浅谈数学直觉思维的培养
- 格式:pdf
- 大小:261.88 KB
- 文档页数:1
浅谈数学直觉思维及培养直觉思维是一种充满想象力的创造思维。
传统的数学教学过多地注重逻辑思维能力的培养,而忽视直觉思维。
这不利于思维能力的整体发展。
培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需要。
一、直觉思维的主要特点直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点,从培养直觉思维的必要性来看,直觉思维有以下三个主要特点:1、简约性:直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。
它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的“本质”。
2、创造性:现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。
直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。
正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。
伊恩.斯图加特说:“直觉是真正的数学家赖以生存的东西”,许多重大的发现都是基于直觉。
欧几里得几何学的五个公设都是基于直觉,从而建立起欧几里得几何学这栋辉煌的大厦;哈密顿在散步的路上进发了构造四元素的火花;阿基米德在浴室里找到了辨别王冠真假的方法;凯库勒发现苯分了环状结构更是一个直觉思维的成功典范。
3、自信力:学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。
不可否认情感的重要作用,但笔者的观点是,兴趣更多来自数学本身。
成功可以培养一个人的自信,直觉发现伴随着很强的“自信心”。
相比其它的物资奖励和情感激励,这种自信更稳定、更持久。
当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。
浅谈直觉思维的认识和初中生数学直觉思维的培养1对直觉思维的认识1.1直觉思维与数学直觉思维直觉思维是指对一个问题未经逐步分析仅依据对内因的感知迅速地对问题答案作出判断、猜想,或者在对疑难百思其解之中,突然对问题有“灵感”和“顿悟”。
甚至对未来事物的结果有“预感”、“预言”等都是直觉思维。
而数学思维是人脑和数学对象(空间关系、数量关系、结构关系)交互作用并按照一般思维规律认识数学内容的内在的理性活动。
数学知识具有严密的逻辑性、抽象性和系统性。
数学的直觉思维是人的感性认识到理性认识的过程,是始学分析思维的基础。
1.2直觉思维的主要特点及数学直觉思维的特点直觉思维是一种心理现象。
它不仅在创造性思维活动关键阶段起着极为重要的作用,也是人生命活动、延缓衰老的重要保证。
直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点。
直觉思维是完全可以有意识加以训练和培养的,从直觉思维的角度来看,主要有以下特点:1.2.1简明性直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象而迅速的作出判断和猜想,它省去了中间推理的环节,而采取了“跳跃式”的形式。
但它却触及到了数学对象的“本质”所在。
1.2.2创造性直觉思维是基于研究对象整体上的把握,不专于细节的推理,是思维的大手笔。
正是由于思维的无意识性,它的想象才是丰富的、发散的,使人的认知结构向外无限扩展,因而具有反常规的独创性。
1.2.3自信力成功感可以培养一个人的自信,直觉发现伴随着很强的“自信心”。
这种自信更稳定、更持久。
