化学修饰电极分离富集方法
- 格式:pptx
- 大小:1.90 MB
- 文档页数:48
第章分析化学中常用的分离富集方法分析化学是研究物质成分和性质的科学,分析化学中常常需要进行分离和富集样品中的目标组分以便进行后续的定性与定量分析。
在分析化学中,常用的分离富集方法包括溶剂提取法、固相萃取法、离子交换法、凝胶过滤法等。
以下将对这些方法进行详细介绍。
1.溶剂提取法溶剂提取法是利用目标组分在水相和有机相之间的分配系数差异将目标组分从样品中分离出来的方法。
该方法常用于富集有机物、金属离子等。
常用的溶剂包括正己烷、乙酸乙酯、乙酸纳等。
溶剂提取法具有操作简便、富集效果好的特点,但需要注意溶剂的选择和体积比的控制。
2.固相萃取法固相萃取法是利用固态吸附剂或吸附剂包裹在固态材料上,通过吸附目标物质来实现分离和富集的方法。
该方法常用于富集挥发性有机物、农药、药物等。
常用的吸附剂有活性炭、硅胶、聚酯、聚乙烯等。
固相萃取法具有操作简便、富集效果好的特点,但需要注意吸附剂的选择和样品前处理的步骤。
3.离子交换法离子交换法是利用离子交换树脂将样品中的离子按照离子交换性质进行分离和富集的方法。
离子交换树脂是一种具有交换离子基团的吸附剂,可以选择性地吸附目标离子。
离子交换法常用于富集金属离子、阴离子、阳离子等。
常用的离子交换树脂有强阴离子交换树脂、强阳离子交换树脂、弱阴离子交换树脂等。
离子交换法具有选择性好、重现性好的特点,但需要注意树脂的选择和样品的处理方法。
4.凝胶过滤法凝胶过滤法是利用凝胶材料的孔隙大小将大分子与小分子进行分离和富集的方法。
凝胶过滤法常用于分离大分子如蛋白质、DNA等。
常用的凝胶材料有琼脂糖、聚丙烯酰胺凝胶等。
凝胶过滤法具有操作简便、选择性好的特点,但需要注意凝胶材料的选择和样品前处理的步骤。
以上是分析化学中常用的分离富集方法,不同的方法适用于不同的目标组分和样品类型。
在进行分析前,需要根据样品的特性和分析要求选择合适的分离富集方法,并进行合理的样品前处理步骤,以确保分析结果的准确性和可靠性。
分离课后习题及答案【注意事项】1.因时间关系,详细复习总结的电子版没时间做了,大家抽空多看看课本,考试以课本基础知识为主,书上找不到答案的不会考。
2.这里主要总结了老师上课讲的课后题参考答案,以及部分往届复习的名词解释整合,大家参考记忆。
3.考试题型:6-7个名词解释,6-7个选择题(考察细节掌握,一个两分),填空,简答论述(接近50分)。
4.不考计算题,但依然会考公式的其他应用,复习时自己注意。
5.【P22】【P24】【P44-45】【P216-217】这几页的图和表必须会解读,【P191-192】这两页表必须背过,必考重点!考试没有画图题,但可能有读图题,常见的重点图示必须熟悉。
6.抓紧时间好好复习,今年监考比历届都要严,不要因小失大!!!7.最后,祝都过。
第一章绪论1.分离技术的三种分类方法各有什么特点?答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。
(2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。
(3)场流分类法2.分离富集的目的?答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。
这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。
②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。
③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。
因此物质的化学分离和测定具有同样重要意义。
3.什么是直接分离和间接分离?答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。
4.阐述浓缩、富集和纯化三个概念的差异与联系?答:富集:通过分离,使目标组分在某空间区域的浓度增大。
浓缩:将溶剂部分分离,使溶质浓度提高的过程。
纯化:通过分离使某种物质的纯度提高的过程。
分析化学_分析化学中常用的分离和富集方法分析化学是研究物质的组成、结构和性质的一门学科。
在分析化学中,为了检测和测定分析对象中微量或痕量的目标物质,常常需要使用分离和富集方法,以提高目标物质的检测灵敏度。
1.搅拌萃取:搅拌萃取是一种常见的分离和富集方法。
通过将样品与其中一种有机溶剂反复搅拌混合,使目标物质从水相转移到有机相中,从而实现分离和富集。
该方法适用于目标物质在水相和有机相之间有较大的分配系数差异的情况。
