创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.7函数的图象课时作业理
- 格式:pdf
- 大小:833.58 KB
- 文档页数:7
1.几类函数模型2.三种函数模型的性质【知识拓展】 1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +ax (a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增, 在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(2)幂函数增长比直线增长更快.( × )(3)不存在x 0,使0xa <0nx <log a x 0.( × )(4)在(0,+∞)上,随着x 的增大,y =a x (a >1)的增长速度会超过并远远大于y =x a (a >0)的增长速度.( √ )(5)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( × )1.(教材改编)某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚270元,那么每台彩电原价是________元. 答案 2 250解析 设每台原价是a 元,则a (1+40%)·80% =a +270,解得a =2 250.2.(教材改编)某汽车油箱中存油22千克,油从管道中匀速流出,200分钟流尽,油箱中剩油量y (千克)与流出时间x (分钟)之间的函数关系式为________.答案 y =22-11100x (0≤x ≤200)解析 流速为22200=11100,x 分钟可流11100x ,则y =22-11100x (0≤x ≤200).3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________________. 答案(p +1)(q +1)-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________. 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x 2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.5.(教材改编)有两个相同的桶,由甲桶向乙桶输水,开始时,甲桶有a L 水,t min 后,剩余水y L 满足函数关系y =a e-nt,那么乙桶的水就是y =a -a e-nt,假设经过5 min ,甲桶和乙桶的水相等,则再过________ min ,甲桶中的水只有a8 L.答案 10解析 由题意可得,5 min 时,a e -5n=12a ,n =15ln 2, 那么ln 25et a -=18a ,∴t =15,即再过10 min ,甲桶中的水只有a8L.题型一 用函数图象刻画变化过程例1 某民营企业生产A 、B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图①所示;B 产品的利润与投资的算术平方根成正比,其关系如图②所示(单位:万元).分别将A 、B 两种产品的利润表示为投资的函数关系式.解 设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题意设f (x )=k 1x (x ≥0),g (x )=k 2x (x ≥0). 由图①知f (1)=14,∴k 1=14.由图②知g (4)=52,∴k 2=54.∴f (x )=14x (x ≥0),g (x )=54x (x ≥0).思维升华 判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式.其中所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x (min)与通话费y (元)的关系如图所示.(1)分别求出通话费y 1、y 2与通话时间x 之间的函数关系式; (2)请帮助用户计算在一个月内使用哪种卡便宜.解 (1)设y 1=k 1x +29,y 2=k 2x ,把点B (300,35),C (300,15)分别代入得k 1=150,k 2=120.∴y 1=150x +29,y 2=120x .(2)令y 1=y 2,即150x +29=120x ,得x =96623.当x =96623时,两种卡收费一致;当x <96623时,y 1>y 2,即“如意卡”便宜;当x >96623时,y 1<y 2,即“便民卡”便宜.题型二 已知函数模型的实际问题例2 我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/米2(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1表示,它们满足以下公式:L 1=10 lg II 0(单位为分贝,L 1≥0,其中I 0=1×10-12,是人们平均能听到的最小强度,是听觉的开端).回答下列问题:(1)树叶沙沙声的强度是1×10-12W /m 2,耳语的强度是1×10-10W/m 2,恬静的无线电广播的强度是1×10-8 W/m 2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度I 的范围为多少?解 (1)由题意知树叶沙沙声的强度水平为 L 2=10 lg I 2I 0=10 lg 1=0(分贝);耳语的强度水平为L 3=10 lg I 3I 0=10 lg102=20(分贝);恬静的无线电广播的强度水平为 L 4=10 lg I 4I 0=10lg 104=40(分贝).(2)由题意知0≤L 1<50,即0≤10lg II 0<50,所以1≤I I 0<105,即1×10-12≤I <1×10-7.所以新建的安静小区的声音强度I 大于等于1×10-12W /m 2,同时小于1×10-7 W/m 2.思维升华 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(1)某航空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为________. 答案 (1)19 (2)2解析 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19. (2)由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x 100,令104·(100-10x )·70·x100≥112×104,解得2≤x ≤8.故x 的最小值为2.题型三 构造函数模型的实际问题 命题点1 构造二次函数模型例3 将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定________元. 答案 95解析 设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225]. ∴当x =95时,y 最大.命题点2 构造指数函数、对数函数模型例4 光线通过一块玻璃,强度要损失10%.设光线原来的强度为k ,通过x 块这样的玻璃以后强度为y .(1)写出y 关于x 的函数解析式;(2)至少通过多少块这样的玻璃,光线强度能减弱到原来的14以下?(参考数据:lg 2≈0.301 0,lg 3≈0.477 1)解 (1)光线通过1块玻璃后,强度y =(1-10%)k =0.9k ; 光线通过2块玻璃后,强度y =(1-10%)·0.9k =0.92k ; 光线通过3块玻璃后,强度y =(1-10%)·0.92k =0.93k ; ……光线通过x 块玻璃后,强度y =0.9x k . 故y 关于x 的函数解析式为y =0.9x k (x ∈N *). (2)由题意,得0.9x k <k 4,即0.9x <14,两边取对数,得x lg 0.9<lg 14.因为lg 0.9<0,所以x >lg14lg 0.9.又lg14lg 0.9=-2lg 22lg 3-1=-0.602 00.954 2-1=-0.602 0-0.045 8≈13.14, 且x ∈N *,所以x min =14.故至少通过14块这样的玻璃,光线强度能减弱到原来的14以下.命题点3 构造分段函数模型例5 (2017·盐城质检)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)解 (1)由题意可知当0≤x <20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,显然v (x )=ax +b 在[20,200]上是减函数,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003,故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x <20,13(200-x ), 20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x <20,13x (200-x ), 20≤x ≤200,当0≤x <20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20≤x ≤200时,f (x )=13x (200-x )≤13[x +(200-x )2]2=10 0003,当且仅当x =200-x ,即x =100时,等号成立,所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约3 333辆/小时.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.(1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg /mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过________小时才能开车.(精确到1小时)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________. 答案 (1)5 (2)300解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x ≤0.09,∴0.75x ≤0.3,x ≥log 0.750.3≈4.19.∴x 最小为5. (2)由题意,总利润y =⎩⎪⎨⎪⎧400x -12x 2-100x -20 000(0≤x ≤400),60 000-100x (x >400), 当0≤x ≤400时,y =-12(x -300)2+25 000,所以x =300时,y max =25 000, 当x >400时,y =60 000-100x <20 000,综上,当该门面经营的天数为300时,总利润最大为25 000元.2.函数应用问题典例 (14分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x -40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 思维点拨 根据题意,要利用分段函数求最大利润.列出解析式后,比较二次函数和“对勾”函数的最值的结论. 规范解答解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,[3分]当x >40时,W =xR (x )-(16x +40) =-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.[5分](2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;[8分]②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值为5 760.