10种运算放大器
- 格式:docx
- 大小:92.03 KB
- 文档页数:13
超低失调电压运算放大器OP07A/OP07产品特性●低失调电压:最大25μV / 75μV●低失调电压漂移:最大0.6μV/℃/ 1.3μV/℃●低输入偏置电流:1nA(典型值)●高电压增益:134dB(典型值)●低噪声:最大0.6μV p-p●宽输入电压范围:±14V(典型值)●宽电源电压范围:±3V~±18V●抗电离总剂量:100k rad(Si)(剂量率:0.1rad(Si)/s)产品概述通过晶圆级在线调整,OP07表现出极低的输入失调电压(对于OP07A 常温失调电压最大为25μV)。
极低的失调电压使得电路应用时无需任何外部调零。
OP07同时也有低输入偏置电流(对于OP07A为±2nA)、高开环增益(对于OP07A典型值为134dB)的特点。
低失调和高开环增益使得OP07十分适用于高增益仪器仪表应用。
最小为±13V的宽输入电压范围结合了高共模抑制比和高输入阻抗,这为同相电路结构提供了很高的精确性。
甚至在高增益的闭环电路中仍然可以保持极佳的线性度和极其精确的增益。
失调和增益的稳定性随着时间和温度的变化表现良好。
甚至在高增益的条件下,OP07的稳定性和准确性以及外部调零使得OP07在仪器应用方面成为工业标准。
OP07采用两种封装形式,陶瓷双列直插8线外壳和金属圆8线外壳,均适用于−55℃到+125℃温度范围。
引脚描述(1)金属圆8线(2)陶瓷双列8线图1.OP07引出端排列(俯视图)电原理图图2.简化电路图电参数表≤+125℃。
表1. OP07A/OP07电特性,除非特别说明,Vs=±15V,-55℃≤T续表1. OP07A/OP07电特性,除非特别说明,Vs=±15V,-55℃≤T A≤+125℃。
绝对最大额定值表2. 绝对最大额定值注1:电源电压低于±18V时,绝对最大输入电压等于电源电压。
注2:最大差模输入电压不能超过电源电压。
实验五 集成运算放大器的基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、正确理解运算电路中各组件参数之间的关系和“虚短”、“虚断”、“虚地”的概念。
二、设计要求1、设计反相比例运算电路,要求|A uf |=10,R i ≥10K Ω,确定外接电阻组件的值。
2、设计同相比例运算电路,要求|A uf |=11,确定外接电阻组件值。
3、设计加法运算电路,满足U 0=-(10U i1+5U i2)的运算关系。
4、设计差动放大电路(减法器),要求差模增益为10,R i >40K Ω。
5、应用Multisim8进行仿真,然后在实验设备上实现。
三、实验原理1、理想运算放大器特性集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的元器件组成负反馈电路时,可以实现比例、加法、减法、积分、微分等模拟运算电路。
理想运放,是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽f BW =∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
2、基本运算电路 (1)反相比例运算电路电路如图2.5.1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1//R F 。
图2.5.1反相比例运算电路图2.5.2反相加法运算电路(2) 反相加法电路i 1F O U R R U -=电路如图2.5.2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-=R 3=R 1//R 2//R F (3)同相比例运算电路图2.5.3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U +=R 2=R 1//R F 当R 1→∞时,U O =U i ,即得到如图2.5.3(b)所示的电压跟随器。
描述:GS8551/GS8552/GS8554放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供1.8MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。
GS855X使用斩波稳定技术来提供非常低的失调电压(最大值小于5µV),并且在整个温度范围内漂移接近零。
每个放大器的静态电源电流低至180µA,输入偏置电流极低,仅为20pA,因此该器件是低失调,低功耗和高阻抗应用的理想选择。
GS855X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。
该设计为驱动模数转换器带来了卓越的性能转换器(ADC),而不会降低差分线性度。
GS8551提供SOT23-5和SOP-8封装。
GS8552提供MSOP-8和SOP-8封装。
GS8554 Quad具有绿色SOP-14和TSSOP-14封装。
在所有电源电压下,-45oC至+ 125oC的扩展温度范围提供了额外的设计灵活性。
特点:+ 1.8V〜+ 5.5V单电源供电•嵌入式RF抗EMI滤波器•轨到轨输入/输出•小型封装:•增益带宽乘积:1.8MHz(典型@ 25°C)GS8551采用SOT23-5和SOP-8封装•低输入偏置电流:20pA(典型值@ 25°C)GS8552采用MSOP-8和SOP-8封装•低失调电压:30µV(最大@ 25°C)GS8554采用SOP-14和TSSOP-14封装•静态电流:每个放大器180µA(典型值)•工作温度:-45°C〜+ 125°C•零漂移:0.03µV / oC(典型值)应用:换能器应用•手持测试设备•温度测量•电池供电的仪器•电子秤Features•Single-Supply Operation from +1.8V ~ +5.5V •Embedded RF Anti-EMI Filter•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 1.8MHz (Typ. @25°C) GS8551 Available in SOT23-5 and SOP-8 Packages•Low Input Bias Current: 20pA (Typ. @25°C) GS8552 Available in MSOP-8 and SOP-8 Packages•Low Offset Voltage: 30µV (Max. @25°C) GS8554 Available in SOP-14 and TSSOP-14 Packages•Quiescent Current: 180µA per Amplifier (Typ)•Operating Temperature: -45°C ~ +125°C•Zero Drift: 0.03µV/o C (Typ)General DescriptionGS8551 / GS8552 / GS8554放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供1.8MHz的带宽,轨至轨输入和输出以及1.8以上的单电源供电V至5.5V。
GS8591/GS8592/GS8594放大器是单/双/四电源,微功耗,零漂移CMOS运算放大器,这些放大器提供4.5MHz的带宽,轨至轨输入和输出以及1.8V至5.5V的单电源供电。
GS859X使用斩波稳定技术来提供非常低的失调电压(最大值小于50µV),并且在整个温度范围内漂移接近零。
每个放大器550µA的低静态电源电流和20pA的极低输入偏置电流使这些器件成为低失调,低功耗和高阻抗应用的理想选择。
GS859X提供了出色的CMRR,而没有与传统的互补输入级相关的分频器。
这种设计在驱动模数转换器(ADC)方面具有卓越的性能,而不会降低差分线性度。
GS8591提供SOT23-5和SOP-8封装。
GS8592提供MSOP-8和SOP-8封装。
