第27练 完美破解立体几何的证明问题
- 格式:doc
- 大小:1.30 MB
- 文档页数:16
立体几何平行证明问题的解答方法纵观近几年高考试题,立体几何大题的第一小题都是立体几何的证明问题,从题型来看主要涉及到平行证明或垂直证明两个考试内容。
在这里首先针对平行证明问题加以探导,平行证明问题归纳起来主要包括:①线面平行的证明问题;②线线平行的证明问题;③面面平行的证明问题等几种类型,各种类型问题结构具有各自的特征,解答方法也各不相同。
那么在实际解答立体几何平行证明问题时,如何根据问题的结构特征,选用恰当的方法快捷,准确地给予解答呢?下面通过典型例题的详细解析来回答这个问题。
【典例1】按要求解答下列各题:1、下列条件中,能得出直线a 与平面α平行的条件是( )A a ⊄α,b ⊂α,a ∥bB b ⊂α,a ∥bC b ⊂α,a ∥b ,c//a ,c//αD b ⊂α,A ∈a ,B ∈a ,C ∈b ,D ∈b ,且AC=BD【解析】【知识点】①直线平行平面的定义与性质;②直线平行平面的判定定理及运用。
【解题思路】运用直线平行平面的判定定理,就可作出正确的选择。
【详细解答】Q 由直线平行平面的判定定理可知,平面外的直线只需平行平面内一条直线,这条直线就与平面平行,⇒A 正确,∴选A 。
2、五棱台ABCDE —1111A B C D 1E 中,F ,G 分别是A 1A 和B 1B 上的点,且1AF FA =1BG GB ,则FG 与平面ABCDE 的位置关系是( )A 平行B 相交C 异面D FG 在平面ABCDE 内【解析】【知识点】①直线平行平面的定义与性质;②直线平行平面的判定定理及运用;③平行线分线段成比例定理。
【解题思路】运用平行线分线段成比例定理,直线平行平面的判定定理,作出正确的选择。
【详细解答】Q 五棱台ABCDE —1111A B C D 1E 中,F ,G 分别是A 1A 和B 1B 上的点,且1AF FA =1BG GB ,∴FG//AB ,Q FG ⊄平面ABCDE ,AB ⊂平面ABCDE ,∴FG//平面ABCDE ,⇒A 正确,∴选A 。
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。
高考数学-立体几何证明方法总结及经典3例例1:平行类证明【平行类证明方法总结】线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥面BCE.证法一:如图(1),作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN,因为面ABCD∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =.又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK.∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,. 求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥, ∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC ⊥平面AEFG , ∴SC AE ⊥. ∴AE ⊥平面SBC . ∴AE SB ⊥.同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅ ;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:||||cos 2121n n n n ⋅=θ距离公式:||||n n AB CD d == 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos 3.(3)由(2)知,点(022(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y +=+=⎪⎩,,取x =1,得(112)-,n =.点P 到平面QAD 的距离22PQ d ==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD向量法解立体几何题目5、在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1.已知2AB=,BB1=2,BC=1,∠BCC1=3π.求二面角A-EB1-A1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.2、证明:如图,设PC中点为G,连结FG,1CD=AE,则FG//CD//AE,且FG=2∴四边形AEGF是平行四边形∴AF//EG,又∵AF⊄平面PEC,EG⊂平面PEC,∴AF//平面PEC3、证明:在平面PAC内作AD⊥PC交PC于D.∵平面PAC⊥平面PBC,且两平面交于PC,AD⊂平面PAC,且AD⊥PC,∴AD⊥平面PBC.又∵BC⊂平面PBC,∴AD⊥BC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥.∵AD BD =,(等腰三角形三线合一) ∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥, CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系.由于BC =1,BB 1=2,AB BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、AB 1(0,2,0)、102c ⎫-⎪⎪⎝⎭,、1302C ⎫⎪⎪⎝⎭,,.设0E a ⎫⎪⎪⎝⎭,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3202a a ⎛⎛⎫--- ⎪ ⎪⎝⎝⎭,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故1022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(00B A BA ==,122EA ⎛=-- ⎝ 故11112cos 3EA B A EA B A θ==,即tan θ=。