[12分] 综合①②知,当x =32时,W 取得最大值6 104万美元.[14分]解函数应用题的一般程序第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.1.某商品定价为每件60元,不加收附加税时年销售量约80万件,若征收附加税,税率为p ,且年销售量将减少203p 万件.则每年征收的税金y 关于税率p 的函数关系为________.答案 y =60(80-203p )p解析 征收附加税后年销售为(80-203p )万件,故每年征收的税金y =60(80-203p )p .2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是________.答案 ①解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变.3.(教材改编)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 答案 9解析 出租车行驶不超过3 km ,付费9元;出租车行驶8 km ,付费9+2.15×(8-3)=19.75元.现某人乘坐一次出租车付费22.6元,故出租车行驶里程超过8 km ,且22.6-19.75=2.85,所以此次出租车行驶了8+1=9 km.4.(2017·盐城月考)某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为________ m 3. 答案 13解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx (0<x ≤10),10m +(x -10)·2m (x >10),则10m +(x -10)·2m =16m , 解得x =13.5.(2016·北京朝阳区统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是________. 答案 16解析 由题意,分流前每年创造的产值为100t (万元), 分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16.6.(2016·南通模拟)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元. 答案 43解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.7.(2016·四川改编)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是________年.(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) 答案 2019解析 设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x =200,解得x =log 1.12200130=lg 2-lg 1.3lg 1.12≈3.80,因资金需超过200万,则x 取4,即2019年. 8.(2016·苏州模拟)某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =__________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=12e k ,∴k =2ln 2,∴y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.9.(2016·淮安模拟)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 答案 20解析 设内接矩形另一边长为y , 则由相似三角形性质可得x 40=40-y 40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.*10.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________. 答案5-12解析 依题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),∵b -c =(b -a )-(c -a ), ∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.∵0<x <1,∴x =5-12. 11.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位. 12.经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ).前30天价格为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格为g (t )=45(31≤t ≤50,t ∈N ).(1)写出该种商品的日销售额S 与时间t 的函数关系; (2)求日销售额S 的最大值. 解 (1)依题意得S =⎩⎪⎨⎪⎧(-2t +200)⎝⎛⎭⎫12t +30(1≤t ≤30,t ∈N ),45(-2t +200)(31≤t ≤50,t ∈N ),即S =⎩⎪⎨⎪⎧-t 2+40t +6 000(1≤t ≤30,t ∈N ),-90t +9 000(31≤t ≤50,t ∈N ).(2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400, ∴当t =20时,S 取得最大值为6 400. ②当31≤t ≤50,t ∈N 时, S =-90t +9 000为递减函数, ∴当t =31时,S 取得最大值为6 210.综上知,当t =20时,日销售额S 有最大值6 400.*13. (2016·常州模拟)某旅游景点2016年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12). (1)写出2016年第x 个月的旅游人数f (x )(单位:人)与x 的函数关系式; (2)试问2016年第几个月旅游消费总额最大?最大月旅游消费总额为多少万元? 解 (1)当x =1时,f (1)=p (1)=37, 当2≤x ≤12,且x ∈N *时, f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x ) =-3x 2+40x , 验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12). (2)第x 个月旅游消费总额为g (x )=⎩⎪⎨⎪⎧(-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12), 即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). ①当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0, 解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0, 当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(万元).②当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数, ∴当x =7时,g (x )max =g (7)=3 040(万元).综上,2016年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.14.(2016·江苏扬州中学质检)某环线地铁按内、外环线同时运行,内、外环线的长均为30 km(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min ,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25 km /h ,外环线列车平均速度为30 km/h.现内、外环线共有18列列车投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行?解 (1)设内环线列车运行的平均速度为v km/h ,由题意可知309v ×60≤10⇒v ≥20.所以,要使内环线乘客最长候车时间为10 min ,列车的最小平均速度是20 km/h.(2)设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,设内、外环线乘客最长候车时间分别为t 1 min 、t 2 min ,则t 1=3025x ×60=72x ,t 2=3030(18-x )×60=6018-x .设内、外环线乘客的候车时间之差为t min ,于是有t =|t 1-t 2|=⎪⎪⎪⎪72x -6018-x=⎩⎨⎧72x +60x -18,1≤x ≤9,x ∈N *,-(72x +60x -18),10≤x ≤17,x ∈N *,该函数在(1,9)上递减,在(10,17)上递增.又t (9)>t (10),所以当内环线投入10列列车运行,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.。
第二章 函数概念与基本初等函数Ⅰ 第1讲 函数的概念及其表示法基础巩固题组(建议用时:25分钟)解析 使函数f (x )有意义需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪(1,+∞). 答案 (-∞,-3)∪(1,+∞)映射f 的对应法则解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 13.(2016·江苏卷)函数y =3-2x -x 2的定义域是________.解析 要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]4.已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析 ∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1.∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案 -25.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=________.解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2.∴k 2=1,且kb +b =2,解得k =b =1. 答案 x +1解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2, ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 97.(2016·全国Ⅱ卷改编)在函数①y =x ;②y =lg x ;③y =2x;④y =1x中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的有________(填序号).解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ;y =lg x 的值域为R ,y =1x的定义域和值域为(0,+∞).答案 ④①y =⎣⎢⎡⎦⎥⎤x 10;②y =⎣⎢⎡⎦⎥⎤x +310;③y =⎣⎢⎡⎦⎥⎤x +410;④y =⎣⎢⎡⎦⎥⎤x +510. 解析 设x =10m +α(0≤α≤9,m ,α∈N ), 当0≤α≤6时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m =⎣⎢⎡⎦⎥⎤x 10,当6<α≤9时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m +1=⎣⎢⎡⎦⎥⎤x 10+1. 