2010考点27--排列、组合、二项式定理
- 格式:doc
- 大小:165.50 KB
- 文档页数:5
排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4 证明. 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5 化简. 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1);(2). 解 (1)原方程 解得. (2)原方程可变为 ∵ ,, ∴ 原方程可化为. 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解 设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
二项式定理1.二项式定理2.(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -kn .(2)二项式系数先增后减中间项最大当n 为偶数时,第n 2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)C r n an -r b r 是二项展开式的第r 项.(×) (2)二项展开式中,系数最大的项为中间一项或中间两项.(×) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.(√) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项.(×)(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.(×) (6)在(x +1)n 的展开式中,每一项的二项式系数就是这项的系数.(√) (7)(a +b )n 与(b +a )n 的展开式中通项公式是一样的.(×)(8)(x -y )n 的展开式中,第m 项的系数为(-1)m C m -1n .(×)(9)(1+2x )5的展开式中含x 的项的系数为5.(×)(10)n x x )12(3 的展开式中不可能有常数项.(×)考点一 二项展开式的通项及应用[例1] (1)(2016·高考全国乙卷)(2x +x )5的展开式中,x 3的系数是________.(用数字填写答案)解析:T r +1=C r 5(2x )5-r ·(x )r =25-r C r 5·,令5-r2=3,得r =4,∴T 5=10x 3,∴x 3的系数为10. 答案:10(2)(2016·高考四川卷)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 4解析:∵T r +1=C r 6x r (i)6-r ,∴含x 4的项为T 5=C 46x 4i 2=-15x 4.答案:A(3)(2017·河北唐山一模)322)21(-+xx 展开式中的常数项为( ) A .-8 B .-12 C .-20 D .20解析:∵322)21(-+x x =6)1(xx -,∴T r +1=C r 6x 6-r rx )1(-=C r 6(-1)r x 6-2r ,令6-2r =0,得r =3,∴常数项为C 36(-1)3=-20.答案:C(4)(2015·高考课标全国卷Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 解析:法一:利用二项展开式的通项公式求解.(x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.答案:C[方法引航] 求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,含字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.1.在本例(1)中,求展开式中系数最大的项是第几项. 解:设第r +1项的系数最大,T r +1=25-r C r 5·,第r 项的系数为26-r C r -15第r +2项的系数为24-r C r +15∴⎩⎨⎧25-r C r 5≥26-r C r -1525-r C r 5≥24-r C r +15,1≤r ≤2当r =1时,T 2= 当r =2时,T 3=故系数最大的项为T 2或T 3.2.在本例(2)中,求展开式中的常数项.解:由T r +1=C r 6x6-r ·i r可知,当r =6时. 常数项为T 7=C 66·i 6=-1. 3.在本例(4)中,求展开式中含x 3y 3的系数.解析:(x 2+x +y )5为5个x 2+x +y 之积,其中有三个取y ,一个取x 2,一个取x 即可,所以x 3y 3的系数为C 35C 12C 11=10×2×1=20.考点二 二项展开式的系数和问题[例2] 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解:设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得2(a 0+a 2+…+a 10)=1+510,∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510,∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102; x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.[方法引航] (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.5)12)((x x x a x -+的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 解析:选D.令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此5)12)(1(x x x x -+展开式中的常数项即为5)12(xx -展开式中1x 的系数与x 的系数的和.5)12(xx -展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k·(-1)k .令5-2k =1,得2k =4,即k =2,因此5)12(xx -展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此5)12(x x -展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以5)12)(1(x x x x -+展开式中的常数项为80-40=40.2.