当一个问题不用通过逻辑推理的形式而是通过自己的直觉获得,那么内心将会产生一种强大的学习欲望和钻研动力,从而更加相信自己的能力。
如果从培养学生的能力入手,数学中的逻辑思维显得太枯燥乏味,直接影响学生的学习情趣,使得学生学习数学失去动力,这使得提高学生数学思维能力成为一句空话。
所以在重视学生的逻辑能力的同时,必须注意培养学生的观察力、直觉力、想象力,特别是直觉思维能力。
浅谈直觉思想及培育数学教育的任务之一是培育学生的思想能力,而思想能力包含诸多方面,直觉思想能力是重要的一个方面,直觉思想能力是指人脑不受固定的逻辑规则的拘束,是对研究对象及其构造的一种快速的辨别、直接的理解、综合的判断。
传统的教课过分着重逻辑思想能力的培育,而忽略直觉思想能力的培育,常常简单造成学生们在学习数学对数学的本质产生误会,我以前问过我的学生,在他们眼里,有 80%的人认为数学就是算呀算的,无聊无聊的,这样他们对数学的学习也就缺少获得成功的信心,进而也就丧失数学学习的兴趣。
其实他们根本领会不到数学所培育的能力,可见,过分的着重逻辑思想能力的培育,不利于思想能力整体的发展。
培育直觉思想能力是社会发展的需要、是适应新时代新期间对人材的需要。
一、数学直觉思想的内涵直觉是运用相关知识组块和形象直感对目前问题进行敏锐的剖析、推理,并能快速发现解决问题的方法或门路的思想方式。
数学直觉思想是人脑对数学对象的某种快速而直接的洞察或意会,也能够说是数学洞察力。
在数学的发展史上,很多半学家都十分重视直觉思想的作用。
比如:笛卡尔创办分析几何,牛顿发明微积分都得益于数学直觉思想。
“逻辑用于论证,直觉用于发明”彭加勒这一名言关于数学创建活动中直觉的思想作用阐述的十分精粹。
二、数学直觉思想的特色及作用数学直觉思想的主要特色是非逻辑性、自觉性、综合性、整体性、经验型和不行解说性,它能在一瞬时快速解决问题。
基本形式是直觉的灵感与顿悟。
数学直觉思想以其高度省略、简化、浓缩的方式洞察问题的本质,它是一种思路约简了的思想方式,是直觉想象和直觉判断的一致,属于数学创建性思想的范围。
在解题中,因为思想方式不一样,解题所花销的时间也不定不一样,解答时间的长短是权衡思想水平高低的一个重要标记就教育方向,社会所需人材的种类的转变来看,培育创建型人材成为目前教育的目标和方向。
这就要求我们一定对学生的直觉思想能力进行适合的培育和启迪。
三、数学直觉思想的培育1.扎实的基础是产生直觉的源泉直觉的产生不适靠“机会”,直觉的获取固然拥有有时性,但决不是平白无故的凭空臆想,而是以扎实的知识为基础的,对事物敏锐的察看,深刻的理解为前提的,若没有深沉的功底,是不会爆发出思想的火花,迪瓦多内一语点破了直觉的产生过程:“我认为获得直感觉过程,一定经历一个纯形式表面理解的期间,而后逐渐将理解提升、深入。
浅谈数学直觉思维能力的培养摘要:“逻辑用于论证,直觉可用于发明”,数学直觉就是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。
学生直觉思维能力的培养,需要教师运用直观教学法,努力拓宽学生的知识面,同时,在课堂上给学生留下一定的学习空间,鼓励学生进行合理的猜想,进而帮助学生养成自问和反思的习惯,形成较强的直觉思维能力。
关键词:数学直觉思维能力培养“逻辑用于论证,直觉可用于发明”,庞加莱的这一名言精辟地指出了直觉在创造性思维活动中的作用。
直觉,又称为顿悟,在某些领域中又称为灵感。
平时,某人花了许多时间做一道题目,突然间他做出来了,但是还需为答案提出形式证明;或当别人向他提问时,他能够迅速作出很好的猜测,判定某事物是不是这样。
这种“突发奇想”就是直觉思维。
而数学直觉是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。
许多数学高材生常常具备较强的直觉思维能力,解题时能够“单刀直入,立刻剖析问题的核心,而不是在外围大兜圈子”,其思维过程能够省略许多看来是思考的逻辑链上的必要环节,这对具有巨大潜能的初中学生来说,培养他们的猜想能力、想象能力和直觉思维能力就显得尤为重要了。