答案 ②9.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110,∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.答案 -2510.(2017·南师大附中一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是________(填序号).①f (x )=x -1x ;②f (x )=e x-1; ③f (x )=x +4x;④f (x )=tan x .解析 对于①,当x =1,f (1)=0,此时02≥12不成立.对于②,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在④中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.∴①②④均不正确.事实上,在③中,对∀x 0∈R ,y 20=⎝⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x 20+8>0,有y 20≥x 20成立.答案 ③11.已知函数f (x )满足f ⎝⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x .答案 f (x )=-log 2 x12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.解析 由题意知,若x ≤0,则2x=12,解得x =-1;若x >0,则|log 2x |=12,解得x=212或x =2-12,故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 能力提升题组 (建议用时:10分钟)13.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1]. 答案 (0,1]14.(2015·湖北卷改编)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.给出下列四个结论:①|x |=x |sgn x |;②|x |=x sgn|x |;③|x |=|x |sgn x ;④|x |=x sgn x . 其中正确的结论是________(填序号).解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ; 当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 ④15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23.答案 ⎣⎢⎡⎭⎪⎫23,+∞ 16.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-3。
第二章函数概念与基本初等函数I 2.2 函数的单调性与最值教师用书理苏教版1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是单调增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是单调减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间I 上是单调增函数或单调减函数,那么就说函数y =f (x )在区间I 上具有单调性,区间I 叫做y =f (x )的单调区间. 2.函数的最值前提 设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得条件 对于任意的x ∈A ,都有f (x )≤f (x 0) 对于任意的x ∈A ,都有f (x )≥f (x 0)结论 f (x 0)为最大值 f (x 0)为最小值【知识拓展】 函数单调性的常用结论 (1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(4)所有的单调函数都有最值.( × )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(6)闭区间上的单调函数,其最值一定在区间端点取到.( √ )1.(教材改编)下列函数中,在区间(0,2)上为增函数的是________.(填序号) ①y =1x;②y =2x -1;③y =1-x ;④y =(2x -1)2.答案 ②解析 ①y =1x在(0,2)上为减函数;②y =2x -1在(0,2)上为增函数; ③y =1-x 在(0,2)上为减函数;④y =(2x -1)2在(-∞,12)上为减函数,在(12,+∞)上为增函数.2.(教材改编)函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的单调增区间为__________;单调减区间为__________.答案 [0,+∞) (-∞,0)解析 当x ≥0时,y =x 为增函数;当x <0时,y =x 2为减函数.3.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上是增函数,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数f (x )的单调递增区间是[a ,+∞), 由[1,2]⊆[a ,+∞),可得a ≤1.4.(2016·盐城模拟)函数y =x 2+2x -3(x >0)的单调增区间为________. 答案 (0,+∞)解析 函数的对称轴为x =-1,又x >0, 所以函数f (x )的单调增区间为(0,+∞). 5.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数, 所以f (x )max =f (2)=2,f (x )min =f (6)=25.题型一 确定函数的单调性(区间) 命题点1 给出具体解析式的函数的单调性例1 (1)(2016·连云港模拟)函数f (x )=12log (x 2-4)的单调递增区间是______________.(2)y =-x 2+2|x |+3的单调增区间为____________. 答案 (1)(-∞,-2) (2)(-∞,-1],[0,1]解析 (1)因为y =12log t ,t >0在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2). (2)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参数的函数的单调性 例2 已知函数f (x )=axx 2-1(a >0),用定义法判断函数f (x )在(-1,1)上的单调性.解 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-1x 22-1=a x 2-x 1x 1x 2+1x 21-1x 22-1∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数. 引申探究如何用导数法求解例2?解 f ′(x )=a ·x 2-1-ax ·2x x 2-12=-a x 2+1x 2-12,∵a >0,∴f ′(x )<0在(-1,1)上恒成立, 故函数f (x )在(-1,1)上为减函数. 思维升华 确定函数单调性的方法(1)定义法和导数法,证明函数单调性只能用定义法和导数法; (2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.(1)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为__________. 答案 [3,+∞)解析 设t =x 2-2x -3,则t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数t =x 2-2x -3的图象的对称轴为x =1, 所以函数t 在(-∞,-1]上单调递减, 在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).(2)已知函数f (x )=ln x +mx 2(m ∈R ),求函数f (x )的单调区间. 解 (导数法)依题意知f (x )的定义域为(0,+∞). 对f (x )求导,得f ′(x )=1x +2mx =1+2mx2x.当m ≥0时,f ′(x )>0,f (x )在(0,+∞)上单调递增. 当m <0时,令f ′(x )=0,得x = -12m. 当x ∈(0,-12m)时,f ′(x )>0, 所以f (x )在(0, -12m)上单调递增; 当x ∈(-12m,+∞)时,f ′(x )<0,所以f (x )在(-12m,+∞)上单调递减. 题型二 函数的最值例3 (1)函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.答案 2解析 当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.①当a =12时,求函数f (x )的最小值;②若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 ①当a =12时,f (x )=x +12x+2,又x ∈[1,+∞),所以f ′(x )=1-12x 2>0,即f (x )在[1,+∞)上是增函数,所以f (x )min =f (1)=1+12×1+2=72.②f (x )=x +ax+2,x ∈[1,+∞).(ⅰ)当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0, 所以-3<a ≤0.(ⅱ)当0<a ≤1时,f ′(x )=1-a x2,因为x ∈[1,+∞),所以f ′(x )≥0,即f (x )在[1,+∞)上为增函数, 所以f (x )min =f (1)=a +3, 即a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1].思维升华 求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数y =x +x -1的最小值为________.(2)函数f (x )=x 2+8x -1(x >1)的最小值为________.答案 (1)1 (2)8解析 (1)易知函数y =x +x -1在[1,+∞)上为增函数,∴x =1时,y min =1.(本题也可用换元法求解)(2)方法一 (基本不等式法)f (x )=x 2+8x -1=x -12+2x -1+9x -1=(x -1)+9x -1+2≥2 x -1·9x -1+2=8,当且仅当x -1=9x -1,即x =4时,f (x )min =8. 方法二 (导数法)f ′(x )=x -4x +2x -12,令f ′(x )=0,得x =4或x =-2(舍去). 当1<x <4时,f ′(x )<0,f (x )在(1,4)上是递减的;当x >4时,f ′(x )>0,f (x )在(4,+∞)上是递增的,所以f (x )在x =4处取到极小值也是最小值, 即f (x )min =f (4)=8. 题型三 函数单调性的应用 命题点1 比较大小例4 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为____________. 答案 b >a >c解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,因为a =f (-12)=f (52),且2<52<3,所以b >a >c .命题点2 解函数不等式例5 (2017·苏州月考)定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f (12)=0,则满足19(log )f x >0的x 的集合为________________.