2.相间萃取:相间萃取是指根据目标物质在两相中的分配差异进行分离和富集的方法。
常见的相间萃取方法包括液液萃取、固相微萃取和液相萃取等。
相间萃取通常需要将样品与萃取剂反复摇匀并分离两相,以实现目标物质的富集。
3.固相萃取:固相萃取是指使用固定在固相萃取柱或固相萃取膜上的吸附剂来对目标物质进行分离和富集的方法。
固相萃取方法具有操作简单、富集效果好、适用范围广等优点,常用于分析化学中的前处理过程。
4.蒸馏:蒸馏是指通过加热使液体汽化,然后冷凝收集汽化液体的方法。
蒸馏可以实现液体的分离和富集,适用于目标物质在样品中的浓度较低且需高度富集的情况。
5.色谱分离:色谱分离是一种基于目标物质在不同相之间的分配差异进行分离的方法。
常用的色谱分离方法包括气相色谱、液相色谱、固相色谱等。
色谱分离方法具有分辨率高、重复性好、操作简便等优点,广泛应用于分析化学中。
6.气相萃取:气相萃取是指利用气相萃取装置将目标物质从固体、液体或气体中分离和富集的方法。
气相萃取主要通过溶剂的蒸发和再冷凝,将目标物质从样品中富集到溶剂中,然后通过蒸发或其他方法将溶剂去除,得到目标物质。
7.凝胶电泳:凝胶电泳是一种基于目标物质的电荷、大小或形状差异进行分离和富集的方法。
常见的凝胶电泳方法包括聚丙烯酰胺凝胶电泳、聚丙烯酰胺梯度凝胶电泳等。
凝胶电泳方法具有分辨率高、富集效果好等优点,适用于复杂样品的分析。
总之,分析化学中常用的分离和富集方法有搅拌萃取、相间萃取、固相萃取、蒸馏、色谱分离、气相萃取和凝胶电泳等。
分析化学中常用的分离富集方法1.蒸馏法:蒸馏法是一种基于物质沸点差异的分离富集方法。
通过加热混合物,使成分具有不同沸点的组分分别转化为气态和液态,然后通过冷凝收集液态成分,从而实现分离。
蒸馏法广泛应用于分离液体的混合物,例如石油的分离和酒精的纯化。
2.萃取法:萃取法是一种基于物质在不同相中的分配系数差异的分离富集方法。
它通过萃取剂与混合物中其中一成分发生作用,将其从混合物中提取出来。
常用的萃取剂包括有机溶剂、水和金属络合剂等。
萃取法广泛应用于固体、液体或气体的分离富集,例如从矿石中提取金属离子、从天然产物中提取天然色素等。
3.结晶法:结晶法是一种基于物质在溶液中溶解度差异的分离富集方法。
通过逐渐降低溶液中的溶质浓度,使其超过饱和度,从而导致溶质结晶出来。
结晶法广泛应用于分离纯化固体物质,例如提取药物原料和脱盐。
4.吸附法:吸附法是一种基于物质在固体吸附剂表面吸附能力差异的分离富集方法。
通过将混合物与吸附剂接触,利用其表面活性或化学反应特性,将目标成分吸附在吸附剂上,然后通过洗脱、干燥等步骤分离目标成分。
常用的吸附剂包括硅胶、活性炭和分子筛等。
吸附法广泛应用于气体和溶液的分离富集,例如气体的净化和水处理。
5.色谱法:色谱法是一种基于物质在固相或液相载体上移动速度差异的分离富集方法。
它利用混合物成分在固定相和流动相之间相互作用的差异,通过在柱上或薄层上移动,分离各个组分。
常用的色谱法包括气相色谱法、液相色谱法和薄层色谱法等。
色谱法广泛应用于有机化合物和生物大分子的分离分析,例如对复杂的混合物进行定性和定量分析。
除了上述常用的分离富集方法,还有一些其他的方法如离子交换法、电泳法、过滤法等。
这些方法在不同的应用领域具有独特的优势和适用性。
分析化学中的分离富集方法是实现样品预处理、纯化和定性定量分析的基础,对于提高分析的准确性和灵敏度具有重要意义。
化学修饰电极化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是目前最活跃的电化学和电分析化学的前沿领域。
化学修饰电极是在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物设计固定在电极表面,使电极具有某种特定的化学和电化学性质。
化学修饰电极扩展了电化学的研究领域,目前已应用于生命、环境、能源、分析、电子以及材料学等诸多方面。
一、研究修饰电极的实验方法:目前,主要应用电化学和光谱学的方法研究修饰电极,从而验证功能分子或基团已进入电极表面,电极的结构如何,修饰后电极的电活性、化学反应活性如何,电荷在修饰膜中如何传递等。
1、电化学方法:通过测量化学反应体系的电流、电量、电极电位和电解时间等之间的函数关系来进行研究的,用简单的仪器设备便能获得有关的电极过程动力学的参数。
常用的方法有循环伏安法1,2,微分脉冲伏安法3,4,常规脉冲伏安法5-8,计时电流法,计时库仑法,计时电位法以及交流伏安法和旋转圆盘电极法。