(2017·广西来宾一中检测)(1-x +x 2)3(1-2x 2)4=a 0+a 1x +a 2x 2+…+a 14x 14,则a 1+a 3+a 5+…+a 13的值为________.解析:设f (x )=(1-x +x 2)3(1-2x 2)4.令x 分别取1,-1,f (1)=a 0+a 1+a 2+…+a 13+a 14=1,f (-1)=a 0-a 1+a 2-…-a 13+a 14=27,∴a 1+a 3+a 5+…+a 13=f (1)-f (-1)2=1-272=-13.答案:-13考点三 二项式定理的综合应用[例3] (1)若S =C 127+C 227+…+C 2727,求S 除以9的余数. 解:S =C 127+C 227+…+C 2727=227-1=89-1 =(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.(2)求1.025的近似值.(精确到两位小数)解:1.025=(1+0.02)5=1+C 15×0.02+C 25×0.022+…+C 55×0.025≈1+5×0.02=1.10.[方法引航] (1)利用二项式定理进行近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx . (2)利用二项式定理证明整除问题或求余数问题:在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都有除式的因式,要注意变形的技巧.1.将本例(1)变为S =1+2+22+…+25n -1.求证:S 能被31整除. 证明:∵1+2+22+…+25n -1=25n -12-1=25n-1=32n -1=(31+1)n -1 =C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.2.将本例(2)改为:求1.028的近似值.(精确到小数点后三位)解:1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.[易错警示]多次应用二项展开式通项公式搭配不全[典例] (x 2+2)52)11(-x的展开式的常数项是( ) A .-3 B .-2 C .2 D .3 [正解] 二项式52)11(-x展开式的通项为: T r +1=C r 5r x-52)1(·(-1)r =C r 5·x 2r -10·(-1)r. 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D. [答案] D [易误] (x 2+2)与52)11(-x的各因式的积为常数项,不只是2与(-1)的积,还有x 2与x -2的积也为常数.[警示] 求几个二项式积的展开式中某项的系数或特定项时,一般要根据这几个二项式的结构特征进行分类搭配,分类时要抓住一个二项式逐项分类,分析其它二项式应满足的条件,然后再求解结果.[高考真题体验]1.(2015·高考课标全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.解析:(1+x )4的展开式通项为C r 4x r ,其中r 可取0,1,2,3,4. x 的所有奇数次幂为a C 14x ,a C 34x 3,C 04x ,C 24x 3,C 44x 5,∴系数和为8a +8=32,∴a =3. 答案:32.(2014·高考课标全国卷Ⅰ)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)解析:(x -y )(x +y )8=x (x +y )8-y (x +y )8,故展开式中x 2y 7的系数为C 78-C 68=8-28=-20.答案:-203.(2014·高考课标全国卷Ⅱ)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)解析:∵(x +a )10展开式的通项为T r +1=C r 10x10-r a r (r =0,1,…,10), ∴(x +a )10的展开式中x 7的系数为C 310a 3=15,得a =12. 答案:124.(2013·高考课标全国卷Ⅰ)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ) A .5 B .6 C .7 D .8解析:选B.由题意可知a =C m 2m ,b =C m +12m +1,又13a =7b ,即13C m 2m =7C m 2m +1,解得m =6.课时规范训练 A 组 基础演练1.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10解析:选B.T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40.2.532)2(x x -展开式中的常数项为( )A .80B .-80C .40D .-40解析:选C.T k +1=C k 5(x 2)5-k kx )2(3-=C k 5(-2)k x 10-5k,令10-5k =0得k =2.∴常数项为T 3=C 25(-2)2=40.3.(x -2y )8的展开式中,x 6y 2项的系数是( )A .56B .-56C .28D .-28解析:选A.二项式的通项为T r +1=C r 8x 8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.4.已知8)(x a x -展开式中常数项为1 120,其中a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28解析:选C.由题意知C 48·(-a )4=1 120,解得a =±2,令x =1,得展开式中各项系数的和为(1-a )8=1或38.5.如果nx x )12(2+的展开式中含有常数项,则正整数n 的最小值为( ) A .3 B .5 C .6 D .10解析:选B.n xx )12(2+的展开式的通项为T r +1=C r n ·(2x )n -r rx )1(2=∵n ,r ∈N ,且r ≤n ,∴n =5r ∈N ,即n 的最小值为5.6.在n x x )12(3-的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( ) A .-7 B .7 C .-28 D .28解析:选B.由题意有n =8,T k +1=C k 8k -8)21((-1)kx 8-43k ,k =6时为常数项,常数项为7. 7.已知C 0n +2C 1n +22C 2n +22C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32解析:选A.逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.8.若n x x )1(2-的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .-10 B .10 C .-45 D .45解析:选D.因为展开式的通项公式为T r +1=C r n (x 2)n -r·=C r n (-1)r,所以C 2nC 4n=314,解得n =10,所以T r +1=C r 10·(-1)r ·,令20-5r 2=0,则r =8.所以常数项为T 9=C 810=C 210=45.9.在52)12(x x -的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40解析:选D.因为T k +1=C k 5(2x 2)5-k kx )1(-=C k 525-k x 10-2k (-1)k x -k =C k 525-k(-1)k x 10-3k , 令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 10.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( ) A .6 B .7 C .8 D .9解析:选B.(1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.B 组 能力突破1.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20解析:选C.设展开式的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx ·2-kx=C k 6·(-1)k ·212x -3kx ,∴12x -3kx =0恒成立.∴k =4,∴T 5=C 46·(-1)4=15. 2.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1)B.34(3n -2)C.32(3n -2)D.32(3n -1) 解析:选D.在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n-1).3.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 解析:a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021,所以a 10+a 11=C 1021-C 1121=0.答案:04.(2016·高考山东卷)若52)1(xax +的展开式中x 5的系数是-80,则实数a =________. 解析:T r +1=rrrx C a 251055--,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.答案:-25.(2016·高考天津卷)82)1(xx -的展开式中x 7的系数为________.(用数字作答)解析:T r +1=C r 8x 16-2r (-1)r x -r =(-1)r ·C r 8x 16-3r,令16-3r =7,得r =3,所以x 7的系数为(-1)3C 38=-56.答案:-566.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n=121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项是T 8=C 715(3x )7和T 9=C 815(3x )8. 答案:T 8=C 715(3x )7和T 9=C 815(3x )8。
二项式定理【考点梳理】1.二项式定理(1)二项式定理:(a +b )n=C 0n a n+C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *);(2)通项公式:T r +1=C r n an -r b r,它表示第r +1项;(3)二项式系数:二项展开式中各项的系数C 0n ,C 1n ,…,C nn . 2.二项式系数的性质3.各二项式系数和(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.【考点突破】考点一、展开式中的特定项或特定项的系数【例1】(1)⎝⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( )A .-54B .54C .-1516D .1516(2)已知⎝ ⎛⎭⎪⎫x -a x 5的展开式中含x 32的项的系数为30,则实数a =________.[答案] (1) D (2) -6[解析] (1)T r +1=C r6(x 2)6-r⎝ ⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12rC r 6x12-3r ,令12-3r =0,解得r =4,∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.(2)⎝ ⎛⎭⎪⎫x -a x 5的展开式的通项为T r +1=C r 5(x )5-r ·⎝⎛⎭⎪⎫-a x r =(-a )r C r5·x 5-2r2.依题意,令5-2r =3,得r =1,∴(-a )1·C 15=30,解得a =-6. 【类题通法】1.求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可.2.已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数. 【对点训练】1.(2x +x )5的展开式中,x 3的系数是________(用数字作答). [答案] 10[解析] 由(2x +x )5得T r +1=C r 5(2x )5-r(x )r=25-r C r 5x5-r2,令5-r2=3得r =4,此时系数为10.2.已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________. [答案] 4[解析] (1+3x )n的展开式的通项为T r +1=C rn (3x )r,令r =2,得T 3=9C 2n x 2,由题意得9C 2n =54,解得n =4.