由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1. 线线、线面、面面平行关系的转化:αβαγβγ//,//I I ==⇒⎫⎬⎭a b a b面面平行性质⎫⎬⎪⎭⎪2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定 线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪I b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪I a a面面垂直定义αβαβαβI =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角线线∥线面⊥面面∥线面垂直判定2面面平行判定2线面垂直性质2面面平行性质3a bab//⊥⇒⊥⎫⎬⎭ααaba b⊥⊥⇒⎫⎬⎭αα//aa⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//aa⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
”5. 唯一性结论:1. 三类角的定义:(1)异面直线所成的角θ:0°<θ≤90°(2)直线与平面所成的角:0°≤θ≤90°(3)二面角:二面角的平面角θ,0°<θ≤180°2. 三类角的求法:转化为平面角“一找、二作、三算”即:(1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角;(4)计算大小。
【典型例题】(一)与角有关的问题例1. (1)如图,E 、F 分别为三棱锥P —ABC 的棱AP 、BC 的中点,PC =10,AB =6,EF =7,则异面直线AB 与PC 所成的角为( )A. 60°B. 45°C. 30°D. 120°解:取AC 中点G ,连结EG 、FG ,则EG PC FG AB∥∥,==1212∴∠EGF 为AB 与PC 所成的角在△EGF 中,由余弦定理,cos ∠··EGF EG FG EF EG FG =+-=+-⨯⨯=-222222253725312∴AB 与PC 所成的角为180°-120°=60°∴选A(2)已知正四棱锥以棱长为1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为( )A B C D ....131336332626解:设正四棱锥的高为,斜高为h h h '=+⎛⎝ ⎫⎭⎪2212由题意:1241121612222⨯⨯+⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪⎪+=⨯h∴h 26=∴侧棱长PB h OB=+=+⎛⎝⎫⎭⎪=222622262∴∠cos PBOOBPB===222621313∴选A()如图,在正方体中,为上的一个定点,为3111111ABCD A B C D P A D Q-A B E F CD EF11上的任意一点,、为上任意两点,且的长为定值,有下列命题:①点P到平面QEF的距离为定值;②直线PQ与平面PEF所成的角为定值;③二面角P—EF—Q的大小为定值;④三棱锥P—QEF的体积为定值其中正确命题的序号是___________。
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
第27练 完美破解立体几何证明题题型一 空间中的平行问题例1 在如图所示多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,且AC =AD =CD =DE =2,AB =1.(1)请在线段CE 上找到点F 的位置,使得恰有直线BF ∥平面ACD ,并证明.(2)求多面体ABCDE 的体积.破题切入点 (1)可先猜后证,可以利用线面平行的判定定理进行证明.(2)找到合适的底面.解 如图,(1)由已知AB ⊥平面ACD ,DE ⊥平面ACD ,所以AB ∥ED ,设F 为线段CE 的中点,H 是线段CD 的中点,连结FH ,AH ,则FH 綊12ED ,所以FH 綊AB ,所以四边形ABFH 是平行四边形,所以BF ∥AH ,又因为BF ⊄平面ACD ,AH ⊂平面ACD ,所以BF ∥平面ACD.(2)取AD 中点G ,连结CG.因为AB ⊥平面ACD ,所以CG ⊥AB ,又CG ⊥AD ,AB∩AD =A ,所以CG ⊥平面ABED ,即CG 为四棱锥C -ABED 的高,求得CG =3,所以VC -ABED =13×(1+2)2×2×3= 3.即多面体ABCDE 的体积为 3.题型二 空间中的垂直问题例2 如图,三棱柱ABC -A1B1C1的侧面AA1B1B 为正方形,侧面BB1C1C 为菱形,∠CBB1=60°,AB ⊥B1C.(1)求证:平面AA1B1B ⊥平面BB1C1C.(2)若AB =2,求三棱柱ABC -A1B1C1的体积.破题切入点 (1)考查面面垂直的判定定理.(2)注意利用棱柱体积和锥体体积公式间的关系.(1)证明 由侧面AA1B1B 为正方形,知AB ⊥BB1.又AB ⊥B1C ,BB1∩B1C =B1,所以AB ⊥平面BB1C1C ,又AB ⊂平面AA1B1B ,所以平面AA1B1B ⊥平面BB1C1C.(2)解 由题意,CB =CB1,设O 是BB1的中点,连结CO ,则CO ⊥BB1.由(1)知,CO ⊥平面AA1B1B ,且CO =32BC =32AB = 3.连结AB1,则C ABB V 1-=13ABB S1·CO =16AB2·CO =233.因为B ABC V 1-=C ABB V 1-=13ABC A B C V 111-=233,所以ABC A B C V 111-=2 3.故三棱柱ABC -A1B1C1的体积为2 3.题型三 空间中的平行、垂直综合问题例3 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD ∥MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且AD =PD =2MA.(1)求证:平面EFG ∥平面PMA ;(2)求证:平面EFG ⊥平面PDC ;(3)求三棱锥P -MAB 与四棱锥P -ABCD 的体积之比.破题切入点 (1)证明EG 、FG 都平行于平面PMA.(2)证明GF ⊥平面PDC.(3)设MA 为1,从而其他边的长度都可表示,问题可求解.(1)证明 ∵E 、G 、F 分别为MB 、PB 、PC 的中点,∴EG ∥PM ,GF ∥BC.又∵四边形ABCD 是正方形,∴BC ∥AD ,∴GF ∥AD.∵EG ⊄平面PMA ,GF ⊄平面PMA ,PM ⊂平面PMA ,AD ⊂平面PMA ,∴EG ∥平面PMA ,GF ∥平面PMA.又∵EG ⊂平面EFG ,GF ⊂平面EFG ,EG∩GF =G ,∴平面EFG ∥平面PMA.