2、光谱法:能够在分子水平上研究电极表面结构的微观特性,如数量,空间,与电极材料成键的类型,平均分子构象,表面粗糙度对结构的影响,聚合物的溶胀,离子含量,隧沟大小,聚合物结构中的流动性等,这些对于修饰电极的应用是十分重要的。
研究化学修饰电极的常用表面分析方法有X光电子能谱(XPS)9-11、俄歇电子能谱(AES)12-14、反射光谱(Vis-UV15,16, 红外反射光谱17)、扫描电镜 (SEM)18-20、光声及光热光谱等。
二、化学修饰电极的分类:一般分为吸附型、共价键合型、聚合物型三大类。
1、吸附型:用吸附的方法可制备单分中层,也可以制备多分子层修饰电极。
将修饰物质吸附在电极上主要通过四种方法进行:平衡吸附型,静电吸附型,LB膜吸附型,涂层型。
平衡吸附型21-25:在电解液中加入修饰物质,它们就会在电极表面形成热力学吸附平衡。
强吸附性物质,如高级醇类、硫醇类、生物碱等在电解液中以10-3~10-5mol/L低浓度存在时,有时能生成完整的吸附单分子层,一般则形成不完全的单分子层。
分析化学中常用的分离和富集方法1.在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。
换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。
在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。
样品组分含量越低,对回收率要求也降低。
2.常用哪些方法进行氢氧化物沉淀分离?举例说明。
答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。
因此,采用控制溶液中酸度可使某些金属离子彼此分离。
在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。
常用的沉淀剂有:a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。
b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。
c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。
d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。
3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全?答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。
目录第一部分课程概述 (1)一、课程性质和作用 (1)二、课程的基本理念 (1)三、课程设计思路和依据 (2)第二部分课程目标 (4)一、知识性目标 (4)二、技能性目标 (4)三、情感性目标 (4)第三部分内容标准 (5)第四部分课程实施建议 (7)一、教学条件 (7)二、师资要求 (8)三、教学方法建议 (8)四、教材选用与编写建议 (8)五、课程资源的开发与利用建议 (9)六、评价建议及标准 (10)第五部分附录 (11)《现代分离技术》课程标准第一部分课程概述一、课程性质和作用《现代分离技术》(Modern Isolation Technology)是精细化学品生产专业一门专业必修课程,总学时一般为32学时。
通过本课程学习,要求学生掌握现代分离技术的基本理论和常见现代分离手段和方法,培养学生具有初步分析解决化学专业问题能力。
要突出理论知识的应用和实践能力的培养。
为今后学习和工作以及科研打下比较牢固的基础。
学习该课程需要具备一定的物理、化学等知识如化工原理、物理化学、有机化学、仪器分析等课程做基础。
课程学习理论部分为基础,以五种具体的分离方法为载体,通过对萃取、精馏、色谱技术、膜分离、电化学分离等五种方法的具体讲解,可以使学生了解当今最先进的精细化学品的分离方法,掌握其理论,从而丰富其专业知识,有效地提高学生的专业素质。
通过本门课程的学习,使学生具备高素质劳动者和中高级专门人才所必需的基本知识和基本技能,初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础,并注重渗透思想教育,逐步培养学生的辨证思维和创新能力,加强学生的职业道德观念。
二、课程的基本理念课程设计的综合理念是:以岗位职业分析为基础,以处理对象(项目)为载体,以处理方法和工艺为主线,以行动为导向,以学生为主体,教学过程体现“学做结合”。
本课程以培养分析检验岗位高技能人才为目标,按照职业岗位要求,设计学习任务(项目),按照职业性、实践性和开放性要求组织教学,体现教、学、做相结合,理论与实践一体化。