GS8594 Quad具有绿色SOP-14和TSSOP-14封装。
在所有电源电压下,-45oC 至+ 125oC的扩展温度范围提供了额外的设计灵活性。
特性:+ 1.8V〜+ 5.5V单电源供电•嵌入式RF抗EMI滤波器•轨到轨输入/输出•小型封装:•增益带宽乘积:4.5MHz(典型@ 25°C)GS8591采用SOT23-5和SOP-8封装•低输入偏置电流:20pA(典型值@ 25°C)GS8592采用MSOP-8和SOP-8封装•低失调电压:30µV(最大@ 25°C)GS8594采用SOP-14和TSSOP-14封装•静态电流:每个放大器550µA(典型值)•工作温度:-45°C〜+ 125°C•零漂移:0.03µV / oC(典型值)Features•Single-Supply Operation from +1.8V ~ +5.5V •Embedded RF Anti-EMI Filter•Rail-to-Rail Input / Output •Small Package:•Gain-Bandwidth Product: 4.5MHz (Typ. @25°C) GS8591 Available in SOT23-5 and SOP-8 Packages•Low Input Bias Current: 20pA (Typ. @25°C) GS8592 Available in MSOP-8 and SOP-8 Packages•Low Offset Voltage: 30µV (Max. @25°C) GS8594 Available in SOP-14 and TSSOP-14 Packages •Quiescent Current: 550µA per Amplifier (Typ.)•Operating Temperature: -45°C ~ +125°C•Zero Drift: 0.03µV/o C (Typ.)General DescriptionThe GS859X amplifier is single/dual/quad supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 4.5MHz, rail-to-rail inputs and outputs, and single-supply operation from 1.8V to 5.5V. GS859X uses chopper stabilized technique to provide very low offset voltage (less than 50µV maximum) and near zero drift over temperature. Low quiescent supply current of 550µA per amplifier and very low input bias current of 20pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS859X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.The GS8591 is available in SOT23-5 and SOP-8 packages. And the GS8592 is available in MSOP-8 and SOP-8 packages. TheGS8594 Quad is available in Green SOP-14 and TSSOP-14 packages. The extended temperature range of -45o C to +125o C over all supply voltages offers additional design flexibility.Applications•Transducer Application •Handheld Test Equipment•Temperature Measurements •Battery-Powered Instrumentation•Electronics ScalesPin ConfigurationFigure 1. Pin Assignment DiagramAbsolute Maximum RatingsCondition Min Max Power Supply Voltage (V DD to Vss) -0.5V +7.5V Analog Input Voltage (IN+ or IN-) Vss-0.5V V DD+0.5V PDB Input Voltage Vss-0.5V +7V Operating Temperature Range -45°C +125°C Junction Temperature +160°CStorage Temperature Range -55°C +150°C Lead Temperature (soldering, 10sec) +260°CPackage Thermal Resistance (T A=+25 )SOP-8, θJA 125°C/WMSOP-8, θJA 216°C/WSOT23-5, θJA 190°C/WESD SusceptibilityHBM 6KVMM 400VNote: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.Package/Ordering InformationMODEL CHANNEL ORDER NUMBERPACKAGEDESCRIPTIONPACKAGEOPTIONMARKINGINFORMATIONGS8591 SingleGS8591-TR SOT23-5 Tape and Reel,3000 8591 GS8591Y-SR SOP-8 Tape and Reel,4000 GS8591YGS8592 Dual G S8592-SR SOP-8 Tape and Reel,4000 GS8592 GS8592-MR MSOP-8 Tape and Reel,3000 GS8592GS8594 Quad GS8594-TR TSSOP-14 Tape and Reel,3000 GS8594 GS8594-SR SOP-14 Tape and Reel,2500 GS8594Electrical Characteristics(V S = +5V, V CM = +2.5V, V O = +2.5V, T A = +25 , unless otherwise noted.)PARAMETER CONDITIONS MIN TYP MAX UNITS INPUT CHARACTERISTICSInput Offset Voltage (V OS) 1 5 µV Input Bias Current (I B) 20 pA Input Offset Current (I OS) 10 pA Common-Mode Rejection Ratio(CMRR)V CM = 0V to 5V 110 dB Large Signal Voltage Gain ( A VO) R L = 10kΩ, V O = 0.3V to 4.7V 145 dB Input Offset Voltage Drift (∆V OS/∆T) 30 nV/ OUTPUT CHARACTERISTICSOutput Voltage High (V OH) R L = 100kΩ to - V S 4.998 V R L = 10kΩ to - V S 4.994 VOutput Voltage Low (V OL) R L = 100kΩ to + V S 2 mV R L = 10kΩ to + V S 5 mVShort Circuit Limit (I SC) R L =10Ω to - V S 43 mA Output Current (I