掘时不小心就会碰伤甚至于挖断别的管线,引发出更多的维修焊接工作。
2、一个油水井管线漏点的产生,不仅仅损失的是原油产量,在安全生产、地面环境污染方面也是一个极大的隐患。
如何准确快速的将一个漏点挖掘出来,并对其制定正确的维修焊补方法呢?①首先从地面上返出的污水污油及其翻花的状态、流量大小、气味等等,迅速地判断出是油井管线还是水井管线以及其它的类型管线,然后根据各种井别管线的特点断定出管线的深度及其走向。
②其次在同方向的几口井中逐一关停,认真的观察漏点处压力前后的变化,正确地判断出真正漏点的油水井,然后用挖沟机根据管线深度及其走向对漏点进行挖掘作业,同是对有漏点的井进行彻底的排空放压,为管线的维修补漏做好准备工作。
第一章套管修复工艺技术套损井修复工艺技术主要是针对变形、破裂、错断及穿孔的套管加以修复,国内套管修复技术随着大庆油田于1962年成功补贴第一口井的套管而开始,不断发展和进步,目前套管修复技术主要有套管内打通道、套管补贴、取套换套三种类型。
一、套损损坏原因及现象1、套管损坏的原因造成套管损坏的原因主要有以下几种:(1)、由于地应力集中的作用,造成套管损坏地应力集中的效应引起了地层的隆起和折皱,造成局部岩体的变形,这种附加内力的分布密度在空间的分布是不平衡的,地应力具体作用在套管上可分解为正应力和剪应力,地应力集中作用的结果使油水井套管被挤扁或拉伸后折断。
(2)、泥岩膨胀与蠕动引起套管损坏许多研究已经证实,泥岩是一种不稳定的岩层,在有水侵入的情况下,极易造成粘土成份膨胀,泥岩进水后形成不断扩大的侵水域,从而减小岩层的摩擦系数,降低岩层原始的抗剪强度,软化地层,使原始相对平衡的地应力场失去平衡,引起泥岩地层蠕动、滑坡和断层复活。
(3)、地层出砂造成套管损坏由于地层出砂,使套管附近产生空洞,造成上覆岩层坍塌,套管受到挤压而变形损坏。
(4)、断层影响据资料表明,断层活动是直接造成油水井套管损坏的原因之一。
大庆油田在84年曾专门进行过试验,当空隙水压超过岩层破裂压力后,可造成断层的活动,进而引发地层产生微破裂,使处于断层附近的油水井套管损坏。
(5)、施工作业的影响施工作业时采取措施不当,也是造成套管损坏的重要原因之一。
特别处理事故时缺乏对套管的保护意识,而采取措施不当,另外频繁的起下钻具或采取磨铣措施等都有可能造成套管的损坏,或使套管壁磨薄降低了套管的强度,加速了套管的损坏。
(6)、腐蚀影响由于地层水中溶解O2、CO2、H2S及硫酸还原菌SRB对套管的腐蚀,造成套管损坏。
(7)、套管本身问题和重复射孔影响造成套管损坏除上述因素外,套管柱的设计和重复射孔也是造成套管损坏的重要原因。
由于射孔枪型在不断加大,射孔密度在不断增加,且最多重复射孔达四次,而射孔段的套管柱设计上并未采取特殊要求,因此,优化套管柱设计和射孔方式,也是减少套管损坏的重要措施之一。
油水井封窜堵漏技术研究与应用油水井封窜堵漏技术研究与应用摘要:油井套破漏失后,井筒往往大量出水、出泥砂,造成油水井无法正常生产甚至停产,这会影响整体开发方案的实施,给油田稳产带来较大影响。
为了更好地解决油水井窜漏的问题,通过室内研究,形成了三种封堵配方体系、三种施工工艺,经现场大量施工,取得了显著效果。
关键词:封堵;配方;工艺;试压1.前言随着油田开发进入中后期,油、水井窜漏等问题逐步显现出来,这会影响整体开发方案的实施,给油田稳产带来较大影响。
油水井窜漏主要由于套管破损漏失、油层窜漏、套管外窜。
为了更好地解决油水井窜漏的问题,提高油田水驱开发效果,本文通过油水井串漏情况分析、室内实验及油水井封窜堵漏工艺研究三方面着手,研究出适合尕斯库勒油田油水井封窜堵漏配套工艺技术。
2.油水井窜漏情况分析油井套破漏失后,井筒往往大量出水、出泥砂,造成油水井无法正常生产甚至停产;注水井套管破损后,注入水沿着破损处漏失,无法进入目的层,注水井无法发挥作用,注入水大量窜向非生产层后,形成局部异常高压,导致注水井周围油井套管变形甚至发生破裂,同时,造成区块的注采失调,达不到配产方案指标要求,使局部油井减产或停产,给分层注采、分层增产措施带来困难,另外油层大孔道还会形成单层突进,降低水驱开发效果。