【例2】⎝ ⎛⎭⎪⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A .15 B .20 C .30 D .35 [答案] C[解析] 因为(1+x )6的通项为C r 6x r ,所以⎝⎛⎭⎪⎫1+1x2(1+x )6展开式中含x 2的项为1·C 26x 2和1x2·C 46x 4,因为C 26+C 46=2C 26=2×6×52×1=30,所以⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为30.【类题通法】求解形如(a+b)n(c+d)m的展开式问题的思路(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c +d)m,然后展开分别求解.(2)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2.(3)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.【对点训练】(x+y)(2x-y)5的展开式中x3y3的系数为________.[答案] 40[解析] 由(2x+x)5得T r+1=C r5(2x)5-r(x)r=25-r C r5x5-r2,令5-r2=3得r=4,此时系数为10.【例3】(x2+x+y)5的展开式中x5y2的系数为( )A.10 B.20 C.30 D.60[答案] C[解析] (x2+x+y)5的展开式的通项为T r+1=C r5(x2+x)5-r·y r,令r=2,则T3=C25(x2+x)3y2,又(x2+x)3的展开式的通项为C k3(x2)3-k·x k=C k3x6-k,令6-k=5,则k=1,所以(x2+x +y)5的展开式中,x5y2的系数为C25C13=30,故选C.【类题通法】求形如(a+b+c)n展开式中特定项的步骤【对点训练】(x +y )(2x -y )5的展开式中x 3y 3的系数为________. [答案] 40[解析] 由二项式定理可得,展开式中含x 3y 3的项为x ·C 35(2x )2(-y )3+y ·C 25(2x )3(-y )2=40x 3y 3,则x 3y 3的系数为40.考点二、二项式系数的和与各项的系数和【例4】(1)若二项式⎝⎛⎭⎪⎫3x 2-1x n的展开式中各项系数的和是512,则展开式中的常数项为( )A .-27C 39 B .27C 39 C .-9C 49 D .9C 49(2)(1-3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=( )A .1 024B .243C .32D .24 [答案] (1) B (2) A[解析] (1)令x =1得2n=512,所以n =9,故⎝⎛⎭⎪⎫3x 2-1x 9的展开式的通项为T r +1=C r 9(3x 2)9-r⎝ ⎛⎭⎪⎫-1x r=(-1)r C r 9·39-r x 18-3r ,令18-3r =0得r =6,所以常数项为T 7=(-1)6C 69·33=27C 39.(2)令x =-1得a 0-a 1+a 2-a 3+a 4-a 5=|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5| =[1-(-3)]5=45=1 024. 【类题通法】1.“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n、(ax 2+bx +c )m(a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n(a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.2.若f (x )=a 0+a 1x +a 2x 2+…+a n x n,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【对点训练】1.在⎝ ⎛⎭⎪⎫1x -3n (n ∈N *)的展开式中,所有项系数的和为-32,则1x 的系数等于( )A .360B .-360C .270D .-270 [答案] D[解析] 在⎝ ⎛⎭⎪⎫1x -3n 中,令x =1可得,其展开式所有项系数的和为(-2)n=-32,则n =5,则⎝ ⎛⎭⎪⎫1x -35的展开式的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫1x 5-r (-3)r.令5-r =2,可得r =3,所以展开式中1x的系数为-270.2.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB .3n -12C .2n +1D .3n+12[答案] D[解析] 设f (x )=(1+x +x 2)n,则f (1)=3n=a 0+a 1+a 2+…+a 2n ,①f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.考点三、二项式系数与展开式系数的最值问题【例5】(1)设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8 (2) (x +2y )7的展开式中系数最大的项是________. [答案] (1) B (2) 672x 2y 5[解析] (1)根据二项式系数的性质知:(x +y )2m的二项式系数最大有一项,C m2m =a ,(x +y )2m +1的二项式系数最大有两项,C m 2m +1=C m +12m +1=b .又13a =7b ,所以13C m 2m =7C m2m +1,将各选项中m的取值逐个代入验证,知m =6满足等式,所以选B.(2)(x +2y )7的展开式的通项为T r +1=2r C r 7x7-r yr.由⎩⎪⎨⎪⎧2r -1C r -17≤2r C r7,2r C r 7≥2r +1C r +17,可得133≤r ≤163.∵r=0,1,…,7,∴r =5.∴(x +2y )7的展开式中系数最大的项是T 6=25C 57x 2y 5=672x 2y 5. 【类题通法】1.求二项式系数的最大值,则依据(a +b )n中n 的奇偶及二次项系数的性质求解. 2.求展开式系数的最大值,有两个思路,如下:思路一:由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值.思路二:由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.【对点训练】1.(x -2y )6的展开式中,二项式系数最大的项的系数为________(用数字作答). [答案] -160[解析] 因为二项式系数最大的项是T 4=C 36x 3(-2y )3=-160x 3y 3,所以(x -2y )6的展开式中,二项式系数最大的项的系数为-160.2.在⎝⎛⎭⎪⎫x -a x 5的展开式中x 3的系数等于-5,则该展开式各项的系数中最大值为( ) A .5 B .10 C .15 D .20 [答案] B[解析] 由T r +1=C r 5x5-r⎝ ⎛⎭⎪⎫-a x r =(-a )r C r 5x 5-2r ,r =0,1,2,…,5,由5-2r =3,解得r =1,所以(-a )C 15=-5a =-5,解得a =1,所以T r +1=(-1)r C r 5x5-2r,r =0,1,2,…,5,当r=0时,(-1)r C r5=1;当r =2时,(-1)2C 25=10;当r =4时,(-1)4C 45=5.所以该展开式各项的系数中最大值为10.故选B.。