O) 30 mA POWER SUPPLYPower Supply Rejection Ratio (PSRR) V S = 2.5V to 5.5V 115 dB Quiescent Current (I Q) V O = 0V, R L = 0Ω 180 µA DYNAMIC PERFORMANCEGain-Bandwidth Product (GBP) G = +100 4.5 MHz Slew Rate (SR) R L = 10kΩ 2.5 V/µs Overload Recovery Time 0.10 ms NOISE PERFORMANCEVoltage Noise (e n p-p) 0Hz to 10Hz 0.2 µV P-PnV Voltage Noise Density (e n) f = 1kHz 30 HzTypical Performance characteristicsLarge Signal Transient Response at +5V Large Signal Transient Response at +2.5VC L=300pF R L=2kΩA V=+1C L=300pFR L=2kΩA V=+1Time(4µs/div) Time(2µs/div)Small Signal Transient Response at +5V Small Signal Transient Response at +2.5VC L=50pF R L=∞A V=+1C L=50pFR L=∞A V=+1Time(4µs/div) Time(4µs/div)Closed Loop Gain vs. Frequency at +5V Closed Loop Gain vs. Frequency at +2.5V G=-100 G=-100 G=-10 G=-10G=+1 G=+1Frequency (kHz) Frequency (kHz)Typical Performance characteristicsOpen Loop Gain, Phase Shift vs. Frequency at +5V Open Loop Gain, Phase Shift vs. Frequency at +2.5VPhase ShiftV L=0pFR L=∞V L=0pFR L=∞Phase ShiftOpen Loop GainOpen Loop Gain Frequency (Hz) Frequency (Hz) Positive Overvoltage Recovery Negative Overvoltage RecoveryV SY= 2.5VV IN=-200mVp-p(RET to GND)C L=0pFR L=10kΩA V=-100 V SY= 2.5VV IN=-200mVp-p(RET to GND) C L=0pFR L=10kΩA V=-100Time (40µs/div) Time (40µs/div) 0.1Hz to 10Hz Noise at +5V 0.1Hz to 10Hz Noise at +2.5VG=10000G=10000 Time (10s/div) Time (10s/div)Application NoteSizeGS859X系列运算放大器具有单位增益稳定的特性,适用于各种通用应用。
全差分运算放大器设计岳生生(200403020126)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。
如图2所示;(b )折叠共源共栅,folded-cascode 。
如图3所示;(c )共源共栅,telescopic 。
如图1的前级所示。
本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。
对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。
另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。
考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。
两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。
三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg gg G A R r rr r g g r r r r=-=-=-+第二级增益92291129911()m o o o m m o o gg G AR r rgg=-=-=-+整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。
运算放大器有关电压电流的转换电路1、 0-5V/0-10mA的V/I变换电路图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。
输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。
2、 0-10V/0-10mA的V/I变换电路图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出:若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf =200Ω时,此电路能实现0-10v/0-10mA的V/I变换。
在电子行业,集成电路的应用非常广泛,每年都有许许多多通用或专用的集成电路被研发与生产出来,本文将对集成电路的知识作一全面的阐述。 集成电路的种类 集成电路的种类很多,按其功能不同可分为模拟集成电路和数字集成电路两大类。前者用来产生、放大和处理各种模拟电信号;后者则用来产生、放大和处理各种数字电信号。所谓模拟信号,是指幅度随时间连续变化的信号。例如,人对着话筒讲话,话筒输出的音频电信号就是模拟信号,收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号,也是模拟信号。所谓数字信号,是指在时间上和幅度上离散取值的信号,例如,电报电码信号,按一下电键,产生一个电信号,而产生的电信号是不连续的。这种不连续的电信号,一般叫做电脉冲或脉冲信号,计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。在电子技术中,通常又把模拟信号以外的非连续变化的信号,统称为数字信号。目前,在家电维修中或一般性电子制作中,所遇到的主要是模拟信号;那么,接触最多的将是模拟集成电路。 集成电路按其制作工艺不同,可分为半导体集成电路、膜集成电路和混合集成电路三类。半导体集成电路是采用半导体工艺技术,在硅基片上制作包括电阻、电容、三极管、二极管等元器件并具有某种电路功能的集成电路;膜集成电路是在玻璃或陶瓷片等绝缘物体上,以“膜”的形式制作电阻、电容等无源器件。无源元件的数值范围可以作得很宽,精度可以作得很高。但目前的技术水平尚无法用“膜”的形式制作晶体二极管、三极管等有源器件,因而使膜集成电路的应用范围受到很大的限制。在实际应用中,多半是在无源膜电路上外加半导体集成电路或分立元件的二极管、三极管等有源器件,使之构成一个整体,这便是混合集成电路。根据膜的厚薄不同,膜集成电路又分为厚膜集成电路(膜厚为1μm~10μm)和薄膜集成电路(膜厚为1μm以下)两种。在家电维修和一般性电子制作过程中遇到的主要是半导体集成电路、厚膜电路及少量的混合集成电路。 按集成度高低不同,可分为小规模、中规模、大规模及超大规模集成电路四类。对模拟集成电路,由于工艺要求较高、电路又较复杂,所以一般认为集成50个以下元器件为小规模集成电路,集成50-100个元器件为中规模集成电路,集成100个以上的元器件为大规模集成电路;对数字集成电路,一般认为集成1~10等效门/片或10~100个元件/片为小规模集成电路,集成10~100个等效门/片或100~1000元件/片为中规模集成电路,集成100~10,000个等效门/片或1000~100,000个元件/片为大规模集成电路,集成10,000以上个等效门/片或100,000以上个元件/片为超大规模集成电路。 