答案 {x |0<x <13或1<x <3}解析 由题意知f (12)=0,f (-12)=0,由19(log )f x >0,得19log >12,或-12<19log x <0,解得0<x <13或1<x <3.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是____________.(2)已知f (x )=⎩⎪⎨⎪⎧2-a x +1,x <1,a x,x ≥1满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2>0成立,那么a 的取值范围是________.答案 (1)[-14,0] (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述,得-14≤a ≤0.(2)由已知条件得f (x )为增函数, 所以⎩⎪⎨⎪⎧2-a >0,a >1,2-a ×1+1≤a ,解得32≤a <2,所以a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)(2016·徐州模拟)已知函数f (x )=x (ex-1e x ),若f (x 1)<f (x 2),则下面正确的式子为________. ①x 1>x 2; ②x 1+x 2=0; ③x 1<x 2;④x 21<x 22.(2)(2016·宿迁模拟)要使函数y =2x +kx -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________. 答案 (1)④ (2)(-∞,-4)解析 (1)f (-x )=-x (1e x -e x)=f (x ),∴f (x )在R 上为偶函数,f ′(x )=e x -1e x +x (e x +1ex ),∴当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数, 由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|, ∴x 21<x 22.(2)由于y =log 3(x -2)的定义域为(2,+∞),且为增函数,故函数y =log 3(x -2)在(3,+∞)上是增函数. 又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,因其在(3,+∞)上是增函数,故4+k <0,得k <-4.1.解抽象函数不等式典例(14分)函数f(x)对任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维点拨(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1,x2∈R且x1<x2,则x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1. [3分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[5分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数. [7分] (2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[9分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2). [14分]解函数不等式问题的一般步骤第一步:(定性)确定函数f (x )在给定区间上的单调性; 第二步:(转化)将函数不等式转化为f (M )<f (N )的形式;第三步:(去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.1.(2016·南京模拟)下列函数中,在区间(1,+∞)上是增函数的是________. ①y =-x +1; ②y =11-x ;③y =-(x -1)2;④y =31-x.答案 ②解析 ①中,函数在(1,+∞)上为减函数,③中,函数在(1,+∞)上为减函数,④中,函数在(1,+∞)上为减函数.2.函数f (x )=|x -2|x 的单调减区间是__________. 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,f (x )为增函数,当x <2时,(-∞,1]是函数f (x )的增区间; [1,2]是函数f (x )的减区间.3.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知得,当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数, ∴f (x )的最大值为f (2)=23-2=6.4.已知f (x )=⎩⎪⎨⎪⎧a x,x >1,4-a2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围是________. 答案 [4,8)解析 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a2+2,解得4≤a <8.*5.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数,设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f (x 3)=12f (x );③f (1-x )=1-f (x ).则f (13)+f (18)=________.答案 34解析 由①③,令x =0,可得f (1)=1.由②,令x =1,可得f (13)=12f (1)=12.令x =13,可得f (19)=12f (13)=14.由③结合f (13)=12,可知f (23)=12,令x =23,可得f (29)=12f (23)=14,因为19<18<29且函数f (x )在[0,1]上为非减函数,所以f (18)=14, 所以f (13)+f (18)=34.6.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是____________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.7.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.8.(2017·江苏天一中学月考)对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x+1|,|x -2|}(x ∈R )的最小值是________. 答案 32解析 方法一f (x )=⎩⎪⎨⎪⎧2-x ,x <12,x +1,x ≥12,f (x )在(-∞,12)和[12,+∞)上分别为减函数和增函数,∴[f (x )]min =f (12)=32.方法二 作函数f (x )的图象如图所示,由图知当x =12时,[f (x )]min =f (12)=32.9.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 f (x )=|2x +a |=⎩⎪⎨⎪⎧2x +a ,x ≥-a2,-2x -a ,x <-a2.函数的单调递增区间为[-a2,+∞), ∴-a2=3,∴a =-6.*10.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________. 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3, 同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减, ∴-x 2-2x +3<3,∴f (x )在R 上单调递减, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).11.(2016·江苏新海中学期中)已知函数f (x )=-4x 2+4ax -4a -a 2(a >0)在区间[0,1]内有一个最大值-5,则a 的值为________. 答案 54解析 f (x )=-4(x -a2)2-4a ,对称轴为x =a 2,顶点为(a2,-4a ).①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f (a2)=-4a ,令-4a =-5,∴a =54∈(0,2).12.(2016·江苏泰州中学月考)已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 二次函数y =x 2-2x -t 图象的对称轴为x =1,函数y =|x 2-2x -t |的图象是将二次函数y =x 2-2x -t 的图象在x 轴下方的部分翻到x 轴上方(x 轴上方部分不变)得到的.由区间[0,3]上的最大值为2,知y max =f (3)=|3-t |=2,解得t =1或5;检验t =5时,f (0)=5>2不符,而t =1时满足题意.13.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1± 2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.14.(2016·江苏南通中学质检)已知函数f (x )=-(x +1)2+2|x +1|+3. (1)试求函数f (x )的单调区间,并指出相应的单调性;(2)若f (2a 2+a +1)<f (3a 2-2a +1)恒成立,试求实数a 的取值范围. 解 (1)当x ≥-1时,f (x )=-[(x +1)2-2(x +1)+1]+4=-[(x +1)-1]2+4=-x 2+4,当x <-1时,f (x )=-[(x +1)2+2(x +1)+1]+4 =-[(x +1)+1]2+4=-(x +2)2+4,即f (x )=⎩⎪⎨⎪⎧-x 2+4x ≥-1,-x +22+4x <-1,其大致图象如图所示.由图易知函数f (x )在区间(-∞,-2],(-1,0]上单调递增,在区间(-2,-1],(0,+∞)上单调递减.(2)易知2a 2+a +1>0且3a 2+2a +1>0恒成立,由(1)知函数f (x )在(0,+∞)上单调递减, 故由f (2a 2+a +1)<f (3a 2-2a +1), 得2a 2+a +1>3a 2-2a +1,即a2-3a<0,解得0<a<3,∴a的取值范围为{a|0<a<3}.。