排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n>个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n>个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m>表示. b5E2RGbCAPp(n,m>=n(n-1>(n-2>……(n-m+1>= n!/(n-m>!(规定0!=1>.2.组合及计算公式从n个不同元素中,任取m(m≤n>个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n>个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 p1EanqFDPwc(n,m> 表示.c(n,m>=p(n,m>/m!=n!/((n-m>!*m!>;c(n,m>=c(n,n-m>。
3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r>/r=n!/r(n-r>!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!>.k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m>.排列<Pnm(n为下标,m为上标>)Pnm=n×<n-1)....<n-m+1);Pnm=n!/<n-m)!<注:!是阶乘符号);Pnn<两个n分别为上标和下标) =n!;0!=1;Pn1<n为下标1为上标)=n DXDiTa9E3d组合<Cnm(n为下标,m为上标>)Cnm=Pnm/Pmm ;Cnm=n!/m!<n-m)!;Cnn<两个n分别为上标和下标) =1 ;Cn1<n为下标1为上标)=n;Cnm=Cnn-m RTCrpUDGiT 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
高二数学排列组合与二项式定理试题答案及解析1.…除以88的余数是()A.-1B.-87C.1D.87【答案】C【解析】根据题意,由于…=(1-90)10=8910=(88+1)10,展开式可知展开式的最后一项不能被88整除,可知答案为C.【考点】二项式定理点评:主要是考查了二项式定理的逆用,属于基础题。
2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.30种B.24种C.12种D.6种【答案】B【解析】第一步:从4门课程中选1门相同有种选法;第二步:让甲从剩下的3门中再选1门,选法有种;第三步:再让乙从剩下的2门中选1门,选法有种,所以所求的选法有。
故选B。
【考点】分步乘法计数原理点评:分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……,做第n步有种不同的方法.那么完成这件事共有种不同的方法.3.如图,小圆圈表示网络的结点,结点之间的箭头表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现从结点A向结点G传递信息,信息可以分开沿不同的路线同时传递。
则单位时间内传递的最大信息量为()A.31B.6C.10D.14【答案】B【解析】信息传递,可有三条路线,每条路线上通过的信息量均为2 ,所以,单位时间内传递的最大信息量为6 ,选B。
【考点】本题主要考查阅读理解能力,分类讨论思想。
点评:简单题,看似复杂,实际上,关键是理解题意,看各条“路线”上,传递信息的最大值之和。
4.由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).【答案】48【解析】由题意先排个位,从1,5两个数中随便取一个有,然后再用剩余的四个数字排前面四个位置有,∴由分步原理可知由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个【考点】本题考查了排列组合的综合运用点评:熟练掌握排列组合的综合运用是解决此类问题的关键,属基础题5.设为奇数,则除以9的余数为.【答案】【解析】∵,∴除以9的余数为7【考点】本题考查了二项式定理的运用点评:对于余数问题一般是把式子拆开,然后利用二项式定理展开求余数,属基础题6.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有种.(用数学作答)【答案】50【解析】解:由题意知本题是一个分类计数问题,∵每项活动最多安排4人,∴可以有三种安排方法,即(4,2)(3,3)(2,4)当安排4,2时,需要选出4个人参加共有=15,当安排3,3,时,共有=20种结果,当安排2,4时,共有=15种结果,∴根据分类计数原理知共有15+20+15=50种结果,故答案为:50【考点】分类计数问题点评:本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.的展开式中,的系数是()A.B.C.297D.207【答案】D【解析】由题意可知,的系数即为【考点】本小题主要考查二项展开式的应用.点评:解决二项式问题一般离不开展开式的通项公式,要灵活应用.8.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1∕70”.根据这位负责人的话可以推断出参加面试的人数为()A.21B.35C.42D.70【答案】A【解析】设参加面试的人数为n,由题意可知,解得n=21.【考点】本小题主要考查排列组合在实际问题中的应用.点评:准确理解题意,准确计算是解决此类问题的关键.9.(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.【答案】(Ⅰ)10 (Ⅱ)【解析】(Ⅰ)…… 2分(舍去).………… 5分(Ⅱ) 展开式的第项是,,………… 10分故展开式中的常数项是.……… 12分10.甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做实验,并用回归分析方法分析求得相关系数r与残差平方和m如下表:则哪位同学的实验结果体现A、B两变量有更强的线性相关性()A、甲B、乙C、丙D、丁【答案】D【解析】解:在验证两个变量之间的线性相关关系中,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大,残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现A、B两变量有更强的线性相关性,故选D.11.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【答案】B【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有 =60种.故选B.12.平面上有相异10个点,每两点连线可确定的直线的条数是每三点为顶点所确定的三角形个数的,若无任意四点共线,则这10个点的连线中有且只有三点共线的直线的条数为__________条.【答案】3【解析】【考点】排列、组合及简单计数问题。
2010考点27--排列、组合、二项式定理
- 1 - / 5
温馨提示:
此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观
看比例,点击右上角的关闭按钮可返回目录。
考点27 排列、组合、二项式定理
1.(2010·陕西高考理科·T4)5()axx(xR)展开式中3x的系数为10,则实数a等于( )
(A)-1 (B)12 (C) 1 (D) 2
【命题立意】本题考查二项式定理的通项公式的应用及运算能力,属保分题。
【思路点拨】5()axx5215rrrrTaCx523r115102.aCa
【规范解答】选D 552155,(0,1,2,3,4,5)rrrrrrraTCxaCxrx,令523r,所以1r,所以
11
5
102.aCa
2.(2010·北京高考理科·T4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )
(A)8289AA (B)8289AC (C) 8287AA (D)8287AC
【命题立意】本题考查排列组合的相关知识。所用技巧:有序排列无序组合、不相邻问题插空法。
【思路点拨】先排8名学生,再把老师插入到9个空中去。
【规范解答】选A。8名学生共有88A种排法,把2位老师插入到9个空中有29A种排法,故共有8289AA种排
法。
【方法技巧】解决排列组合问题常用的方法与技巧:(1)有序排列无序组合;(2)不相邻问题插空法:可
以把要求不相邻的元素插入到前面元素间的空中;(3)相邻问题捆绑法。
3.(2010·山东高考理科·T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在
前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )
(A)36种 (B)42种 (C)48种 (D)54种
【命题立意】本题考查排列组合的基础知识,考查分类与分步计数原理,考查了考生的分析问题解决问
题的能力和运算求解能力.
【思路点拨】根据甲的位置分类讨论.
【规范解答】选B,分两类:第一类:甲排在第一位,共有44A=24种排法;第二类:甲排在第二位,共
2010考点27--排列、组合、二项式定理
- 2 - / 5
有1333AA=18种排法,所以共有编排方案241842种,故选B.
【方法技巧】排列问题常见的限制条件及对策
1、有特殊元素或特殊位置,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置.
2、元素必须相邻的排列,将必须相邻的的元素捆绑,作为一个整体,但要注意其内部元素的顺序.
3、元素不相邻的排列,先排其他元素,然后“插空”.
4、元素有顺序限制的排列.
4.(2010·天津高考理科·T10)如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂
色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法
用( )
(A)288种 (B)264种 (C)240种 (D)168种
【命题立意】本题考查分类计数原理,排列组合等基础知识,考查分析问题、解决问题的
能力。
【思路点拨】先分步再排列
【规范解答】先涂色点E,有4种涂法,再涂点B,有两种可能:
1、B与E相同时,依次涂点F,C,D,A,涂法分别有3,2,2,2种;
2、B与E不相同时有3种涂法,再依次涂F、C、D、A点,涂F有2种涂法,涂C点时又有两种可能:
(1)C与E相同,有1种涂法,再涂点D,有两种可能:
①D与B相同,有1种涂法,最后涂A有2种涂法;
②D与B不相同,有2种涂法,最后涂A有1种涂法。
(2)C与E不相同,有1种涂法,再涂点D,有两种可能:
①D与B相同,有1种涂法,最后涂A有2种涂法;
②D与B不相同,有2种涂法,最后涂A有1种涂法。
所以不同的涂色方法有
4{322232[1(1212)1(1211)]}4(2442)264
。
【方法技巧】解题的关键是处理好相交线端点的颜色问题,解决排列组合应用题,要做到合理的分类,准
确的分类,才能正确的解决问题。
5.(2010·广东高考理科·T8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不
固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯商量的颜色各不相同。
记这这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个
2010考点27--排列、组合、二项式定理
- 3 - / 5
闪烁的时间间隔均为5妙。如果要实现所有不同的闪烁,那么需要的时间至少是( )
A、 1205秒 B.1200秒 C.1195秒 D.1190秒
【命题立意】本题考察排列的综合问题。
【思路点拨】先用排列算出闪烁个数55A120,还要考虑每个闪烁间的时间。
【规范解答】选C 每次闪烁时间为5秒,共5120600s,每两次闪烁之间的间隔为5s,共
5(1201)595s
,总共就有
6005951195.s
6.(2010·湖南高考理科·T4)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示
一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字
相同的信息个数为( )
A.10 B.11 C.12 D.15
【命题立意】以排列组合为依托,考查学生严谨的逻辑思维能力.