按导电类型不同,分为双极型集成电路和单极型集成电路两类。前者频率特性好,但功耗较大,而且制作工艺复杂,绝大多数模拟集成电路以及数字集成电路中的TTL、ECL、HTL、LSTTL、STTL型属于这一类。后者工作速度低,但输人阻抗高、功耗小、制作工艺简单、易于大规模集成,其主要产品为MOS型集成电路。MOS电路又分为NMOS、PMOS、CMOS型。 NMOS集成电路是在半导体硅片上,以N型沟道MOS器件构成的集成电路;参加导电的是电子。PMOS型是在半导体硅片上,以P型沟道MOS器件构成的集成电路;参加导电的是空穴。CMOS型是由NMOS晶体管和PMOS晶体管互补构成的集成电路称为互补型MOS集成电路,简写成CMOS集成电路。 除上面介绍的各类集成电路之外,现在又有许多专门用途的集成电路,称为专用集成电路。 下面我们先介绍模拟集成电路中不同功能的电路。 1.集成运算放大器 集成运算放大器是一种高增益的直接耦合放大器,其内部包含数百个晶体管、电阻、电容, 但体积只有一个小功率晶体管那么大,功耗也仅有几毫瓦至几百毫瓦,但功能很多。它通常由输人级、中间放大级和输出级三个基本部分构成。运算放大器除具有十、一输人端和输出端外,还有十、一电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。它的放大倍数取决于外接反馈电阻,这给使用带来很大方便。其种类有通用型运算放大器,比如uA709、5G922、FC1、FC31、F005、4E320、8FC2、SG006、BG305等;通用Ⅲ型有F748、F108、XFC81、F008、4E322等;低功耗放大器(UPC253、7XC4、5G26、F3078等);低噪声运算放大器(如F5037、XFC88);高速运算放大器(如国产型号有F715、F722、4E321、F318,国外的有uA702);高压运算放大器(国产的有F1536、BG315、F143);还有电流型、单电源、跨导型、静电型、程控型运算放大器等。 2.稳压集成电路 稳压集成电路又称集成稳压电源,其电路形式大多采用串联稳压方式。集成稳压器与分立元件稳压器相比,体积小,性能高、使用简便可靠。集成稳压器的种类有,多端可调式、三端可调式、三端固定式及单片开关式集成稳压器。 多端可调集成稳压器精度高、价格低,但输出功率小,引出端多,给使用带来不方便。 多端可调式集成稳压器可根据需要加上相应的外接元件,组成限流和功率保护。国内外同类产品基本电路形式有区别,基本原理相似。国产的有W2系列、WB7系列、WA7系列、BG11等。 三端可调式输出集成稳压器精度高,输出电压纹波小,一般输出电压为1.25V~35V或l.25V~35V连续可调。其型号有W117、W138、LM317、LM138、LMl96等型号。 三端固定输出集成稳压器是一种串联调整式稳压器,其电路只有输人、输出和公共3个引出端,使用方便。其型号有W78正电压系列、W79负电压系列。 开关式集成稳压器是新的一种稳压电源,其工作原理不同上述三种类型,它是由直流变交流再变直流的变换器,输出电压可调,效率很高。其型号有AN5900、HA17524等型号,广泛用于电视机、电子仪器等设备中。 3、音响集成电路 单响集成电路随着收音机、收录机、组合音响设备的发展而不断开发。对音响电路要求多功能、大功率和高保真度。比如一块单片收音机、录音机电路,就必须具有变频、检波。中放、低放、AGC、功放和稳压等电路。音响集成电路工艺技术不断发展,采用数字传输和处理,使音响系统的各项电声指标不断提高。比如,脉冲码调制录音机、CD唱机,能使信噪比和立体声分离度切变好,失真度减到最小。 音响集成电路按本身的电路功能分有,高、中频放大集成电路、功放集成电路、低噪前置放大集成电路、立体声解码集成电路、单片收音机、收录机集成电路。驱动集成电路及特殊功能集成电路。 高、中频放大器集成电路体积小而紧凑,自动增益高、控制特性好、失真小,在收音机、收录机中得到广泛应用。其中调幅集成电路的型号有FD304、SL1018、SL1018AM、TB1018等型号。调频集成电路有TA7303、TDA1576、LA1165、LA1210、TDA1062等型号。调幅、调频共用集成电路内设AM变频功能、AM检波功能、FM鉴频限幅功能。调频立体声接收机的专门用的立体声解码电路。后期(70年代以后)产品有LA3350、LA3361、HA11227、AN7140、BA1350、TA7343P等型号。单片集成电路已成为世界流行的一种单片音响集成电路。用单片收音机集成电路装配收音机其成本低,调试方便。其中ULN2204型AM收音机集成电路,功能齐全,能在3V~12V电压范围内工作。类似型号有HA12402、TA7613、ULN2204A型等。 特殊功能集成电路有显示驱动电路、电动机稳速电路、自动选曲电路及降噪电路等。 其中双列5点LED电平显示驱动集成电路可同时驱动10只发光二极管,它是高中档收 录机、收音机、CD唱机等音响设备中,用来作音量指示、交直流电平指示、交直流电源电压指示的常用集成电路。比如,我国生产的SL322、SL325等型号,国外的LB1405、TA7666P型等。6、7、9点LED电平显示驱动集成电路的型号有SL326、SL327、LB1407、LB1409型等。 特殊功能的集成电路除上述外,还有自动选曲集成电路、降噪集成电路等。比如,有NE464、LM1101、LA2730、uPC1180、HA12045、HA12028等型号,有的电路型号具有一定的兼容性。 4.电视集成电路 电视机采用的集成电路种类繁多,型号也不统一,但有趋向单片机和两片机的高集成化发展。用于电视机的集成电路列举如下: (1)伴音系统集成电路 电视伴音系统目前新动向,就是采用电视多重伴音系统,使用各种单片式或多块式电视双伴音信号处理集成电路。比如,用于彩色电视机伴音电路的BL5250型、BJ5250、DG5250型伴音中放、音频功放集成电路。该电路采用16引脚双列直插式,并附有散热片。D7176P、uPC1353C型伴音中放、限幅放大集成电路,具有高增益、直流工作点稳定、检波失真小、频响性能好、输出功率大等特点。uPC1353C型与AN1353型功能完全相同。其直流音量控制范围达80dB,输出级电压范围为9V~18V,失真小于0.6%,最大音频输出功率为1.2W~2.4W。 用于伴音中放、功放的集成电路还有:D7176、TA7678AD、IX0052CE、IX0065CE、AN241P、CA3065、KA2101、LA1365、TA7176、KC583型等。 (2)行场扫描集成电路 行场扫描集成电路性能优于分立元件电路,并且有的集成扫描电路系统采用了数字自动同步电路,可得到稳定的场频信号,保证了隔行扫描的稳定性,可省掉“场同步”电位器调整,提高了自动化程度。比如,D7609P、LA1460、TA7609P、TB7609等型号,电路功能有:同步分离、场输出、场振荡、AFT、行振荡保护等。 D002(国产)、HA11669(国外)型电路,电路功能有行振荡、行激励;D004(国产)、KC581C(国外)型电路,主要功能是场振荡、场输出;D7242、TA7242P、KA2131、uPC1031Hz、LA1358、uPC1378h等型号,主要功能是场振荡、场输出,场激励;D103lHz、BG103lHz、LD1031Hz、uPC1031Hz型电路主要功能有:场振荡、场输出。 (3)图像中放、视放集成电路 早期的中频通道集成电路,是用三块集成电路分别完成中放、视频检波及AFT等功能。目前已出现把图像中放、视频,伴音中放,行场扫描三大系统压缩在一块芯片中的集成电路,使电路简化,给使用、调试带来更大方便。 该类集成电路有:D1366C、SF1366、uPC1366、CD003、HA1167、D7607AP、TA7607、AN5132、CD7680CD、HA1126D、HA11215A、TB7607、TA7611AP、LA1357N、AN5150。M51353 P等。 (4)彩色解码集成电路 彩色解码电路的功能是恢复彩色信号,使图像的颜色正常。早期的彩色解码集成电路是由几块电路完成,如国产的5G3108、5G314、7CD1、7CD2、7CD3等;后来采用单片式PAL制彩色解码集成电路,如TA7193AP/P、TA7644AP/P、IX02lCE、uPC1400c、M51338SP、M51393AP、IX0719CE、AN5625型等。其中的AN5625、uPC1400C等集成电路应用了数字滤波延时网络,有的把全部小信号处理集成到一块电路中,使电路体积减小,功能更全。 (5)电源集成电路 目前多数电视机的电源控制采用了集成电路,电路类型有开关型和串联型。
