相似三角形判定定理
- 格式:pptx
- 大小:447.98 KB
- 文档页数:21
三角形的相似性质与判定定理
三角分别相等,三边成比例的两个三角形叫做相似三角形。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似)。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角成正比,那么这两个三角形相近(简叙为:两边对应成比例且夹角成正比,两个三角形相近。
)
(3)如果一个三角形的三条边与另一个三角形的`三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似。
)
1、相近三角形对应角成正比,对应边变成比例。
2、相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3、相近三角形周长的比等同于相近比。
4、相似三角形面积的比等于相似比的平方。
5、相近三角形内切圆、外接圆直径比和周长比都和相近比相同,内切圆、外接圆面积比是相近比的平方。
相似三角形判定定理的证明在初中学习几何的时候,我们就学习了相似三角形的概念和判定方法,其中比较关键的就是相似三角形判定定理。
在本文中,我们将介绍相似三角形判定定理的证明过程。
定理说明相似三角形判定定理是指:若两个三角形的对应角相等,则这两个三角形是相似的;若两个三角形有两个角相等,则这两个三角形是相似的;若两个三角形的对应边成比例,则这两个三角形是相似的。
证明过程对应角相等时的证明假设两个三角形ABD和EFC,其中∠A和∠E,∠B和∠F,∠D和∠C相等,则可以按照以下步骤证明这两个三角形是相似的:1.连接BD和FC2.在三角形ABD和三角形EFC中,分别连接AC和EF3.由于∠A和∠E,∠B和∠F,∠D和∠C相等,因此三角形ABD和三角形EFC都是等角三角形4.通过等角三角形的对应边相等,可以得到AB/EF=BD/FC=AD/EC5.由于AB/EF=BD/FC=AD/EC,因此三角形ABD和三角形EFC的对应边成比例,证明这两个三角形是相似的有两个角相等时的证明假设两个三角形ABC和DEF,其中∠A=∠D,∠B=∠E,则可以按照以下步骤证明这两个三角形是相似的:1.连接AC和DF2.由于∠A=∠D,∠B=∠E,因此∠ABC和∠DEF是相似的角3.通过相似角的对应边成比例,可以得到AB/DE=BC/EF4.由于AB/DE=BC/EF,因此三角形ABC和三角形DEF的对应边成比例,证明这两个三角形是相似的对应边成比例时的证明假设两个三角形ABC和DEF,其中AB/DE=BC/EF=CA/FD,则可以按照以下步骤证明这两个三角形是相似的:1.在三角形ABC和三角形DEF中,分别连接AD和BE2.由于AB/DE=BC/EF=CA/FD,因此根据对应边成比例的定义,可以得到AD/BE=BC/EF3.通过相似线段的对应边成比例,可以得到∠BAD=∠EBE以及∠ADC=∠FBE4.由于∠BAD=∠EBE以及∠ADC=∠FBE,因此三角形BAD和三角形EBE是相似的,三角形ADC和三角形FBE是相似的5.通过相似三角形的对应边成比例,可以得到AB/DE=BC/EF=CA/FD6.由于AB/DE=BC/EF=CA/FD,因此三角形ABC和三角形DEF的对应边成比例,证明这两个三角形是相似的,相似三角形判定定理得证。
相似三角形的判定条件及证明相似三角形是几何学中重要的概念,它们具有相似的形状但可能具有不同的大小。
在实际问题中,我们经常需要确定两个三角形是否相似。
本文将介绍判定相似三角形的条件及其证明方法。
1. AA相似定理如果两个三角形的两个角分别相等(其中一个角必须是对应角),那么这两个三角形是相似的。
证明:设三角形ABC和三角形DEF满足条件,即∠A = ∠D,∠B = ∠E 或∠C = ∠F。
我们需要证明它们是相似的。
根据AA相似定理,我们只需证明另外一个对应角也相等。
假设∠A = ∠D,∠B = ∠E。
根据三角形内角和为180°,我们可以得到∠C = 180° - ∠A - ∠B = 180° - ∠D - ∠E = ∠F。
因此,三角形ABC和三角形DEF的对应角都相等,根据AA相似定理,它们是相似的。
2. 三边比值相等定理如果两个三角形的三边对应成比例,那么这两个三角形是相似的。
证明:设三角形ABC和三角形DEF满足条件,即AB/DE = BC/EF =AC/DF。
我们需要证明它们是相似的。
假设AB/DE = BC/EF,我们可以得到AB/BC = DE/EF。
根据三角形的角边比例定理,如果三角形的两边之间的比值相等,那么这两个三角形的对应角也相等。
因此,∠A = ∠D,而根据AA相似定理,我们可以得出三角形ABC和三角形DEF是相似的。
3. SAS相似定理如果两个三角形的一对对应边成比例,并且两个对应角分别相等,那么这两个三角形是相似的。
证明:设三角形ABC和三角形DEF满足条件,即AB/DE = AC/DF,并且∠A = ∠D。
我们需要证明它们是相似的。
我们已经得知∠A = ∠D,因此,我们只需证明另外两对对应边之间的比值相等。
设x = AB/DE = AC/DF,我们可以得到DE = AB/x,DF = AC/x。
由此可得:DE/DF = (AB/x)/(AC/x) = AB/AC。
相似三角形的判定定理及试————————————————————————————————作者:————————————————————————————————日期:(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.2、相似三角形对应边的比叫做相似比.3、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.强调:①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF∥AC , 求证:△ABC ∽△DEF.A B CDEF判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.例2、如图,点C、D在线段AB上,△PCD是等边三角形。
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数。
判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。
简单说成:三边对应成比例,两三角形相似.强调:①有平行线时,用预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点运动时,PB的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。
两个直角三角形相似的判定定理
两个直角三角形相似的判定定理是高中数学中的一个重要定理,主要用于解决与直角三角形相似性有关的问题。
本文将介绍两个直角三角形相似的判定定理及其证明,以及相似性在几何学中的应用。
1. 判定定理一:若一个直角三角形的两条直角边分别等于另一个直角三角形的两条直角边或者分别等于另一个直角三角形的一条非直角边和一条斜边,则这两个直角三角形是相似的。
对于判定定理一,我们需要使用勾股定理进行证明。
假设ΔABC和ΔDEF是两个直角三角形,并且AB=DE,AC=DF,BC=EF。
根据勾股定理可知:
AB²=AC²-BC² ,DE²=DF²-EF²
代入等式可得:
将等式左右两边同时加上BC²和EF²,可得:
因此,两个直角三角形ΔABC和ΔDEF是相似的。
a/sinB=b/sinA,c/sinE=d/sinF
BC=EF
a/b = c/d
两个直角三角形相似的判定定理在几何学中的应用十分广泛。
例如,在三角形相似问题中,我们可以使用判定定理一得出两个直角三角形之间的相似性,从而进一步解决整个问题。
此外,这个定理还可以应用于计算机视觉、机器人学、虚拟现实等领域。