一、运用直观性教学。
在数学教学中,要注意将客观事物中的数学特点抽象而构造出模型、表格、图形等直观形象,要尽可能为学生提供某种关于这些概念、定理、法则的直观性理解,这些直观形象有助于直觉思维的形成。
第一,要注意数形结合。
著名数学家华罗庚指出:“数缺形时少直观,形缺数时难入微。
”数和形作为数学的两个基本对象,是现实世界中数量与空间形式的反映。
因此,我们要把数、形之间的转化作为培养学生直觉思维能力的重要途径。
当面对表示题目信息的“数”有明显意义的问题时,要求学生能直觉想象出相应的图形,利用“形”的直观来寻找解题途径;反之,对表示题目信息的“形”易于用数来表示的问题,要求学生能构造出相关的“数”的命题,用数的性质来解决问题。
第二,要注意教学语言的直观性。
浅谈初中数学直觉思维培养
初中数学直觉思维培养是指在学习数学知识和解题过程中,培养和提高学生的直觉思
维能力。
直觉思维能力是指通过直觉和感性认识来解决问题的一种思维方式。
在解题过程中,直觉思维能力能够帮助学生发现问题的本质、抓住重点、迅速找到解题的思路和方法,从而更高效地完成数学学习和解题。
培养学生的直觉思维能力需要注重培养学生的观察能力和感知能力。
学生在学习数学
的过程中,应该注重观察和感知问题的特点和规律,以此来引发和培养学生的直觉思维能力。
在学习几何的时候,可以通过观察图形的形状、大小、位置等特征,以及通过观察图
形的相对关系和性质,来培养学生的空间直觉和几何直觉思维能力。
培养学生的直觉思维能力还需要注重培养学生的联想和想象能力。
学生在解决问题的
过程中,应该能够灵活地运用所学的知识和方法,进行联想和想象,以此来探索并解决问题。
在解决代数问题的时候,学生应该能够将具体问题转化为代数式,进行联想和想象,
找到问题的解题思路和方法。
浅谈小学数学教学中直觉思维能力的培养摘要:小学数学教学中一直存在着这样的问题:重逻辑少直观、多机械训练而少创新思维等。
由此导致的弊端已经逐步的显现出来,而这些已经引起了不少教育专家和教育工作者的重视。
本文主要探讨小学数学教学中直觉思维能力的培养。
关键词:小学数学;直觉思维能力;培养直觉思维与逻辑思维一样是人类的基本的思维形式,直觉思维是数学思维的重要内容之一。
直觉思维的训练对提高学生数学素养,培养学生的数学思维能力有重要意义。
而笔者在长期的小学数学教学中发现,学生的直觉思维没有得到绝大多数老师的重视,更有甚者武断地加以否定,导致学生的直觉思维能力受到弱化和抑制,逐渐地扼杀了学生的创造能力和学习数学的兴趣。
1 直觉思维的含义直觉一词的含义应从两方面去理解:其一为来源于人的显意识的直观感觉,又可称之为感性直觉;其二为人的潜意识对事物本质的一种内在直观,这种内在直观也可称为理智直觉。
直觉思维是物质世界在人脑中的反映,是显意识和潜意识相互作用的产物;是人们以一定的知识,经验技能为基础,通过一定的观察,类比,联想,归纳,猜测等对所研究的问题提出的猜想和对客观事物的一种比较迅速的综合判断和洞察或领悟。
可见,直觉思维是未经过一步步分析,无清晰的步骤,而对事物突然间的领悟,理解或给出答案的思维过程。
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。
教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。
对于学生的要求是能领会多少算多少。
因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想和方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目标,把数学思想和方法教学的要求融入备课环节。