十倍电压放大器电路图大全(前置放大电压跟随器LM386音响功放电路)电压放大器(VoltageAmplifier)是提高信号电压的装置。
对弱信号,常用多级放大,级联方式分直接耦合、阻容耦合和变压器耦合,要求放大倍数高、频率响应平坦、失真小。
当负载为谐振电路或耦合回路时,要求在指定频率范围内有较好幅频和相频特性以及较高的选择性。
电压放大器工作原理运算放大器的核心是一个具有恒流源的差分放大器,由于恒流源的作用尽量的保证晶体管的工作点,能在晶体管特性曲线比较线性的一段工作,并且采用了深度的负反馈使整个运算放大电路对信号具有较好的线性放大。
一个运算放大器为了保证有一定的增益,都是采用多级直流放大器的组合,在制造时就在一个芯片上完成,以集成电路运算放大器的形式出现;保证了良好的耦合特性及稳定性。
所以运算放大器就是高质量的模拟放大器的代名词。
由于运算放大器的核心是一个差分放大器,所以就有两个输入端,和一个输出端,其在电路图上的表示符号,引脚的位置和电压比较器一样;两个输入端和输出的关系也有同相输入端和反相输入端的称呼。
这两个输入端都可以输入信号(对称的差分信号);也可以,一个输入端设定为基准电压,一个输入端输入模拟信号。
运算放大器既然能把信号进行放大,显然我们用他来代替电压比较器作为电压比较用也是没有问题的,就有许多电路的电压比较电路就采用了运算放大器电路完成的。
不过运算放大器作为电压比较器使用;其灵敏度、反映速度都要差的多,还是不要这样替代用的为好,但是电压比较器是绝对不能作为运算放大器用的。
在一般的电路原理图上运算放大器和电压比较器,光从符号上很难区分图纸上表示的是运算放大器还是电压比较器,只能通过对电路的分析,进行判断。
十倍电压放大器电路图(一)工频干扰是脑电信号的主要干扰,虽然前置放大电路对共模干扰具有较强的抑制作用,但部分工频干扰是以差模信号方式进入电路的,且频率处于脑电信号的频带之内,加上电极和输入回路不稳定等因素,前级电路输出的脑电信号仍存在较强的工频干扰,所以必须专门滤除。
运算放大器参数说明一。
运算放大器的专业术语1bandwidth带宽:电压增益变成低频时1/(2)的频率值2共模抑制比:common mode rejection ratio3谐波失真:harmonic distortion谐波电压的均方根值的和/基波电压均方根值4输入偏置电流:input bias current两输入端电流的平均值5输入电压范围:input voltage range共模电压输入范围运放正常工作时输入端上的电压;6输入阻抗:input impendence Rs Rl指定时输入电压与输入电流的比值7输入失调电流input offset current运放输出0时,流入两输入端电流的差值;8输入失调电压input offset voltage为了让输出为0,通过两个等值电阻加到两输入端的电压值9输入电阻:input resistance:任意输入端接地,输入电压的变化值/输入电流的变化值10大信号电压增益:large-signal voltage gain输出电压摆幅/输入电压11输出阻抗:output impendence Rs Rl指定时输出电压与输出电流的比值12输出电阻:output resistance输出电压为0,从输出端看进去的小信号电阻13输出电压摆幅:output voltage swing运放输出端能正常输入的电压峰值;14失调电压温漂offset voltage temperature drift15供电电源抑制比:power supply rejection输入失调电流的变化值/电源的变化值16建立时间settling time从开始输入到输出达到稳定的时间;17摆率:slew rate输入端加上一个大幅值的阶跃信号的时候输出端电压的变化率18电源电流supply current19瞬态响应transient response小信号阶跃响应20单位增益带宽unity gain bandwirth开环增益为1时的频率值21电压增益voltage gain指rs rl固定时输出电压/输入电压二。
两级CMOS运算放大器设计引言CMOS运算放大器是现代电路设计中的重要组成部分,它在模拟电路中扮演着关键的角色。
CMOS运算放大器由于其低功耗、高增益和较低的失调电压而备受青睐。
本文将介绍两级CMOS运算放大器的设计方法,包括电路结构、工作原理以及性能指标。
电路结构两级CMOS运算放大器由两个级联的CMOS差动放大器组成,它们的输出分别连接在第二级差动放大器的输入上。
这种结构能够提供更高的增益和更好的线性度。
差动放大器差动放大器是CMOS运算放大器的关键组成部分,它用于将输入信号转换为差模信号,并放大差模信号以提供一个具有高增益的输出。
CMOS差动放大器由一对输入端和一对输出端组成,每个输入端都连接了一个NMOS和一个PMOS管,这样可以实现单端输入和差分输入。
工作原理两级CMOS运算放大器的工作原理如下:1.输入信号被差动放大器的第一级转换为差模信号,并经过第一级放大。
第一级放大的输出信号被传递给第二级放大器。
2.第二级差动放大器放大差模信号,然后将其转换为单端输出信号。
3.输出信号经过一个输出级,通过一个负反馈回路被注入到第二级差动放大器的输入上。
设计步骤下面是设计两级CMOS运算放大器的一般步骤:1.确定电路的性能指标,例如增益、带宽以及失调电压等。
2.根据给定的性能指标选择差动放大器和输出级的电路结构。
3.根据选择的电路结构计算电路的参数,例如电阻、电容和晶体管的尺寸等。
4.使用电路模拟工具,例如SPICE,对电路进行仿真和优化。
5.布局电路,并进行布线。
6.进行电路的后仿真和测试。
性能指标两级CMOS运算放大器的性能指标通常包括以下几个方面:1.增益:运算放大器的增益是指输出信号相对于输入信号的放大程度。
在设计过程中,需要根据实际应用需求确定所需的增益。
2.带宽:带宽是指运算放大器能够输出一个相对稳定的放大信号的频率范围。
一般来说,带宽越大,运算放大器的性能越好。
3.失调电压:失调电压是指实际输入和理论输入之间的偏差。
高速OP运算放大器制作(上)文/丁勇宏(原文刊载於音响技术108期) 快速运算放大器之有别於其他运算放大器,是除了有好的直流特性,如高开路直流增益、低偏置电流(biascurrent)和低输入偏离漂移(offsetdrift)之外,还要有特别设计的交流特性而能在高频上工作。
这些放大器的运用须适当选择增益频宽乘积、转折率、稳定时间和输出电流。
另外还要注意诸外细节如电源的傍路。
良好的地线安排。
短拉线和最大的潜布电容量等等。
一些使高速运算放大器能处理处用的特性,会因疏忽的设计者而产生问题。
而不好的设计,徒然造成一振荡器而非一高速放大器。
不可忽略的运算放大器特性基本上运算放大器呈现给设计者的吸引力是其闭路特性几乎全由外部元件而定,鲜少受到本身的限制。
要精确控制增益、偏离、线性处、温度稳定等特性的放大器,只要使用者选用适当外围被动元件即。
但很不幸地,高速运算放大器并不像一般低频元件般单纯好用,也因此更须仔细去了解特性∶开路增益和频宽─参看图1的增益续宽波德图形,快速运算放大器的开路增益须常高,以减少加算点上的误差。