第二章函数概念与基本初等函数I 2.5 指数与指数函数教师用书理苏教版1.分数指数幂(1)我们规定正数的正分数指数幂的意义是mna=na m(a>0,m,n∈N*,且n>1).正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定mna =1mna(a>0,m,n∈N*,且n>1).0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a s a t=a s+t,(a s)t=a st,(ab)t=a t b t,其中s,t∈Q,a>0,b>0.2.指数函数的图象与性质y=a x a>10<a<1图象定义域(1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1; 当x <0时,0<y <1(5)当x >0时,0<y <1; 当x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数1.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),(-1,1a).2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x(a >0,a ≠1)的图象越高,底数越大. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)na n=(na )n=a .( × )(2)分数指数幂m na 可以理解为m n个a 相乘.( × ) (3)24(1)-=12(1)-=-1.( × ) (4)函数y =a -x是R 上的增函数.( × ) (5)函数y =21x a +(a >1)的值域是(0,+∞).( × )(6)函数y =2x -1是指数函数.( × )1.(教材改编)若函数f (x )=a x(a >0且a ≠1)的图象经过点P (2,12),则f (-1)=________.答案2解析 由题意知12=a 2,所以a =22,所以f (x )=(22)x ,所以f (-1)=(22)-1= 2. 2.(2016·苏州模拟)已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为________.答案 (2,3)解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图象必过定点(2,3).3.已知113344333(),(),()552a b c ---===,则a ,b ,c 的大小关系是______________.答案 c <b <a解析 ∵y =(35)x是减函数,11034333()()(),555--∴>>即a >b >1,又c =343()2-<(32)0=1,∴c <b <a .4.计算:133()2-×⎝ ⎛⎭⎪⎫-760+148×42________.答案 2解析 原式=132()3×1+131344222()3⨯-=2.5.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.题型一 指数幂的运算 例1 化简下列各式:(1)122.553[(0.064)]--3338-π0;(2)41233322338(4a a b ab a--÷-+.解 (1)原式=121553326427{[()]}()110008---1521()33523343[()][()]1102⨯-⨯=--=52-32-1=0. (2)原式=11111213333333321111111223333352[()(2)]2()()(2)(2)()a a b a b a a aa ab b a a --⋅÷⨯+⋅+⋅ 51116333111336(2)2a a a a b a ba=-⨯⨯-12233.a a a a =⨯⨯=思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.化简132113321()4(0.1)()a b ---⋅⋅⋅=________. 答案 85解析 原式=2×333223322210a b a b--⋅⋅⋅⋅=21+3×10-1=85.题型二 指数函数的图象及应用 例2 已知f (x )=|2x-1|. (1)求f (x )的单调区间; (2)比较f (x +1)与f (x )的大小;(3)试确定函数g (x )=f (x )-x 2的零点的个数.解 (1)由f (x )=|2x-1|=⎩⎪⎨⎪⎧2x -1,x ≥0,1-2x,x <0可作出函数的图象如图所示.因此函数f (x )在(-∞,0)上递减,在(0,+∞)上递增.(2)在同一坐标系中,分别作出函数f (x )、f (x +1)的图象如图所示.由图象知,当0012112x x +-=-,即x 0=log 223时,两图象相交,由图象可知,当x <log 223时,f (x )>f (x +1);当x =log 223时,f (x )=f (x +1);当x >log 223时,f (x )<f (x +1).(3)将g (x )=f (x )-x 2的零点个数问题转化为函数f (x )与y =x 2的图象的交点个数问题,在同一坐标系中,分别作出函数f (x )=|2x-1|和y =x 2的图象(图略),有四个交点,故g (x )有四个零点.思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.已知函数f (x )=⎩⎪⎨⎪⎧x +10≤x <1,2x -12x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是______. 答案 [34,2)解析 函数的图象如图所示.因为a >b ≥0,f (a )=f (b ),所以0.5≤b <1且1.5≤f (a )<2.所以0.75≤bf (a )<2.题型三 指数函数的性质及应用 命题点1 指数函数单调性的应用例3 (1)(2016·徐州模拟)下列各式比较大小正确的是________. ①1.72.5>1.73;②0.6-1>0.62; ③0.8-0.1>1.250.2;④1.70.3<0.93.1.(2)设函数f (x )=⎩⎪⎨⎪⎧12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.答案 (1)② (2)(-3,1)解析 (1)②中,∵y =0.6x是减函数, ∴0.6-1>0.62.(2)当a <0时,不等式f (a )<1可化为(12)a-7<1,即(12)a <8,即(12)a <(12)-3, 所以a >-3.又a <0,∴-3<a <0. 当a ≥0时,不等式f (a )<1可化为a <1. 所以0≤a <1,综上,a 的取值范围为(-3,1). 命题点2 复合函数的单调性 例4 (1)已知函数f (x )=|2|2x m -(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________. (2)函数2211()()2xx f x -++=的单调减区间为________________________________________________________________________. 答案 (1)(-∞,4] (2)(-∞,1]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].(2)设u =-x 2+2x +1,∵y =⎝ ⎛⎭⎪⎫12u 在R 上为减函数,∴函数f (x )=2211()2x x -++的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 引申探究 函数f (x )=4x-2x +1的单调增区间是________.答案 [0,+∞)解析 设t =2x,则y =t 2-2t 的单调增区间为[1,+∞),令2x≥1,得x ≥0, ∴函数f (x )=4x-2x +1的单调增区间是[0,+∞).命题点3 函数的值域(或最值)例5 (1)函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.(2)如果函数y =a 2x+2a x-1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.答案 (1)⎣⎢⎡⎦⎥⎤34,57 (2)13或3 解析 (1)因为x ∈[-3,2],所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.故所求函数的值域为⎣⎢⎡⎦⎥⎤34,57.(2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a,a ],又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a],又函数y =(t +1)2-2在[a ,1a]上单调递增,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上,a =3或a =13.思维升华 (1)在利用指数函数性质解决相关综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,要化归于指数函数来解.(1)已知函数f (x )=⎩⎪⎨⎪⎧-12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f x ,x ≥0,f -x ,x <0,则函数g (x )的最小值是________.答案 (1)[-3,0) (2)0解析 (1)当0≤x ≤4时,f (x )∈[-8,1], 当a ≤x <0时,f (x )∈[-(12)a,-1),所以[-12a ,-1)[-8,1],即-8≤-12a <-1,即-3≤a <0,所以实数a 的取值范围是[-3,0).(2)当x ≥0时,g (x )=f (x )=2x-12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x-12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.2.指数函数底数的讨论典例 (2016·南京模拟)已知函数22xxy b a +=+(a ,b 为常数,且a >0,a ≠1)在区间[-32,0]上有最大值3,最小值52, 则a ,b 的值分别为________.错解展示解析 令t =x 2+2x =(x +1)2-1,∵-32≤x ≤0,∴-1≤t ≤0.∵1a ≤a t ≤1,∴b +1a ≤b +a t ≤b +1,由⎩⎪⎨⎪⎧ b +1a =52,b +1=3,得⎩⎪⎨⎪⎧ a =2,b =2.答案 2,2现场纠错解析 令t =x 2+2x =(x +1)2-1,∵x ∈[-32,0],∴t ∈[-1,0].①若a >1,函数f (x )=a t 在[-1,0]上为增函数,∴a t ∈[1a ,1],22x x b a ++∈[b +1a ,b +1],依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧ a =2,b =2.②若0<a <1,函数f (x )=a t 在[-1,0]上为减函数,∴a t ∈[1,1a ],则22x x b a ++∈[b +1,b +1a ],依题意得⎩⎪⎨⎪⎧ b +1a=3,b +1=52,解得⎩⎪⎨⎪⎧ a =23,b =32.综上①②,所求a ,b 的值为⎩⎪⎨⎪⎧ a =2,b =2或⎩⎪⎨⎪⎧a =23,b =32.答案 2,2或23,32纠错心得 与指数函数、对数函数的单调性有关的问题,要对底数进行讨论.1.(2016·苏州模拟)设2x =8y +1,9y =3x -9,则x +y 的值为________.答案 27解析 ∵2x =8y +1=23(y +1),∴x =3y +3,∵9y =3x -9=32y ,∴x -9=2y ,解得x =21,y =6,∴x +y =27.2.函数f (x )=2|x -1|的图象是________.答案 ②解析 ∵|x -1|≥0,∴f (x )≥1,排除③、④.又x =1时,|f (x )|min =1,排除①.3.已知a =40.2,b =0.40.2,c =0.40.8,则a ,b ,c 的大小关系为__________.答案 a >b >c解析 由0.2<0.8,底数0.4<1知,y =0.4x 在R 上为减函数,所以0.40.2>0.40.8,即b >c . 又a =40.2>40=1,b =0.40.2<1,所以a >b ,综上,a >b >c .4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为__________. 答案 [1,9]解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9.5.(2015·山东改编)若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为__________.答案 (0,1)解析 ∵f (x )为奇函数,∴f (-x )=-f (x ),即2-x +12-x -a =-2x+12x -a,整理得(a -1)(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3, 当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).6.(2016·浙江改编)已知函数f (x )满足f (x )≥2x ,x ∈R .