其次要深入钻研教材,努力挖掘教材中可以进行数学思想和方法渗透的各种因素,对于每一章每一节都要考虑如何结合具体内容进行数学思想和方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,要有一个总体设计,提出不同阶段的具体教学要求。
浅谈数学教学中直觉思维能力的培养直觉思维是指具有意识的人脑对于数学对象、结构及规律性关系的敏锐的想象和迅速的判断。
它具有快速性、直接性和跳跃性等特点。
它的结果表现为灵感和顿悟,能够直接达到对数学现象本质规律的认识。
长期以来,在数学教学中,我们常常重视逻辑思维,偏向于演绎推理,赋予学生“再现性思维”,或者说是“过去的数学”,使学生的创造力受到制约。
其实,历史上很多发现都来源于直觉思维。
布鲁纳说过:“学校的任务就是引导学生掌握‘直觉’这种天赋。
”可见直觉思维对于数学问题的解决,起着非常重要的作用。
那么,如何培养学生的直觉思维能力呢?现就自己平时的一些做法,谈一谈不成熟的看法。
一、 教会学生联想,培养直觉思维能力。
'思维的灵活性是建立在善于联想的基础上的。
在很多问题中,只有善于“由此思彼”的人,才能想出有新意的解决办法来。
联想是一种创造性思维,是产生直觉的先导,教会学生如何联想,是培养学生直觉思维能力的一种主要方法。
在平时的教学中,应注意做适当的启发,不失时机的引到学生对所面临的问题进行联想,例如:求函数xx y cos 2sin 2--=的最大值和最小值。
这道题可以利用函数的有界性来解决,但是计算起来比较繁琐,于是可引导学生进行联想,你能仔细观察它的外形结构,想想和我们学过的什么公式类似?学生会想到直线的斜率公式,从而转化为(2,2)点与(cosx,sinx )点的连线的斜率。
又由于点(cosx,sinx)在单位圆上,也就进一步转化为苴线和圆的位置关系,使问题得到简化解决。
又如:在解决向量和解析几何综合问题时,由于是坐标把它们联系在一起,因此,解决这类问题时,遇到向量马上联想到把它转化成坐标,与解析几何挂起钩来,使问题得到解决。
其实这样的例子很多,在教学中,只要师生在一起,能够很好的归纳和总结基础知识和基本思想方法,联想就会丰富起来,否则联想将变成无源之水,无本之木。
二、 教会学生数形结合,培养直觉思维能力。
浅谈数学直觉思维的培养
发表时间:2013-04-23T09:43:08.030Z 来源:《素质教育》2013年2月总第111期供稿作者:周海丽[导读] 传统的数学教学中,我们往往比较重视解题过程的严密性,严谨性,从而忽视了直觉思维的应用。
周海丽河北廊坊大厂二中 065000
中学数学教学大纲将培养学生的三大能力之一“逻辑思维能力”改为“思维能力”,这意味着数学教育在注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养,特别是直觉思维能力的培养。
而数学直觉,则是指具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。
传统的数学教学中,我们往往比较重视解题过程的严密性,严谨性,从而忽视了直觉思维的应用。
这样,有些题目我们往往花了很多时间详细讲解,学生仍是难以理解,觉得困难重重。
老师做的工作也就事倍功半。
相反,教学中学生的直觉猜想却往往会产生意想不到的效果。
因此,数学直觉思维的培养是不容忽视的。
一、正确认识直觉思维及其意义
直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。
它是一瞬间的思维火花,是长期积累的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰地触及到事物的“本质”。
直觉思维是发明的源泉。
伟大的数学家、物理学家和天文学家彭加勒说:“逻辑用于证明,直觉用于发明。
”前苏联科学家凯德洛夫更明确地说:“没有任何一个创造性行为能离开直觉活动。