一些优秀的高速运算放大器约在10的5次方到10的5次方V/V间。
如图所示从直流到折角频率(图示100Hz)间的增益保持平坦,然後随著频率增加而减少,设计良好的放大器其增益是以每十倍频率滑落20dB,这滑落率可保证闭路工作的稳定,同时有最好的稳定时间表现。
增益频率继续滑落而当增益为1时其频率称单增益头率(unitygainfrequency,fT),宽频带放大器的fT须愈大愈好,通常有100MHz。
每十倍频率滑落的增益使得增益频宽乘积保持常数,而其值即是该放大器的增益频宽乘积。
大部分高速放大器的平顺滑落常超过fT,因而非理想放大结构,如元件有限频宽或潜布电容影响,在较高频率所形成极点(pole),其频率若远超过放大器的闭路频宽,则此外极点对高频性能只会有极小的影响。
转折率─指高速运算放大器再一快速大信号时,输出端最快的变化率,以V/usec表示。
TP1561TP1562TP1564描述:TP156XAL1系列是CMOS双路和四路RRIO运算放大器,具有低失调,低功耗和稳定的高频响应。
它们结合了3PEAK的专有和专利设计技术,以6MHz的带宽,4.5V /μs的压摆率和低失真实现了非常好的交流性能。
每个放大器仅消耗600μA的静态电流。
输入共模电压范围超出V–和V +超过300mV,输出摆幅为轨到轨。
TP156XAL1系列可用作许多商业产品的插件替代品可用的运算放大器可降低功耗并改善输入/输出范围和性能。
多种功能的组合使TP156XAL1成为电机控制和便携式音频放大,声音端口以及其他消费类音频的理想选择。
TP156XAL1运算放大器非常稳定,并且能够驱动较大的容性负载,例如LCD中的容性负载。
在输入和输出处实现轨到轨摆幅的能力使设计人员能够在单电源系统中缓冲CMOS DAC,ASIC或其他宽输出摆幅器件。
特点:●电源电压:2.5V至6.0V●低电源电流:每通道典型值为600μA●轨到轨输入和输出●带宽:典型的6 MHz●摆率:典型4.5V /μs●优异的EMI抑制性能●失调电压:最大±3mV●失调电压温度漂移:典型值1μV/°C●低噪声:1kHz时典型值为19 nV /√Hz●高输出能力:典型值100mA●–40°C至125°C的工作温度范围●绿色流行型包装应用:白色商品电机控制Pin ConfigurationTable of ContentsFeatures (1)Applications (1)Description (1)Pin Configuration (1)Table of Contents (2)Revision History (3)Order Information (3)Absolute Maximum Ratings Note1 (4)ESD Rating (4)Thermal Information (4)Electrical Characteristics (5)Typical Performance Characteristics (7)Application Information (10)Low Supply Voltage and Low Power Consumption (10)Ground Sensing and Rail to Rail Output (10)Driving Large Capacitive Load (10)Tape and Reel Information (11)Package Outline Dimensions (12)SC70-5 (12)SOT23-5 (13)SOIC-8 (13)TSSOP-8 (14)MSOP-8 (14)DFN-8 2*2 (15)SOIC-14 (16)TSSOP-14 (16)Revision HistoryDate Revision Notes2017/3/1 Rev.Pre Pre-Release Version2017/7/5 Rev.0 Release Version, confirm spec limit2017/10/28 Rev.0.01 TP1564AL1-TR sample is ready. TP1562AL1-VR(MSL1) sample is ready.Correct the max of Common-mode Input Voltage Range in Electrical Characteristics from (V+) -0.1 to (V+) + 0.1.Correct Operating Temperature Range in Maximum Ratings from –45 to 125°C to –40 to 125°C. 2017/12/26 Rev.0.02 Correct mark information of TP1562AL1-VR: XXXX change to XXXXL2018/5/30 Rev.0.03 Update ESD condition to JS001/0022018/8/30 Rev.A Update full temperature spec, update Vos spec at 5V Vcm2019/2/25 Rev.A01 Add New Part: TP1561AUL1-CR, TP1562AL1-FRAdd Spec: Ib: min and max at 25°C and 125°C; open loop SR: min at 25°C, 85°C and 125°CUpdate Package Outline Dimensions to newest factory data.Order InformationOrder Number Operating TemperatureRangePackage Marking Information MSLTransport Media,QuantityTP1561AL1-TR -40 to 125°C 5-Pin SOT23 61LXX Note 2 1 Tape and Reel, 3000 TP1561AL1-CR Note 1 -40 to 125°C 5-Pin SC70 61LXX Note 2 1 Tape and Reel, 3000 TP1561AUL1-CR -40 to 125°C 5-Pin SC70 61UXX Note 2 1 Tape and Reel, 3000TP1562AL1-SR -40 to 125°C 8-Pin SOIC 1562AXXXXL Note 31 Tape and Reel, 4000TP1562AL1-TSR -40 to 125°C 8-Pin TSSOP 1562AXXXXL Note 31 Tape and Reel, 3000TP1562AL1-VR -40 to 125°C 8-Pin MSOP 1562AXXXXL Note 31 Tape and Reel, 3000TP1562AL1-FR -40 to 125°C 8-Pin DFN 2*2 562 Note 1XXXXL Note 11 Tape and Reel, 3000TP1564AL1-SR -40 to 125°C 14-Pin SOIC 1564AXXXXL Note 31 Tape and Reel, 2500TP1564AL1-TR -40 to 125°C 14-Pin TSSOP 1564AXXXXL Note 31 Tape and Reel, 3000Note 1: The sample will be ready in 1 month.Note 2: XX is the date code.Note 3: XXXX is date code, L is the symbol of L1 product.Absolute Maximum Ratings Note1Parameters RatingSupply Voltage, (+V S)– (-V S) 7 VInput Voltage (-V S) – 0.3 to (+V S) + 0.3Differential Input Voltage ±7VInput Current: +IN, –IN Note 2 ±10mAOutput Short-Circuit Duration Note 3 InfiniteMaximum Junction Temperature 150°COperating Temperature Range –40 to 125°CStorage Temperature Range –65 to 150°CLead Temperature (Soldering, 10 sec) 260°C注1:超出绝对最大额定值列出的压力可能会导致设备永久损坏。