由于固井质量问题,或其他原因形成的套管外窜,会使油层和水层窜通,对应油井含水快速上升,注水井管外窜会严重影响分层注水工艺的实施,因此,对油水封窜堵漏技术的研究很有必要。
3.封堵配方体系室内试验及封堵工艺确实定⑴.水泥+膨润土室内试验室内试验中,在90g水中参加200g干水泥配置水灰比为0.45的水泥浆,试验数据说明参加膨润土后混合物体积缩小量大幅减少,由上图可以看出当膨润土与水泥的重量比为 1.7%时,混合物的体积缩小量到达最小,之后随着膨润土参加量的增加体积缩小量开始呈上升趋势。
在100g水中参加200g干水泥配置水灰比为0.5的水泥浆,在其中参加膨润土后体积缩小量大幅减少,由上图可以看出当膨润土与水泥的重量比为2%时,混合物的体积缩小量到达最小,之后随着膨润土参加量的增加,混合物体积缩小量开始呈上升趋势。
油田套损井修复技术研究随着石油资源的不断开采,油田套损的情况也日益突出。
套损井是指在油井钻井、完井及生产过程中,由于地层条件、井筒设计、施工作业、井口设备及油气流体等原因导致井筒结构或井筒内部设备的损坏或变形,从而影响了油田正常生产的井。
套损井的存在不仅会造成油田资源的浪费,还会增加油田的投入成本,降低油井的产能。
研究套损井的修复技术对于油田的持续开发和生产具有重要意义。
套损井的修复技术主要包括表面修井和剖面修井两种类型。
表面修井是指通过在地面上进行作业,采用各种机械及化学方法进行井筒的修复;剖面修井是指通过在井下进行作业,采用特殊工具和设备对井筒内部设备进行修复。
下面将对这两种修复技术进行详细介绍,并探讨其在实际应用中的效果及存在的问题。
一、表面修井技术表面修井技术是指通过地面作业,采用各种机械及化学方法对套损井的井筒结构进行修复。
包括了井下测井、井下作业及化学处理等多种方法。
在进行表面修井前,首先需要进行井下测井,通过测井仪器对井筒的结构及损坏程度进行分析,为后续的修井工作提供数据支持。
然后,根据井下测井结果,确定采用的修井方法和工具。
1. 机械修复机械修复主要是通过使用不同类型的钻井工具和设备,对套损井的井筒结构进行修复。
这些工具包括了钻具、起下钻具及敲击类工具等,通过旋转、撞击等方式对井筒内部设备进行修复。
这种方法修复效果较好,但在实际应用中也存在一些问题,比如操作难度大、费用高、对井筒的磨损较大等。
2. 化学处理化学处理是指通过注入化学试剂到井下,对套损井的井筒结构进行修复。
这些化学试剂通常是酸、碱、消泡剂等,通过改变地层条件和油气流体性质,来修复井筒的损坏。
这种方法具有操作简单、成本低等优点,但需要注意的是化学试剂对井筒内部设备的腐蚀作用,需要谨慎使用。
1. 人井作业人井作业是指通过降井工具,人员下井进行巡视、维修等工作。
这种方法适用范围广,可以对井筒内部各种设备进行维修,效果较好;但操作难度大,安全风险高。
浅谈油水井管线腐蚀漏的修补方式及技巧【摘要】油水井管线腐蚀漏是油田开发中常见的问题,修补工作至关重要。
本文从修补方式、修补技巧、管道清洁处理、腐蚀修补材料选择和修补施工注意事项等方面进行了探讨。
修补方式包括焊接修补、胶水修补和环带修补等,修补技巧则需要注意修补位置的清洁和封口的牢固。
在管道清洁处理方面,化学溶解和高压水洗是常用的方法。
在选择腐蚀修补材料时,要考虑其耐腐蚀性和粘附性。
修补施工注意事项包括施工人员的安全防护和施工前的周密计划。
对于油水井管线腐蚀漏的修补工作,需要综合考虑多方面因素,以确保修补效果和工作安全。
【关键词】油水井、管线、腐蚀、漏、修补方式、修补技巧、管道清洁处理、腐蚀修补材料选择、修补施工注意事项、引言、结论1. 引言1.1 引言油水井管线腐蚀漏是油田开发中常见的问题,如果不及时修补,将会造成严重的安全隐患和经济损失。