(2)证明 由已知MA ⊥平面ABCD ,PD ∥MA ,∴PD ⊥平面ABCD.又BC ⊂平面ABCD ,∴PD ⊥BC.∵四边形ABCD 为正方形,∴BC ⊥DC.又PD∩DC =D ,∴BC ⊥平面PDC.由(1)知GF ∥BC ,∴GF ⊥平面PDC.又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC.(3)解 ∵PD ⊥平面ABCD ,四边形ABCD 为正方形,不妨设MA =1,则PD =AD =2. ∵DA ⊥平面MAB ,且PD ∥MA ,∴DA 即为点P 到平面MAB 的距离,∴VP -MAB ∶VP -ABCD=(13S △MAB·DA)∶(13S 正方形ABCD·PD)=S △MAB ∶S 正方形ABCD =⎝⎛⎭⎫12×1×2∶(2×2)=1∶4.即三棱锥P -MAB 与四棱锥P -ABCD 的体积之比为1∶4.总结提高 1.证明平行关系的方法:(1)证明线线平行的常用方法:①利用平行公理,即证明两直线同时和第三条直线平行;②利用平行四边形进行转换;③利用三角形中位线定理证明;④利用线面平行、面面平行的性质定理证明.(2)证明线面平行的常用方法:①利用线面平行的判定定理,把证明线面平行转化为证明线线平行;②利用面面平行的性质定理,把证明线面平行转化为证明面面平行.(3)证明面面平行的方法:证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.2.证明空间中垂直关系的方法:(1)证明线线垂直的常用方法①利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;②利用勾股定理逆定理;③利用线面垂直的性质,即要证明线线垂直,只需证明一线垂直于另一线所在平面即可.(2)证明线面垂直的常用方法①利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;②利用面面垂直的性质定理,把证明线面垂直转化为证明面面垂直;③利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等.(3)证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.1.若平面α∥平面β,直线a⊂α,点B∈β,则在β内过点B的所有直线中与a平行的直线的条数为________.答案一条解析由直线a与B确定的平面与β有唯一交线.故存在唯一与a平行的直线.2.在正方体ABCD—A1B1C1D1中,E是棱AB上的动点,则直线A1D与直线C1E所成的角为________.答案90°解析在正方体中,显然有A1D⊥AB,A1D⊥AD1,所以A1D⊥平面AD1C1B,又C1E⊂平面AD1C1B,故A1D⊥C1E.3.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a、b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a、b,a⊂α,b⊂β,a∥β,b∥α,可以推出α∥β的是________.答案①④解析对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确.4.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是________.答案①或③解析由定理“一条直线与一个平面平行,则过这条直线的任一个平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③.5.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M 为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是________.答案①②③解析对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∵PA∩AC=A,∴BC⊥AC,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.6.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________.(写出所有真命题的序号)答案①②解析由①知α内两条相交直线分别平行于平面β,则两条相交直线确定的平面α平行于平面β,故①为真命题;由线面平行的判定定理知,②为真命题;对于③,如图,α∩β=l,a⊂α,a⊥l,但不一定有α⊥β,故③为假命题;对于④,直线l与平面α垂直的充分必要条件是l与α内的两条相交直线垂直,故④为假命题.综上所述,真命题的序号为①②.7.如图,在空间四边形ABCD中,M∈AB,N∈AD,若AMMB=ANND,则直线MN与平面BDC的位置关系是________.答案 平行解析 在平面ABD 中,AM MB =AN ND ,∴MN ∥BD.又MN ⊄平面BCD ,BD ⊂平面BCD ,∴MN ∥平面BCD.8.底面直径和母线长相等的圆柱称为等边圆柱.已知一等边圆柱的底面半径为2,则其体积为________.答案 16π解析 由题意,圆柱的高为4,则V =π·22·4=16π.9.如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA =45°.其中正确的有________(把所有正确的序号都填上).答案 ①④解析 由PA ⊥平面ABC ,AE ⊂平面ABC ,得PA ⊥AE ,又由正六边形的性质得AE ⊥AB ,PA∩AB =A ,得AE ⊥平面PAB ,又PB ⊂平面PAB ,∴AE ⊥PB ,①正确;∵平面PAD ⊥平面ABC ,∴平面ABC ⊥平面PBC 不成立,②错;由正六边形的性质得BC ∥AD ,又AD ⊂平面PAD ,BC ⊄平面PAD ,∴BC ∥平面PAD ,∴直线BC ∥平面PAE 也不成立,③错;在Rt △PAD 中,PA =AD =2AB ,∴∠PDA =45°,∴④正确.10.给出命题:①在空间中,垂直于同一平面的两个平面平行;②设l ,m 是不同的直线,α是一个平面,若l ⊥α,l ∥m ,则m ⊥α;③已知α,β表示两个不同平面,m 为平面α内的一条直线,“α⊥β”是“m ⊥β”的充要条件; ④在三棱锥S -ABC 中,SA ⊥BC ,SB ⊥AC ,则S 在平面ABC 内的射影是△ABC 的垂心;⑤a ,b 是两条异面直线,P 为空间一点,过P 总可以作一个平面与a ,b 之一垂直,与另一条平行.其中,正确的命题是________.