multisim8multisim 2009-12-24 22:20:09 阅读21 评论0字号:大中小SOURCE电源按钮1.POWER-SOURCES电源2.SIGNAL-VOLTAG信号电压源3.SIGNAL-CURREN信号电流源4.CONTROL-FUNCT控制函数器件5.CONTROL-VO控制电压源6.CONTROL-CU控制电流源BASIC基本元件按钮1. BASIC-VIRTUAL基本虚拟元件2. RATED-VIRTUAL定额虚拟元件3. 3D-VIRTUAL 3D虚拟元件4. RESISTOR电阻器5. RESISTOR-SMT可变电阻器6. RPACK电阻器组件7. POTENTIIMETER电位器8. CAPATTOR电容9. CAP-ELECTROLIT-SIM电解电容10. CAPATTOR-SMT贴片电容11. VARIABLE-CAPATTOR可变电容12. INDUCTOR电感器13. INDUTOR-SMT贴片电感14. VARIABLE-INDUTOR可变电感15. SWITCH开关16. TRANSFORMER变压器17. NON-LINEAR-TRANSFORMER非线性变压器18. Z-LOAD继电器19. CONNECTORS连接器20. SOCKETS插座、管座21. SCH-CAP-SYMS各种元件图标DIODE二极管1. DIODES-VIRTUAL二极管虚拟元件2. DIODE二极管3. ZENER齐纳二极管4. LED发光二极管5. FWB二极管整流桥6. SCHOTTKY-DIODE肖特基二极管7. SCR晶闸管整流器8. DIAC双向二极管开关9. TRIAC三端双向晶闸管开关10. VARACTOR变容二极管11. FIN-DIODE插针二极管TRANSISTOR晶体管按钮1. TRANSISTORS-VIRTUAL晶体三极管虚拟元件2. BJT-NPN双极结型NPN晶体管3. BJT-PNP双极结型PNP管4. DARLINGTON-NPN达林顿NPN管5. DARLINGTON-PNP达林顿PNP管6. DARLINGTON-ARRAY达林顿管阵列7. BJT-NRES NRES双极结型晶体管8. BJT-PRES PRES双极结型晶体管9. BJT-ARRAY双极结型晶体管阵列10. IGBT绝缘栅双极型三极管11. MOS-3TDN N沟道耗尽型金属-氧化物-半导体场效应管12. MOS-3TEN N沟道增强型金属-氧化物-半导体场效应管13. MOS-3TEP P沟道增强型金属-氧化物-半导体场效应管14. JFET-N N沟道耗尽型结型场效应管15. JFET-P P沟道耗尽型结型场效应管16. POWER-MOS-N N沟道MOS功率管17. POWER-MOS-P P沟道MOS功率管18. POWER-MOS-COMP COMP MOS功率管19. UJT UJT管20. THERMAL-MODELS温度模型ANALOG模拟元件按钮1. ANALOG-VIRTUAL模拟模型虚拟元件2. OPAMP运算放大器3. OPAMP-NORTON诺顿运算放大器4. COMPARATOR比较器5. WIDEBAND-AMPS包括多种频率的放大器6. SPECIAL-FUNTION特殊功能TTL TTL元件按钮CMOS COMS元件按钮1. COMS-SV COMS系列2. 74HC-2V 74HC系列3. COMS-10V COMS系列4. 74HC-4V 74HC系列5. COMS-15V COMS系列6. TinyLogic-2v TinyLogic系列7. TinyLogic-3v TinyLogic系列8. TinyLogic-4v TinyLogic系列9. TinyLogic-5v TinyLogic系列10. TinyLogic-6v TinyLogic系列11. TinyLogic-2v TinyLogic系列MISCELLANEOUS DIGITAL其他数字元件按钮MIXED模数混合元件按钮1. MIXED-VIRTUAL混合虚拟元件2. TIMER定时器3. ADC-DAC 模拟数字-数字模拟转换器4. MULTIVIBRTORS多谐振荡器INDICATOR指示器按钮1. VOLTMETER电压表2. AMMETER电流表3. PROBE探针4. BUZZER蜂鸣器5. LAMP灯6. VIRTUAL-LAMP虚拟灯7. HEX-DISPLAY十六进制显示器8. BARGRAPH条柱显示MISCELLANEOUS DIGITAL混合项元件库按钮1. MISC-VIRTUAL多功能虚拟元件电子仿真软件“Mumsim8.3.30特殊版”的元件库中把元件分门别类地分成13个类别,每个类别中又有许多种具体的元器件,为便于读者在创建仿真电路时寻找元器件,现将电子仿真软件“Mumsim8.3.30特殊版”元件库和元器件的中文译意整理如下,供读者参考。
实验七 集成运算放大器1、 反相比例放大器用集成运放组件接成反相比例放大器,其电路如图7-1所示。
图中元件参数如下: R 1=1K Ω,R f =10K Ω,R 2=R 1//R f ,输入信号由EMS-Ⅳ型模拟电子电路实验系统中的直流供电系统-5V~5V ,调节到表7-1值。
用数字三用表直流电压挡测量电压,数据记录于表7-1 中。
2、 反相加法器用集成运放组件接成两输入反相加法器,输入信号U i1、U i2分别由EMS-Ⅳ型模拟电子电路实验系统中的直流供电系统-5V~5V ,调节到表7-2值。
电路如图7-2所示。
图中元件参数如下:R 1=R 2=R f =1K Ω。
数据记录于表7-2 中。
表7-1表7-23、正弦波发生器用集成运放组件接成RC 串并联选频网络正弦波发生器,其电路如图7-3所示。
图中R 、C 分别为10K Ω、0.01µF 。
调节20 K Ω电位器,在示波器获得一个稳定无失真的正弦波。
根据波形分别测出周期T 和输出电压的峰-峰值U P-P 。
最后根据所测周期算出频率f 与根据电路元件值用公式RCf π21=计算值进行比较。
-iu ou 1R 2R FR ∞+-+-1s u 2s u ou 1R 2R FR ∞图7-34、积分运算电路用集成运放组件接成积分运算电路,其电路如图7-4所示。
图中R 1、C F 分别为10K Ω、10µF 及7.5 K Ω、10µF 两种情况。
输入信号U i 为1V 直流电压,粗略测量输出电压U O 随时间变化的曲线。
将观察测得的数据记录如下:1、R 1=10K Ω,C F =10µF ,T 1= ,U OSAT =2、R 1=7.5K Ω,C F =10µF ,T 1= ,U OSAT = 5、电压比较器用集成运放组件接成电压比较器,其电路如图7-5所示。
图中R 1、R 2均为1K Ω,直流参考电压U R 及输入电压分别由EMS-Ⅳ型模拟电子电路实验系统中的直流供电系统-5V~5V 提供。
10种不同类型的运算放大器介绍一.OP07C运算放大器OP07C是一款低失调低漂移运算放大器。
生产厂家主要有德州仪器公司和AD公司。
这款运算放大器具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
目前价格为1.5元/个—2元/个。
特点:1)低噪音2)没有外部组件要求3)输出电压范围广. . . 0 to ±14 V Typ4)供电电压范围广. . . ±3 V to ±18 V5)超低偏移:150μV最大6)低输入偏置电流:1.8nA 。