”“数学王子”高斯曾经反复强调,他的数学发现主要来自经验,“证明只是补行的手续”。
德国数学家伊恩·斯图加特也说:“直觉是真正的数学家赖以生存的东西。
”纵观人类科技进步发展史,许多重大的发现都是基于直觉:欧几里得几何学的五个公式就是基于直觉,从而建立起欧几里得几何学这栋辉煌的大厦;哈密顿是在散步的路上迸发出了构造四元素的火花;阿基米德在浴室里找到了辨别王冠真假的方法;凯库勒发现苯分子环状结构,这些都是直觉思维的成功典范。
由此可见,直觉思维是未来的高科技信息社会中,能适应世界新技术革命需要,具有开拓、创新意识的开创性人才所必有的思维品质。
因此,在目前和今后的数学教学中,如何培养学生的直觉思维能力,发展学生创新精神,是数学教学的重要任务之一。
二、在教学中有意识地培养学生的直觉思维
1.帮助学生打好扎实的基础
数学直觉是建立在知识扎实的基础上的。
没有深厚的功底,就不会迸发出思想的火花。
在数学教学中我们应该告诫学生千万不要把“直觉”当作是凭空臆想、想当然、胡乱猜测。
猜也是有根据的,就像没有坚实的地基哪有高耸入云的大厦一样,数学直觉是建立在扎实的知识基础上的。
知识储备越丰富越广泛,逻辑思维能力就越强,猜对的几率也就越大。
阿达玛曾风趣地说:“难道一只猴子也能应机遇而打印成整部美国宪法吗?”教师要告诉学生:“没有苦思冥想,也不会有灵机一动,直觉的灵感是勤劳和自信的产物。
”初中数学九年级(上),“中心对称、中心对称图形”的教学是安排在学生已熟练掌握“轴对称、轴对称图形”的基础上的,因此我们可以提供大量的图片、生活实例,让学生分小组观察、讨论、猜测、凭直觉归纳出“中心对称、中心对称图形”的知识要点。
这样简单的教学设计不仅能够激发学生自主探究,有助于学生对知识要点的真正理解,而且使学生感到数学学习并不枯燥乏味,使他们对数学产生浓厚的兴趣。
2.教给学生提出问题的方法
思维是从发现问题,想要解决问题开始的。
亚里士多德也曾说过:“思维从对问题的惊讶开始。
”现在的学生不是不敢提问题,更主要的是不会提问题。
教师埋怨学生学习不深入、不会钻研、不会提问,为什么会出现这种现象呢?这可能有这样的两个因素:其一,教师没有教或启发学生提问题;其二,没有给充分机会让学生提问。
在教学中,首先,要善于通过分析知识之间的逻辑困难、分析多种假设之间的差异和对立,把有待探索的问题展现在学生面前,激发学生探索数学理论的兴趣和愿望,培养学生发现问题;其次,根据学生的知识水平,选择恰当的内容,有意识地训练学生从整体出发,用猜想、跳跃的方法直接而迅速地找到解决问题的方法和答案,平时解题中鼓励学生寻求“一题多解”,归纳“多题一解”,鼓励学生敢于向书本、教师质疑,挑战各种问题。
3.创设问题情境,鼓励学生大胆猜想
在教学中,教师可以通过创设问题情境,引导学生观察、思考并提出猜想,引起知识的迁移,最终解决问题。
我们在教学中,常常会感受到学生直觉思维的火花,这种领悟是难能可贵的。
在学生直觉思维的基础上,我们还应引导学生学会验证自己的猜想,从而得出真正正确的结论。
4.在解题训练中加强学生的直觉思维
直觉的产生是基于对研究对象整体的把握,在解题训练中应该选择适当的题目类型,以利于培养、考察学生的直觉思维。
如选择题(填空题),由于只要求从四个选择支中挑选出来(或直接写出答案),省略解题过程,容许合理的猜想,有利于直觉思维的发展。
实施开放性问题教学,也是培养直觉思维的有效方法之一。
开放性问题的条件或结论不够明确,让学生通过观察、联想、类比、特殊化等方法,凭直觉可以从多个角度执果索因、执因索果,提出猜想,因为答案的发散性,有利于直觉思维能力的培养。
总之,培养学生的创造性思维能力,要注重直觉思维和逻辑思维并重,以逻辑思维育直觉思维,以直觉思维促逻辑思维,开发学生内在潜力,让学生的思维在广度、深度、独立性、灵活性等方面全面得到发展。
同时,使学生感到数学并不只是枯燥乏味的证明、推理,学习数学也可以“跟着感觉走”、大胆猜测,寓学于趣味之中。