(只填序号)答案 ②④解析 ①错误,垂直于同一个平面的两个平面也可能相交;③错误,“α⊥β”是“m ⊥β”的必要不充分条件;⑤错误,只有当异面直线a ,b 垂直时才可以作出满足要求的平面;易知②④正确.11.如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.证明(1)如图所示,连结NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形.∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN.∴四边形AA1KN为平行四边形.∴AN∥A1K.∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK.(2)如图所示,连结BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K.∴四边形BC1KM为平行四边形.∴MK∥BC1.在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C. 又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.12.(2014·课标全国Ⅰ)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C ⊥AB ;(2)若AC ⊥AB1,∠CBB1=60°,BC =1,求三棱柱ABC -A1B1C1的高.(1)证明 如图,连结BC1,则O 为B1C 与BC1的交点.因为侧面BB1C1C 为菱形,所以B1C ⊥BC1.又AO ⊥平面BB1C1C ,所以B1C ⊥AO ,又BO∩AO =O ,故B1C ⊥平面ABO.由于AB ⊂平面ABO ,故B1C ⊥AB.(2)解 在平面BB1C1C 内作OD ⊥BC ,垂足为D ,连结AD.在平面AOD 内作OH ⊥AD ,垂足为H.由于BC ⊥AO ,BC ⊥OD ,AO∩OD =O ,故BC ⊥平面AOD ,所以OH ⊥BC.又OH ⊥AD ,AD∩BC =D ,所以OH ⊥平面ABC.因为∠CBB1=60°,所以△CBB1为等边三角形.又BC =1,可得OD =34.由于AC ⊥AB1,所以OA =12B1C =12.由OH·AD =OD·OA ,且AD =OD2+OA2=74,得OH =2114.又O 为B1C 的中点,所以点B1到平面ABC 的距离为217,21故三棱柱ABC-A1B1C1的高为7.。
专题07 立体几何中的推理证明问题——立体几何是高考考查逻辑推理的重要知识点数学抽象要求能够掌握常用逻辑推理方法的规则,理解其中所蕴含的思想.对于新的数学问题,能够提出不同的假设前提,推断结论,形成数学命题.对于较复杂的数学问题,通过构建过渡性命题,探索论证的途径,解决问题,并会用严谨的数学语言表达论证过程.能够理解建构数学体系的公理化思想.立体几何是高中数学考查逻辑推理的重要载体,高考通常通过立体几何中的线面位置关系的证明来考查逻辑推理.1.【2019全国Ⅰ理18】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=P DC,可得B1C=P A1D,故ME=P ND,因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA uu u r的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-uuu r,1(12)A M =--uuuu r,1(1,0,2)A N =--uuu r ,1(1,0,2)A N =--uuu r.设(,,)x y z =m 为平面A 1MA 的法向量,则110A M A A ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu rm m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --【素养解读】本题考查线面平行的证明及二面角的计算,线面平行的证明的关键是借助平面几何知识证明平行,二面角则借助空间向量来求,体现了逻辑推理及数学运算核心素养。
高中立体几何最佳解题方法及考题详细解答 Modified by JACK on the afternoon of December 26, 2020高中立体几何最佳解题方法总结一、二、线线平行的证明方法1、2、利用平行四边形;3、4、利用三角形或梯形的中位线;5、6、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)7、8、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)9、10、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)11、12、平行于同一条直线的两个直线平行。
13、14、夹在两个平行平面之间的平行线段相等。
三、四、线面平行的证明方法1、2、定义法:直线和平面没有公共点。
3、4、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)5、6、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
7、8、反证法。
五、六、面面平行的证明方法1、2、定义法:两个平面没有公共点。
3、4、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)5、6、平行于同一个平面的两个平面平行。
7、8、经过平面外一点,有且只有一个平面与已知平面平行。
9、10、垂直于同一条直线的两个平面平行。
七、八、线线垂直的证明方法1、2、勾股定理; 2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)15、16、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
17、18、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