【思路点拨】象这种至多或至少的问题,常常用正难则反法.
【规范解答】选B.用0和1进行排列,允许数字重复共有16种排法.与0110有三个位置上的数字相同的
排法有四种:1110、0010、0100、0111,与0110有四个位置上的数字相同的有一种,因此答案是:16-4-1=11.
【方法技巧】1、排列组合问题要熟练几种常见方法:正难则反,树形图和分类讨论.
2、要学会几个基本问题的处理:投信模型或映射模型,相邻问题捆绑法,不相邻问题插空法,特殊元素
或特殊位置优先考虑法,物品分发等.
7.(2010·辽宁高考理科·T13)261(1)()xxxx的展开式中的常数项为_______.
【命题立意】考查了二项式的展开式,
【思路点拨】展开式中的常数项只可能是21xx中的常数项与1-xx6()中的常数项的积和21xx中的
一次
项与1-xx6()中的1x项的积以及21xx中的二次项与1-xx6()中的2x项积的和
【规范解答】
66-62166633446611(-)1(-)(1)1(-)1(1)1(1)55kkkkkkkxkTCxCxxxxCCx
2展开式中第项为。
(1+x+x)的常数项为=
故填
【方法技巧】
2010考点27--排列、组合、二项式定理
- 4 - / 5
1、分清常数项是如何产生的。展开式中的常数项并不是21xx中的常数项与1-xx6()中的常数项的
积,而是21xx中的各项与1-xx6()的展开式中的项的乘积中各常数项的和。
2、1-xx6()展开式中第k+1项Tk+1=666266611()(1)()(1)kkkkkkkkkkCxCxCxxx,不要漏掉负号。
8.(2010·安徽高考理科·T12)6xyyx展开式中,3x的系数等于________。
【命题立意】本题主要考查二项式定理,考查考生对二项式定理理解认知的水平。
【思路点拨】方法1:写出展开式的通项,进而确定3x的项及其系数。
方法2:要得到3x项,必须xy出现4次,yx出现2次,即4426()()xyCyx,这样直观快捷。
【规范解答】方法1:6xyyx展开式的通项为:
33
63622166()()rrrrrrrxyTCCxyyx
,当且仅当2r时,能得到3x的项,此时3315Tx,所以
3
x
的系数等于15。
方法2:44236()()15xyCxyx所以3x的系数等于15。
答案:15
9. (2010·浙江高考理科·T17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、
“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上
午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有
______________种(用数字作答).
【命题立意】本题考查排列组合的相关知识,考查数学的应用能力。
【思路点拨】可以先安排上午的测试项目,再安排下午。
【规范解答】记4位同学分别为:A、B、C、D。则上午共有44A=24种安排方式。
不妨先假定上午如表格所示安排方式,
项目 身高与体重 立定跳远 肺活量 握力 台阶
上午 A B C D
2010考点27--排列、组合、二项式定理
- 5 - / 5
下午
则下午可如下安排:BADC、BCAD、BCDA、BDAC、CABD、CADB,CDAB、CDBA,DABC、DCAB、DCBA,共11种
安排方式。因此,全天共有2411=264种安排方式。
答案:264。
【方法技巧】解决排列组合问题时,常用的技巧:(1)特殊位置优先安排;(2)合理分类与准确分步。