若f (a )≤2b,则a ,b 的大小关系为________.答案 a ≤b解析 依题意得f (a )≥2a ,若f (a )≤2b ,则2a ≤f (a )≤2b ,∴2a ≤2b ,又y =2x 是R 上的增函数,∴a ≤b . 7.设函数f (x )=⎩⎪⎨⎪⎧ e x -1,x <1,13x ,x ≥1,则使得f (x )≤2成立的x 的取值范围是________. 答案 (-∞,8]解析 当x <1时,由ex -1≤2得x ≤1+ln 2,∴x <1时恒成立; 当x ≥1时,由13x ≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.8.若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________.答案 (0,12) 解析 (数形结合法)由图象可知0<2a <1,∴0<a <12.9.(2016·镇江模拟)已知y =f (x )是定义在R 上的奇函数且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.答案 [-14,14]解析 设t =12x ,当x ≥0时,2x≥1,∴0<t ≤1,f (t )=-t 2+t =-(t -12)2+14.∴0≤f (t )≤14,故当x ≥0时,f (x )∈[0,14].∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈[-14,0].故函数的值域为[-14,14].10.已知函数f (x )=2ax +2(a 为常数),(1)求函数f (x )的定义域;(2)若a >0,试证明函数f (x )在R 上是增函数;(3)当a =1时,求函数y =f (x ),x ∈(-1,3]的值域.(1)解 函数f (x )=2ax +2对任意实数都有意义,所以定义域为实数集R .(2)证明 任取x 1,x 2∈R ,且x 1<x 2,由a >0,得ax 1+2<ax 2+2.因为y =2x 在R 上是增函数,所以有122222ax ax ++,即f (x 1)<f (x 2).所以函数f (x )在R 上是增函数.(3)解 由(2)知,当a =1时,f (x )=2x +2在(-1,3]上是增函数.所以f (-1)<f (x )≤f (3),即2<f (x )≤32.所以函数f (x )的值域为(2,32].11.已知函数f (x )=(23)|x |-a.(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.解 (1)令t =|x |-a ,则f (x )=(23)t,不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增,又y =(23)t 是单调递减的, 因此f (x )的单调递增区间是(-∞,0],单调递减区间是[0,+∞).(2)由于f (x )的最大值是94且94=(23)-2, 所以g (x )=|x |-a 应该有最小值-2,即g (0)=-2,从而a =2.12.已知函数f (x )=2431()3ax x -+.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解 (1)当a =-1时,f (x )=2431()3xx --+,令t =-x 2-4x +3, 由于函数t =-x 2-4x +3在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,则f (x )=⎝ ⎛⎭⎪⎫13g (x ), 由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧ a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1.*13.已知函数f (x )=14x -λ2x -1+3(-1≤x ≤2). (1)若λ=32,求函数f (x )的值域; (2)若函数f (x )的最小值是1,求实数λ的值.解 (1)f (x )=14x -λ2x -1+3=(12)2x -2λ·(12)x+3(-1≤x ≤2).设t =(12)x ,得g (t )=t 2-2λt +3(14≤t ≤2).当λ=32时,g (t )=t 2-3t +3=(t -32)2+34(14≤t ≤2).所以g (t )max =g (14)=3716,g (t )min =g (32)=34.所以f (x )max =3716,f (x )min =34,故函数f (x )的值域为[34,3716].(2)由(1)得g (t )=t 2-2λt +3=(t -λ)2+3-λ2(14≤t ≤2),①当λ≤14时,g (t )min =g (14)=-λ2+4916,令-λ2+4916=1,得λ=338>14,不符合舍去;②当14<λ≤2时,g (t )min =g (λ)=-λ2+3,令-λ2+3=1,得λ=2(λ=-2<14,不符合舍去);③当λ>2时,g (t )min =g (2)=-4λ+7,令-4λ+7=1,得λ=32<2,不符合舍去.综上所述,实数λ的值为 2.14.(2017·江苏淮阴中学月考)已知f (x )=23x +1+m ,m 是实常数.(1)当m =1时,写出函数f (x )的值域;(2)当m =0时,判断函数f (x )的奇偶性,并给出证明;(3)若f (x )是奇函数,不等式f (f (x ))+f (a )<0有解,求a 的取值范围.解 (1)当m =1时,f (x )=23x +1+1,定义域为R ,3x +1∈(1,+∞),则23x +1∈(0,2), 所以f (x )=23x +1+1∈(1,3), 即当m =1时,函数f (x )的值域为(1,3).(2)当m =0时,f (x )为非奇非偶函数.证明如下 :当m =0时,f (x )=23x +1,f (1)=24=12, f (-1)=213+1=32, 因为f (-1)≠f (1),所以f (x )不是偶函数;又因为f (-1)≠-f (1),所以f (x )不是奇函数.故f (x )为非奇非偶函数.(3)因为f (x )是奇函数,所以f (-x )=-f (x )恒成立,即23-x+1+m =-23x +1-m 对x ∈R 恒成立, 化简整理得-2m =2×3x1+3x +23x +1,即-2m =2,所以m =-1. 下面用定义法研究f (x )=23x +1-1的单调性. 任取x 1,x 2∈R 且x 1<x 2, f (x 1)-f (x 2)=1222113131x x --+++ 21212(33)0(31)(31)x x x x -=++>, 所以f (x 1)>f (x 2),所以函数f (x )在R 上单调递减.所以f (f (x ))+f (a )<0有解,且函数f (x )为奇函数,所以f (f (x ))<-f (a )=f (-a ),又因为函数f (x )在R 上单调递减,所以f (x )>-a 有解,又易求函数f (x )=23x +1-1的值域为(-1,1),所以-a <1,即a >-1.。
1.函数的奇偶性2.(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(教材改编)对于定义域是R的任意奇函数f(x),下列结论正确的有________.(填序号)①f(x)-f(-x)>0;②f(x)-f(-x)≤0;③f(x)·f(-x)≤0; ④f(x)·f(-x)>0.答案③解析①②显然不正确.对任意奇函数f(x),有f(-x)=-f(x),∴f(x)·f(-x)=-[f(x)]2≤0,故③正确,④不正确.2.(教材改编)函数y=f(x)为(-∞,+∞)上的偶函数,且f(|a|)=3,则f(-a)=________.答案 3解析若a≥0,则f(-a)=f(a)=f(|a|)=3;若a<0,则f(-a)=f(|a|)=3.故对a∈R,总有f(-a)=3.3.(教材改编)若函数f(x)=(x+1)(x-a)为偶函数,则a=________.答案 1解析∵f(x)=(x+1)(x-a)=x2+(1-a)x-a为偶函数,∴f(-x)=f(x)对任意x∈R恒成立,∴(1-a)x=(a-1)x恒成立,∴1-a=0,∴a=1.4.(教材改编)设函数y=f(x)是偶函数,它在[0,1]上的图象如图所示,则它在[-1,0]上的解析式为________.答案f(x)=x+2解析由题意知f(x)在[-1,0]上为一条线段,且过(-1,1)、(0,2),设f (x )=kx +b , 代入解得k =1,b =2.所以f (x )=x +2.5.(2016·四川)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________. 答案 -2解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又0<x <1时,f (x )=4x , ∴f (12)=124=2,∴f ⎝⎛⎭⎫-52+f (2) =-f ⎝⎛⎭⎫52+f (2) =-f ⎝⎛⎭⎫12+f (0) =-2+0=-2.题型一 判断函数的奇偶性例1 (1)下列函数为奇函数的是________. ①f (x )=2x -12x ;②f (x )=x 3sin x ; ③f (x )=2cos x +1; ④f (x )=x 2+2x . 答案 ①解析 ①中,函数f (x )的定义域为R , 又f (-x )=2-x -12-x =12x -2x =-f (x ),∴f (x )为奇函数.(2)判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0的奇偶性.解 当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x );当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞),均有f (-x )=-f (x ). ∴函数f (x )为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)(2016·北京海淀区模拟)下列函数中为偶函数的是________.①y =1x ;②y =lg|x |;③y =(x -1)2;④y =2x .(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则下列关于函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性的说法正确的是________. ①F (x )是奇函数,G (x )是奇函数; ②F (x )是偶函数,G (x )是奇函数; ③F (x )是偶函数,G (x )是偶函数; ④F (x )是奇函数,G (x )是偶函数. 答案 (1)② (2)②解析 (1)②中,函数y =lg|x |的定义域为{x |x ≠0}且lg|-x |=lg|x |, ∴函数y =lg|x |是偶函数.(2)F (x ),G (x )的定义域均为(-2,2), 由已知F (-x )=f (-x )+g (-x ) =log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x )=-G (x ), ∴F (x )是偶函数,G (x )是奇函数. 题型二 函数的周期性例2 (1)(2016·淮安模拟)已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)0 (2)2.5解析 (1)由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数, ∴g (-x )=-g (x ),f (-x )=f (x ), ∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 017)=f (1),f (2 019)=f (3)=f (-1), 又∵f (1)=f (-1)=g (0)=0, ∴f (2 017)+f (2 019)=0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 引申探究例2(2)中,若将f (x +2)=-1f (x )改为f (x +2)=-f (x ),其他条件不变,则f (105.5)的值为________. 