在进行修补之前,我们需要了解不同的修补方式和修补技巧,以确保修复效果和长期稳定性。
管道清洁处理也是修补工作中不可忽视的环节,只有保持管道清洁,修补才能得以顺利进行并取得良好效果。
在选择腐蚀修补材料时,需要根据具体情况进行细致分析和选择,以确保修补效果能够达到预期。
修补施工过程中,也需注意一些重要的事项,如施工环境要求、操作规范等,只有严格遵守这些注意事项,修补工作才能顺利进行并取得好的效果。
通过对修补方式、技巧、清洁处理、材料选择以及施工注意事项的了解和实践,我们能够更好地应对油水井管线腐蚀漏的修补工作,确保管道安全运行和生产效率。
2. 正文2.1 修补方式修补方式包括:1. 焊接修补:使用焊接进行修补是一种常见的方式,可以通过电弧焊、气焊或其他焊接方式进行修补。
在进行焊接修补时,需要先清洁好腐蚀部位,然后使用适当的焊接材料进行修补,确保焊接牢固。
2. 化学修补:化学修补是使用化学药剂进行修复。
这种方式适用于一些较小的漏洞或者表面腐蚀的情况。
可以选择合适的化学药剂,将其注入到腐蚀部位进行修复。
油水井破损套管堵漏修复技术任松江(胜利油田中利石油工程技术有限公司)前言胜利油田由于特殊复杂的地质条件,加上长期的注水开发,特别是增压注水,油水井破损现象十分普遍,井况恶化问题日益突出,特别是一些老井,由于油层套管使用年限过长,固井水泥又没有完全封固油层套管,在套管自由段和封固段因腐蚀造成穿孔,再加上套管变形、破损等现象造成了地层出泥浆、出水,严重影响油水井的正常生产。
套损井的出砂、出水、漏失,严重影响了油水井的正常生产,制约了部分采油工艺的应用,加大了措施难度和投入,降低了油田开发水平及经济效益。
目前,解决油水井因腐蚀和其它原因造成的套管破漏穿孔问题主要采用常规无机胶凝材料堵漏和热固性树脂堵漏方法,以及部分换套大修工艺和内衬小直径套管等工艺技术。
但这些技术常常由于受到使用效果、使用有效期和施工费用限制,许多油水井的漏失问题不能得到有效及时的解决,制约了油气生产。
以最常用的无机胶凝材料堵漏技术(如水泥般土堵漏技术)和热固性树脂堵漏技术(如尿醛树脂堵漏技术)为例,对于油水井的化学堵漏修复而言,主要存在下列问题:1、堵剂不能有效地驻留在封堵层位,堵剂替至目的层后未凝固前就已漏失掉,造成堵浆注入量大,施工时间长。
2、堵剂形成的固化体脆性大,易收缩,不能与周围介质形成牢固的界面胶结,在注采压力的作用下使封堵失效,缩短了施工有效期。
3、堵剂适应性和安全可靠性差,现场施工风险大。
施工设备一旦出现问题造成时间延误时,往往使施工无法进行,甚至发生事故。
为了克服上述工艺的技术缺陷,更好地解决胜利油田油水井破损套管的修复问题,降低油水井生产作业成本,提高油气开发经济效益,我们重点针对套管破损穿孔漏失等问题,开展了油水井化学堵漏技术的研究,研制开发出了能在漏失位臵有效驻留,并能形成界面胶结强度高、有效期长的封固层的新型高强度微膨胀化学堵剂YLD-1,先后在文33-107井等10口井推广应用,新型油水井化学堵漏技术取得重大突破,显示出良好的应用前景。
一、主要研究内容(一)堵剂材料的选择及其功能1、结构形成剂,主要功能是快速形成互穿网络结构。
2、胶凝固化剂,主要功能是使化学堵剂形成高强度的固化体。
3、膨胀型活性填充剂,主要功能是强化堵剂固化体的界面胶结强度。
4、活性微晶增强剂,主要功能是使固化体结构致密,强化固化体本体强度和界面胶结强度。
5、活性增韧剂,主要功能是提高堵剂固化体的韧性,提高界面胶结强度。
6、施工性能调节剂,主要调节堵剂的初终凝时间。
(二)油水井破损套管化学堵漏技术对化学堵剂的性能要求根据油水井破损套管化学堵漏技术施工的特殊要求,所研究的化学堵剂必须达到下列性能:1、化学堵剂进入封堵层后,能够通过特殊的机制,快速形成互穿网络结构,有效地滞留在封堵层内。