7)超稳定,时间:2μV/month最大8)高电源电压范围:±3V至±18V相关参数介绍:电气特性:虚拟通道连接= ± 15V ,二.LT1812 具有关断功能的运算放大器LT1812是LINEAR公司生产推出的一款具有良好的DC特性的低功耗,高速率,高转换率的运算放大器。
它采用具有电流反馈特性的电压反馈式电路结构,因而具有更低的电源电流,输入偏移电压和输入偏置电流及更高的DC增益,LT1812自身的关断特性使得芯片的电源电流仅为50uA,从而大大降低了功耗。
主要运用于带宽放大器,缓冲器,有源滤波器,有线设备,数据采集系统及音频,射频等领域。
目前报价10元/个。
特点:1)具有100MHz 的增益带宽,且增益稳定。
2)转换速率高。
3)具有关断功能,停机模式中的电源电流为50μA4)30ns 稳定时间至0.1%,5V 阶跃相关参数:工作范围:-40ºC 至85ºCTA = 25°C, VS = ±5V, VCM = 2.5V 括号内为测量条件(与上表参数数值相同的省三.LM318 高速运算放大器LM318是一款高速单运放。
生产厂家主要有德州仪器(TI)和美国国家半导体公司(NS)。
LM318高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
具有高速的电压转换速率。
主要运用于A/D转换器,振荡器,有源滤波器,取样与保持电路和通用放大器。
目前报价为1元—3.5元/个。
特点:1)具有较高的转换速率。
2)频率响应宽。
3)具有输入和输出过载保护。
4)具有内部频率补偿。
相关参数:电气特性:四.CA3140 高输入阻抗运算放大器CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。
操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。
主要运用于单电源放大器在汽车和便携式仪表,有源滤波器,比较器,采样保持放大器,长期定时器,光电仪表,探测器,TTL接口,入侵报警系统,函数发生器,音调控制,电源,便携式仪器。
工作范围为-55ºC—125ºC。
目前生产厂家主要是INTERSIL公司和HARRIS公司,报价为:2.7—3元/个。
引脚图五.ICL7650B斩波稳零式高精度运算放大器ICL7650是利用动态校零技术和CMOS工艺制作的斩波稳零式高精度运算放大器,它具有输入偏置电流小、失调小、增益高、共模抑制能力强、响应快、漂移低、性能稳定及价格低廉等优点。
IcL7650除了具有普通运算放大器的特点和应用范围外,还具有高增益、高共模抑制比、失调小和漂移低等特点,所以常常被用在热电偶、电阻应变电桥、电荷传感器等测量微弱信号的前置放大器中。
主要的生产厂家有INterisl公司,MAXIM公司。
ICL7650CSA为八引脚芯片。
目前为18—20元/个。
CEXTB:外接电容CEXTB;CEXTA:外接电容CEXTA;CRETN:CEXTA和CEXTB的公共端;CLAMP:箝位端;INTCLKOUT:时钟输出端;EXTCLKIN:时钟输入端;时钟控制端,可通过该端选择使用内部时钟或外部时钟。
当选择外部时钟时,该端接负电源端(V-),并在时钟输入端(EXTCLKIN)引入外部时钟信号。
当该端开路或接V+时,电路将使用内部时钟去控制其它电路的工作。
特点:1)不需要调节偏置电压。
2)电源电流低。
3)具有较高的共模抑制比。
4)时间漂移和温度漂移低。
5)共模电压范围广。
6)直流偏置电流低。
7)低功耗CMOS设计。
电气特性:六.AD810A 视频运算放大器AD810是AD公司研发的一款兼容复合视频和高清电视的电流反馈型视频运算放大器,非常适合多媒体、数字磁带机和摄像机等系统使用。
0.1 dB平坦度带宽为30 MHz (G=+2),差分增益和相位误差分别为0.02%和0.04° (NTSC),使AD810成为所有广播级质量视频系统的理想之选。
AD810特别适合摄像机等对功耗敏感的应用,最大电源电流低至8.0 mA。
放大器不用时,禁用特性可将电源电流降至2.1 mA,以节省电力。
此外,AD810的额定电源电压范围为±5 V至±15 V。
AD810的单位增益带宽达到80 MHz,因而适合用作视频系统中的 ADC或DAC缓冲器。
由于它是一款跨导放大器,因此可在整个增益范围内保持这种带宽性能,而其2.9 nV/√Hz的低噪声特性则适合宽动态范围。
目前价格约为18元—20元/个。
相关参数:工作温度范围:–40°C to +85°C七.OPA549音频大功率放大器OPA549是一种高电压大电流功率运算放大器。
它提供极好的低电平信号精度,能输出高电压,大电流,可驱动各种负载。
OPA549 输出电流大(连续输出达8A),工作电压范围宽,输出电压摆幅大,有过热关闭功能,有使能及禁止功能,压摆率高。
应用范围为阀门、气动执行机构驱动,同步、伺服驱动,传感器励磁,工业控制设备,测试设备,电源,音频功率放大。
主要的生产公司为TI(德州仪器公司),BB公司。
目前价格为130—170元/个。
最大额定值电气参数:八.AD8500微功耗、精密CMOS运算放大器AD8500是一款低功耗、精密CMOS运算放大器,最大电源电流为1 µA,最大失调电压为1 mV,典型输入偏置电流为1 pA,以轨到轨输入和输出方式工作。
它采用+1.8 V至+5.5 V单电源或±0.9 V至±2.75 V双电源供电。
AD8500具有低功耗、低输入偏置电流以及轨到轨输入和输出特性,特别适合各种电池供电的便携式应用。
潜在应用包括ECG、脉冲监控器、血糖仪、烟火探测器、振动监测仪和备用电池传感器。
此外还具有轨到轨输入和输出摆幅能力,有助于采用极低电压工作的系统达到最大的动态范围和信噪比。
AD8500的低失调电压特性使它可以用在高增益系统中,而不会产生过大的输出失调误差,并且能够在无需进行系统校准的情况下提供高精度操作。
AD8500的额定温度范围为−40°C至+85°C工业温度范围,也可以在−40°C至+125°C扩展工业温度范围内工作,采用5引脚SC70表面贴装封装。
应用于便携式设备,远程传感器,低功耗滤波器,阈值检波器,电流检测。
生产厂家为AD(ANALOG DEVICES)公司。
目前为22元到26元/个。
电气参数:九.LF398 采样保持放大器LF398是一种反馈型采样/保持放大器,也是目前较为流行的通用型采样/保持放大器,是由场效应管构成,具有采样速率高、保持电压下降慢和精度高等特点。
LF398由输入缓冲级、输出驱动级和控制电路三部分组成。
在采样或保持状态下输入特性不变。
可与TTL,PMOS,CMOS兼容,双电源供电,电源范围宽。
主要应用于峰值采样电路,12位数据采集系统,斜坡发生器,模拟开关,阶梯波发生器。
目前3元—5元/个。
生产厂家主要有NS公司,Linear公司,飞利浦公司。
十.LTC6915可编程增益放大器LTC6915 是由LINEAR公司推出的一款具有数字可编程增益的零漂移精准仪表放大器。
可通过一个并行或串行接口将增益设置为 0、1、2、4、8、16、32、64、128、256、512、1024、2048 或 4096。
在采用单 5V 电源以及任何设定增益的条件下,CMRR 通常为 125dB。
电压失调低于 10uV,且温度漂移小于 50nV/℃。
LTC6915 采用充电平衡采样数据技术将一个差分输入电压转换成一个单端信号,随后再由一个零漂移运算放大器对该单端信号进行放大。
差分输入的工作范围为轨至轨,而单端输出在轨至轨之间摆动。
LTC6915 既可在低至 2.7V 的单电源应用中使用,也可在采用双±5V 电源的应用中使用。
LTC6915 采用 16 引线 SSOP 封装和 12 引线DFN 表面贴封装。
主要应用于热电偶放大器,电子衡器,医疗仪器,应变仪放大器,高分辨率数据采集。
目前价格约为17.5元—25元/个。
绝对额定最大值电气特性:V+=3V V-=0V Vref=200mv。