答案 2.5解析 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴函数的周期为4(下同例题).思维升华 函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 018)=________. 答案 339解析 ∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016) =1×2 0166=336.又f (2 017)=f (1)=1,f (2 018)=f (2)=2, ∴f (1)+f (2)+f (3)+…+f (2 018)=339. 题型三 函数性质的综合应用 命题点1 解不等式问题例3 (1)(2016·南通模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是____________.(2)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______.答案 (1)(13,23) (2)(-1,4)解析 (1)因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增, f (2x -1)<f (13),所以|2x -1|<13,所以13<x <23.(2)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 命题点2 求参数问题例4 (1)函数f (x )=lg(a +21+x)为奇函数,则实数a =________.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 (1)-1 (2)-10解析 (1)根据题意得,使得函数有意义的条件为a +21+x>0且1+x ≠0,由奇函数的性质可得f (0)=0.所以lg(a +2)=0,即a =-1,经检验a =-1满足函数的定义域. (2)因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题. (2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系为________________. 答案 (1)-32(2)f (-25)<f (80)<f (11)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax,即1+e 3x e 3x +e 6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).2.抽象函数问题考点分析 抽象函数问题在高考中也时常遇到,常常涉及求函数的定义域,由函数的周期性求函数值或判断函数的奇偶性等.一般以填空题来呈现,有时在解答题中也有所体现.此类题目较为抽象,易失分,应引起足够重视. 一、抽象函数的定义域典例1 已知函数y =f (x )的定义域是[0,8],则函数g (x )=f (x 2-1)2-log 2(x +1)的定义域为________.解析 要使函数有意义, 需使⎩⎪⎨⎪⎧0≤x 2-1≤8,x +1>0,2-log 2(x +1)≠0,即⎩⎪⎨⎪⎧1≤x 2≤9,x >-1,x ≠3,解得1≤x <3,所以函数g (x )的定义域为[1,3). 答案 [1,3)二、抽象函数的函数值典例2 若定义在实数集R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x ),对任意x ∈R 恒成立,则f (2 019)=________. 解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ), 即函数f (x )的周期是4,所以f (2 019)=f (505×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 019)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).即f (1)=1,所以f (2 019)=f (1)=1.三、抽象函数的单调性与不等式典例3 设函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).若f (3)=1,且f (a )>f (a -1)+2,求实数a 的取值范围. 规范解答解 因为f (xy )=f (x )+f (y )且f (3)=1, 所以2=2f (3)=f (3)+f (3)=f (9).又f (a )>f (a -1)+2,所以f (a )>f (a -1)+f (9). 再由f (xy )=f (x )+f (y ),可知f (a )>f [9(a -1)], 因为f (x )是定义在(0,+∞)上的增函数, 从而有⎩⎪⎨⎪⎧a >0,9(a -1)>0,a >9(a -1),解得1<a <98.故所求实数a 的取值范围是(1,98).1.(教材改编)已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,则f (x )=____________. 答案 x 2-2解析 f (-x )+g (-x )=x 2-x -2, 由f (x )是偶函数,g (x )是奇函数, 得f (x )-g (x )=x 2-x -2, 又f (x )+g (x )=x 2+x -2, 两式联立得f (x )=x 2-2.*2.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是__________. 答案 ⎝⎛⎭⎫12,32解析 因为f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,所以f (-x )=f (x )且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32. 3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)=________.解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3), 又f (x +4)=f (x ),∴f (3)=f (-1), 由-1∈(-2,0)得f (-1)=2, ∴f (2 019)=2. 4.已知f (x )=lg(21-x+a )为奇函数,则使f (x )<0的x 的取值范围是________________. 答案 (-1,0)解析 由f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=lg (2+a )2-a 2x 21-x 2=lg 1=0可得a =-1,所以f (x )=lg1+x 1-x ,解得0<1+x1-x<1,可得-1<x <0. 5.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos π6x (0<x ≤8),log 2x (x >8),则f (f (-16))=________. 答案 12解析 由题意f (-16)=-f (16)=-log 216=-4, 故f (f (-16))=f (-4)=-f (4)=-cos4π6=12. 6.(2016·盐城模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案 13解析 依题意得f (-x )=f (x ), ∴b =0,又a -1=-2a , ∴a =13,∴a +b =13.7.(2017·苏北四市联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g (x ),x <0,若f (x )为奇函数,则g (-14)=________.答案 2解析 g (-14)=f (-14)=-f (14)=-log 214=-log 22-2=2.8.(2016·常州模拟)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________.答案0解析由f(x+1)是偶函数得f(-x+1)=f(x+1),又f(x)是定义在R上的奇函数,所以f(-x +1)=-f(x-1),即-f(x-1)=f(x+1),所以f(x+2)=-f(x),即f(x)+f(x+2)=0,所以f(1)+f(3)=0,f(2)+f(4)=0,因此f(1)+f(2)+f(3)+f(4)=0.9.函数f(x)在R上为奇函数,且当x>0时,f(x)=x+1,则当x<0时,f(x)=________.答案--x-1解析∵f(x)为奇函数,当x>0时,f(x)=x+1,∴当x<0时,-x>0,f(-x)=-x+1=-f(x),即x<0时,f(x)=-(-x+1)=--x-1.10.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知,f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.11.(2016·江苏苏北四市二调)定义在R上的奇函数f(x)满足当x≥0时,f(x)=log2(x+2)+(a-1)x+b(a,b为常数),若f(2)=-1,则f(-6)的值为________.答案 4解析由已知得f(0)=0=1+b,∴b=-1,又f(2)=2+2(a-1)-1=-1,∴a=0,∴f(x)=log2(x+2)-x-1(x≥0),∴f(-6)=-f(6)=-3+6+1=4.12.(2016·江苏扬州中学开学考试)已知f(x)是定义在[-2,2]上的奇函数,且当x∈(0,2]时,f(x)=2x-1,函数g(x)=x2-2x+m,如果∀x1∈[-2,2],∃x2∈[-2,2],使得g(x2)=f(x1),则实数m的取值范围是____________.答案[-5,-2]解析∵f(x)是定义在[-2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x-1的值域为(0,3],∴当x∈[-2,2]时,f(x)的值域为[-3,3],若∀x1∈[-2,2],∃x2∈[-2,2],使得g(x2)=f(x1),则g(x)max≥3且g(x)min≤-3,∵g(x)=x2-2x+m=(x-1)2+m-1,∴当x∈[-2,2]时,g(x)max=g(-2)=8+m,g(x)min=g(1)=m-1,故8+m≥3且m-1≤-3,解得m≥-5且m≤-2,故-5≤m≤-2.13.设f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 018).(1)证明∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),∴f(x)是周期为4的周期函数.(2)解∵x∈[2,4],∴-x∈[-4,-2],∴4-x∈[0,2],∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8,又f(4-x)=f(-x)=-f(x),∴-f(x)=-x2+6x-8,即f(x)=x2-6x+8,x∈[2,4].(3)解∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.∴f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.。
第7讲函数的图象
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2017·扬州一检)把函数y=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.