2、在井下温度和压力的养护条件下,通过有机和无机材料的协同效应和化学反应,能够在封堵层位形成抗压强度高、韧性好、微胀涨和有效期长的固化体。
3、在各种油水井破损套管化学堵漏技术工况下,都能将周围介质胶结成一个牢固的整体,与所胶结的界面具有较高的胶结强度,从而大大提高施工有效期。
4、配制的堵浆流动性和稳定性好,挤注压力低,固化时间易于调整。
5、堵剂固化体的本体强度优于油井水泥。
6、现场施工验收指标为:油井15MPa,30min压降〈0.5MPa;水井25MPa,30min 压降〈0.5MPa。
(三)油水井破损套管化学堵漏剂的性能研究1、驻留性和胶结强度研究现场实践表明油水井封堵层的失效往往不是封堵层本身的强度不够,而是与周围界面不能形成良好的胶结,即胶结强度不够。
因此,在保证封堵层本体强度的基础上(达到或超过水泥),通过强化封堵层与封堵界面的胶结强度和封堵层自身的韧性和致密性,是提高油水井化学堵漏有效期的技术关键。
表1 固化体胶结强度试验样品号互穿网络结构形成时间s网络结构形成后的承压能力MPa突破压力MPa击穿压力MPa化学堵剂20 4.0 8.5 24.0油井水泥无网络结构形成0 3.8 7.5超细水泥无网络结构形成0 4.5 8.2从表1可以看出,所研究的化学堵剂与水泥相比具有截然不同的性能。
水泥浆进入漏层后不能形成具有一定承压能力的互穿网络结构,而且击穿压力很低,说明是由于水泥与外界的胶结界面存在一个结构薄弱的过渡层,还有水化反应后的收缩效应的影响。
而我们研究的化学堵剂YLD-1,由于引入了结构形成剂和多种活性材料,堵剂进入岩心后能够在很短时间内形成具有一定承压能力的互穿网络结构,有利于堵浆在漏失层内的驻留;而且由于活性材料与胶结固化材料形成的水化反应,使界面过渡层硬度和强度大大提高,再加上堵剂的微膨胀作用,强化了界面胶结强度。
表2 封堵层的形成速度和强度试验样品号封堵层形成时间s封堵层厚度mm封堵层粘接强度KPa备注化学堵剂28 32 50.39油井水泥无封堵层形成0 0 全部穿过模拟漏失层超细水泥无封堵层形成0 0 全部穿过模拟漏失层从表2的数据可以进一步看出,化学堵剂进入漏失层后能快速形成封堵层,不会从漏失层中全部漏失掉,有较强的驻留性。
并且封堵层的形成速度越快,其强度越高。
两种水泥浆在漏失层中都没有驻留性。
2、施工性能研究上述研究表明化学堵剂进入漏失层后能快速形成互穿网络结构,从试验中还可以看出化学堵剂YLD-1性能的另一个特点,即堵剂只要不进入漏失层,不产生失水,就不会很快起反应,反而具有很温和的性能,能长时间保持良好的流动性,这对现场施工十分有利。
表3 化学堵剂YLD-1施工性能研究编号表观粘度mPa.s塑性粘度mPa.s动切力Pa初切/终切Pa初凝/终凝h1 15.5 15.0 0.5 2.5/5.0 15/17.42 27.5 25.0 2.5 2.8/5.5 12/13.53 54.0 43.0 11.0 3.0/6.0 9/10.5通过室内试验我们看出,用化学堵剂YLD-1配制的堵浆,配制容易,流动性好,悬浮稳定性强,可泵性好易于施工。
而且只要不进漏失层,堵浆在套管内能长时间保持流动性,初终凝时间容易调整,根本不会出现闪凝现象,大大地保证了施工安全。
3、抗温性能研究使用ZLS智能HTHP封堵模拟实验仪研究了温度对所研究的化学堵剂的影响,试验结果见图1。
图1 温度与胶结强度的关系由试验可以看出化学堵剂YLD-1在高温下反而有较高的胶结强度,可用于高温深井(30-150℃)。
4、抗盐性能研究评价条件:Ca++=1500mg/L,Mg++=1000mg/L,Cl-= 150000 mg/L,总矿化度=200000mg/L。
从图2可以得到:无论单独无机盐或复合盐,其矿化度不同的地层水对化学堵剂YLD-1的强度几乎没有影响,即所研制新型高强度微膨胀化学堵漏剂YLD-1有抗盐的能力。