第27练 完美破解立体几何的证明问题[题型分析·高考展望] 立体几何证明题是高考必考题,证明平行、垂直关系是主要题型,特别是垂直关系尤为重要.掌握判定定理、性质定理并能灵活运用是解题的根本.学会分析推理的方法和证明技巧是提升推理能力的关键,在二轮复习中,通过专题训练,使解立体几何证明的能力更上一层楼,确保该类题型不失分.体验高考1.(2015·福建)若l ,m 是两条不同的直线,m 垂直于平面α,则“l ⊥m ”是“l ∥α”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件答案 B解析 m 垂直于平面α,当l ⊂α时,也满足l ⊥m ,但直线l 与平面α不平行,∴充分性不成立,反之,l ∥α,一定有l ⊥m ,必要性成立.故选B.2.(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.3.(2016·课标全国甲)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CFCD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′. (2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面BHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322.4.(2016·四川)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,所以CM ∥AB . 又AB ⊂平面P AB ,CM ⊄平面P AB . 所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD ,所以P A ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ⊂平面PBD , 所以平面P AB ⊥平面PBD .5.(2016·课标全国丙)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面P AB ; (2)求四面体NBCM 的体积.(1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为12P A .如图,取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体NBCM 的体积 V NBCM =13×S △BCM ×P A 2=453.高考必会题型题型一 空间中的平行问题例1 如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E 、F 、G 分别是BC 、DC 、SC 的中点,求证: (1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1.证明 (1)如图,连接SB ,∵E 、G 分别是BC 、SC 的中点, ∴EG ∥SB .又∵SB ⊂平面BDD 1B 1, EG ⊄平面BDD 1B 1, ∴直线EG ∥平面BDD 1B 1. (2)连接SD ,∵F 、G 分别是DC 、SC 的中点, ∴FG ∥SD .又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1, ∴FG ∥平面BDD 1B 1,由(1)知, EG ∥平面BDD 1B 1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.点评证明平行关系的方法(1)证明线线平行的常用方法:①利用平行公理,即证明两直线同时和第三条直线平行;②利用平行四边形进行转换;③利用三角形中位线定理证明;④利用线面平行、面面平行的性质定理证明.(2)证明线面平行的常用方法:①利用线面平行的判定定理,把证明线面平行转化为证明线线平行;②利用面面平行的性质定理,把证明线面平行转化为证明面面平行.(3)证明面面平行的方法:证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.变式训练1(2015·天津改编)如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,点E和F分别为BC和A1C的中点.求证:(1)EF∥平面A1B1BA;(2)平面AEA1⊥平面BCB1.证明(1)如图,连接A1B,在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又因为EF⊄平面A1B1BA,BA1⊂平面A1B1BA,所以EF∥平面A1B1BA.(2)因为AB =AC ,E 为BC 中点,所以AE ⊥BC ,因为AA 1⊥平面ABC ,BB 1∥AA 1,所以BB 1⊥平面ABC ,从而BB 1⊥AE .又因为BC ∩BB 1=B ,所以AE ⊥平面BCB 1,又因为AE ⊂平面AEA 1,所以平面AEA 1⊥平面BCB 1. 题型二 空间中的垂直问题例2 如图所示,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点. 求证:(1)AF ∥平面BCE ; (2)平面BCE ⊥平面CDE .证明 (1)如图,取CE 的中点G ,连接FG ,BG .∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD , DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GF AB 为平行四边形, ∴AF ∥BG .∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE . 点评 (1)证明线面垂直的常用方法:①利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;②利用面面垂直的性质定理,把证明线面垂直转化为证明面面垂直;③利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)证明面面垂直的方法:证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线来解决.变式训练2(2016·北京)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.(1)证明∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面P AC,AC⊂平面P AC,∴DC⊥平面P AC.(2)证明∵AB∥CD,CD⊥平面P AC,∴AB⊥平面P AC,又∵AB⊂平面P AB,∴平面P AB⊥平面P AC.(3)解棱PB上存在点F,使得P A∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又∵E为AB的中点,∴EF为△P AB的中位线,∴EF∥P A.