解析把函数y=f(x)的图象向左平移1个单位,即把其中x换成x+1,于是得y=[(x +1)-2]2+2=(x-1)2+2,再向上平移1个单位,即得到y=(x-1)2+2+1=(x-
1)2+3.
答案y=(x-1)2+3
2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________(填序号).
解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除①.因交通堵塞停留了一段时间,与学校的距离不变,排除④.后来为了赶时间加快速度行驶,排除②.故填③.
答案③
f(x)的定义域是________.
3.已知函数f(x)的图象如图所示,则函数g(x)=log
2
解析当f (x )>0时,
函数g (x )=log
2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].
答案(2,8]4.(2015·浙江卷改编)函数f (x )x -1x x (-π≤x ≤π且x ≠0)的图象可能为
________(填序号).
解析(1)因为f (-x )=-x +1x cos(-x )=-x -1x x =-f (x ),-π≤x ≤π且
x ≠0,所以函数f (x )为奇函数,排除①,②.当x =π时,f (x )=π-1ππ<0,排除③,故填④.
答案④
5.(2017·桂林一调改编)函数y =(x 3-x )2|x |的图象大致是________(填序号).
解析由于函数y =(x 3-x )2|x |为奇函数,故它的图象关于原点对称.当0<x <1时,y <0;当x >1时,y >0.
排除①③④,故填②.
答案②
6.(2017·南师附中调研)使log 2(-x )<x +1成立的x 的取值范围是________.
解析
在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).
答案(-1,0)
7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则
f (x )的解析式为________.
解析
当-1≤x ≤0时,设解析式为y =kx +b (k ≠0).
k +b =0,=1,=1,
=1,∴y =x +1.
当x >0时,设解析式为y =a (x -2)2-1(a ≠0).
∵图象过点(4,0),∴0=a (4-2)2-1,得a =14
.
答案f (x x ≤0
x -22-1,x >0
8.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则
实数a 的取值范围是________.
解析
如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).
答案[-1,+∞)
二、解答题
9.已知函数f(x
x2,x∈[-1,2],-3,x∈2,5].
(1)在如图所示给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间;
(3)由图象指出当x取什么值时f(x)有最值.
解
(1)函数f(x)的图象如图所示.
(2)由图象可知,
函数f(x)的单调递增区间为[-1,0],[2,5].
(3)由图象知当x=2时,f(x)
min
=f(2)=-1,
当x=0时,f(x)
max
=f(0)=3.
10.已知f(x)=|x2-4x+3|.
(1)作出函数f(x)的图象;
(2)求函数f(x)的单调区间,并指出其单调性;
(3)求集合M={m|使方程f(x)=m有四个不相等的实根}.
解
(1)当x 2-4x +3≥0时,x ≤1或x ≥3,
∴f (x x 2-4x +3,x ≤1或x ≥3,
-x 2
+4x -3,1<x <3,∴f (x )的图象为:
(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.
(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.
能力提升题组
(建议用时:20分钟)
11.(2017·平顶山二模改编)函数y =a +sin bx (b >0且b ≠1)的图象如图所示,那么函数y
=log b (x -a )的图象可能是________(填序号).
解析由题图可得a >1,且最小正周期T =2πb
<π,所以b >2,则y =log b (x -a )是增
函数,排除①和②;当x =2时,y =log b (2-a )<0,排除④,故填③.
答案③
12.(2015·安徽卷改编)函数f (x )=ax +b x +c
2的图象如图所示,则下列结论:
①a >0,b >0,c <0;
②a <0,b >0,c >0;
③a <0,b >0,c <0;
④a <0,b <0,c <0.
其中正确的是________(填序号).
解析函数定义域为{x |x ≠-c },结合图象知-c >0,
∴c <0.
令x =0,得f (0)=b c
2,又由图象知f (0)>0,∴b >0.令f (x )=0,得x =-b a ,结合图象知-b a
>0,∴a <0.答案③
13.(2017·常州监测)已知函数f (x x 2
+x ,x ≤1,
log 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值范围为________.
解析对任意x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|.
因为f (x )的草图如图所示,
观察f (x x 2
+x ,x ≤1,
log 13x ,x >1
的图象可知,当x =12时,函数f (x )max =14,
所以|k -1|≥1
4,解得k ≤3
4或k ≥5
4.答案-∞,34∪5
4,+∞
14.已知函数f (x )的图象与函数h (x )=x +1
x +2的图象关于点A (0,1)对称.
(1)求函数f (x )的解析式;
(2)若g (x )=f (x )+a
x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.
解(1)设f (x )图象上任一点坐标为(x ,y ),
∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,∴2-y =-x +1
-x +2,∴y =x +1x ,即f (x )=x +1
x .
(2)由题意g (x )=x +a +1
x ,
且g (x )=x +a +1
x ≥6,x ∈(0,2].
∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1.
令q (x )=-x 2+6x -1,x ∈(0,2],
q (x )=-x 2+6x -1=-(x -3)2+8,
∴当x ∈(0,2]时,q (x )是增函数,q (x )max =q (2)=7.
故实数a 的取值范围是[7,+∞).。