(四) 作用机理1、化学堵剂进入封堵层后,能够通过特殊的机制,快速形成互穿网络结构,有效地滞留在封堵层内,具有很好的抗窜能力。
用于油水井化学堵漏剂,在压差的作用下,组份中的结构形成剂迅速将化学堵剂的其它组份聚凝在一起,挤出堵浆中的自由水,从而快速形成具有一定强度的互穿网络结构,增大了堵剂在漏失层中的流动阻力,限制了堵剂往漏失层深部的流动。
随着堵剂的间断挤入,互穿网络结构的空隙不断地被充填,挤入压力不断上升,相邻的析水较差的漏失层得以启动和封堵,保证了堵漏修复的可靠性和成功率。
2、在井下温度和压力的养护条件下,通过有机和无机组份的协同效应和化学反应,能够在封堵层位形成抗压强度高、韧性好、微胀涨和有效期长的固化体。
施工结束后,挤注过程中形成的封堵层中的胶凝材料在井下温度压力作用下,通过微晶材料、增韧剂和活性微细填充剂的协同增效作用,使界面上的水化反应产物,不再是造成界面强度薄弱晶体,而是具有高强度的水化产物,改变了界面过渡层的性质,增强了界面硬度和强度。
由此形成了本体强度和界面胶结强度高的固化体,将周围介质牢固地胶结为一个牢固的整体,从而有效地进行油水井化学堵漏,化学修复套损得以实现。
3、在各种油水井化学堵漏工况下,都能将周围介质胶结成一个牢固的整体,与所胶结的界面具有较高的胶结强度,从而大大提高施工有效期。
化学堵剂YLD-1中的微膨胀活性组分在与胶凝材料形成高强度水化产物的同时,通过自身的微膨胀作用进一步增强了界面胶结的紧密程度,在封闭性的内压力作用下使堵剂微粒紧密接触,形成的水化产物结构细密,水化反应充分,促进了固化体本体和界面胶结强度的提高。
4、堵剂固化体的本体强度优于油井水泥结构形成剂本身是一种多孔的微细材料,能吸附大量的水分,在水化反应过程中能不断形成水化产物充填空隙,并放出吸附水,保证了界面水化反应的顺利进行。
随着水化产物的不断发育,水化产物不断壮大,形成的本体结构不断增强,优于油井水泥。
抗压强度(MPa)钙离子氯离子自来水图2 地层水矿化度对YLD-1的影响用扫描电镜(SEM)观察堵剂固化体和G级油井水泥石的微观结构,如图3和图4,从图3看出水泥石是颗粒与颗粒互相搭接起来的结构,在颗粒表面有纤维状水化物,养护30天的(图4)比8天的更加明显,而且纤维质变粗;从图5和图6、图7、图8照片中堵剂固化体照片中可以看出,堵剂固化体也是颗粒之间的搭接结构,而且在颗粒周围存在许多针状水化物,其水化产物非常致密,但颗粒之间的空洞比水泥石少,结构比水泥石致密,强度比水泥石高。
图3 水泥石8d 图4 水泥石30d图5 堵剂固化体8d 图6 堵剂固化体30d图7 油井水泥固化体内部微观结构图8 YLD-1堵剂固化体内部微观结构(五)施工工艺技术1、根据施工井的具体情况,制定配浆方案,使之适应不同漏失程度、不同井温和不同漏失特征的施工井。
2、根据施工难度和深度,选择空井筒全井平推、下管柱挤堵和下管柱下封隔器挤堵等施工方法。
3、在现场施工过程中动态调整各项施工参数。
二、现场应用示例油水井化学堵漏技术目前已应用了10井次,其中堵高压盐水层1井次,破损套管堵漏修复4井次,封窜1井次,堵炮眼和封堵大孔道4井次,一次封堵成功率在94%以上。
下面简单介绍各种工况下施工作业示例。
1、W33-107井(油井堵套漏、封层),是1984年4月投产的一口老井,完钻井深3300米。
该井2000年4月大修,下封隔器化堵时,封隔器于2196米遇阻,化堵时套压打平衡14MPa,60min漏失约10m3清水。
2000年7月换封未成,下φ114mm×2mm通井规于2605米遇阻,该井起油管22根时有卡钻现象,经活动后解卡。
该井尽管投入了近200万元大修费,因自由段套管腐蚀穿孔漏失和封固段套管变形破裂造成的漏失严重,且漏失点多,具体位臵不清,作业效果不好,准备报废。
因此该井的施工,必须解决自由段破漏套管的化学堵漏修复、变形破裂段套管严重窜漏的堵漏修复和S2下2,4,52762.6-2880米的挤堵封层三个难题。