又P A⊄平面CEF,EF⊂平面CEF,∴P A∥平面CEF.题型三空间中的平行、垂直综合问题例3(2015·山东)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)方法一如图,连接DG,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.方法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,AB∩BE=B,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.点评(1)立体几何中,要证线垂直于线,常常先证线垂直于面,再用线垂直于面的性质易得线垂直于线.要证线平行于面,只需先证线平行于线,再用线平行于面的判定定理易得.(2)证明立体几何问题,要紧密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用.(3)平行关系往往用到三角形的中位线,垂直关系往往用到三角形的高线、中线.变式训练3(2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.(1)证明因为O,M分别为AB,VA的中点,所以OM∥VB,又因为VB⊄平面MOC,所以VB∥平面MOC.(2)证明因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB.又OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)解在等腰直角三角形ACB中,AC=BC=2,所以AB=2,OC=1,所以等边三角形VAB的面积S△VAB= 3.又因为OC⊥平面VAB.所以V C-VAB=13·OC·S△VAB=33,又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为33.高考题型精练1.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n答案 C解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.2.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面答案 D解析对于A,α,β垂直于同一平面,α,β关系不确定,故A错;对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面,故B错;对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.3.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,可以推出α∥β的是()A.①③B.②④C.①④D.②③答案 C解析对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.4.如图,在正方形ABCD中,E,F分别是BC,CD的中点,AC∩EF=G.现在沿AE,EF,F A把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,则在四面体P-AEF中必有()A.AP ⊥△PEF 所在平面B.AG ⊥△PEF 所在平面C.EP ⊥△AEF 所在平面D.PG ⊥△AEF 所在平面答案 A解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴⎭⎪⎬⎪⎫AP ⊥PEAP ⊥PF PE ∩PF =P ⇒AP ⊥平面PEF . 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是()A.①B.②C.③D.④ 答案 B解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图所示中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.6.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④答案 B解析①中易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.7.如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.8.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).答案①④解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE⊥AB,P A∩AB=A,得AE⊥平面P AB,又PB⊂平面P AB,∴AE⊥PB,①正确;∵平面P AD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面P AD,BC⊄平面P AD,∴BC∥平面P AD,∴直线BC∥平面P AE也不成立,③错;在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,④正确.9.如图,三棱柱ABC—A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C,则B1C与AB的位置关系为________.答案异面垂直解析∵AO⊥平面BB1C1C,∴AO⊥B1C,又∵平面BB1C1C为菱形,∴B1C⊥BO,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB.10.(2016·课标全国甲)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.11.(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.12.(2016·山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.证明(1)因为EF∥DB,所以EF与DB确定平面BDEF,如图①,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)如图②,设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC. 又HI∩GI=I,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.。