利用FPGA实现的多通道同步数据采集卡
- 格式:pdf
- 大小:434.11 KB
- 文档页数:6
西北工业大学研究生创意创新种子基金作品说明书作品名称:基于FPGA的新型高速PCI采集卡的设计基于FPGA的新型高速PCI采集卡的设计摘要:从自主研发的角度,本设计通过板载FPGA实现了对16路模拟信号的采集及滤波处理,并将最终结果送入工控机。
其中关键技术是通过对FPGA编程开辟控制空间并实现具体滤波算法,上位机通过设置对应的控制空间实现对于16路AD采集通道的开启及不同滤波算法的调用。
采用PLX9052实现PCI的接口设计。
根据上述要求选用ALTERA公司的EP2C8Q208型号的FPGA。
关键词:采集卡,PCI,FPGA,滤波算法0、前言在现代工业领域,随着控制系统日益大型化,复杂的系统会给有用信号叠加许多高频噪声干扰。
如何滤除这些干扰,成为业内普遍关注的问题。
目前普遍使用的处理方式分为两种,利用硬件电路滤波和通过上位机软件滤波,但这两种方式均存在很多缺陷:(1) 通过硬件电路滤波,不仅会大大增加成本、占用宝贵的PCB面积,而且滤波效果不彻底,还会造成有用信号的相位偏移。
(2) 通过上位机软件滤波,要求具有很高的信号采集速度,一方面造成了数据传输量大的负担,另一方面在上位机执行滤波算法会占用控制资源,从而大大降低了控制效率。
为了解决以上问题,本作品设计了一种基于FPGA的新型高速PCI采集卡,通过FPGA对模拟信号进行高速的过采样,并针对信号类型进行算法可选的滤波处理,同时配合上位机的控制频率设计抽取算法,通过双端口RAM将数据通过PCI总线传至上位机。
这样既在下位机完成了滤波,又保证了信号传输速度,降低了数据传输量,从而大大减少上位机的运算量,提高控制程序的执行效率。
1、采集卡参数:1.1 AD采集:单通道采集频率可达1MSPS,可实现最多16通道的循环采集,循环采集频可达990KSPS。
采集范围为-10V~10V,采集精度实测可达到0.5‰。
AD采集内嵌滤波参数可选的8阶FIR滤波算法,截止频率在1~250KHZ之间可调,并可由软件测试界面进行设置。
使用多通道数据采集卡的实验方法随着科技的不断进步,数据采集在许多领域中扮演着重要的角色。
多通道数据采集卡的出现,使得同时采集多个信号成为可能。
本文将介绍使用多通道数据采集卡的实验方法,帮助读者更好地了解和应用这一技术。
1. 什么是多通道数据采集卡多通道数据采集卡是一种硬件设备,用于采集多个信号。
它通常包括多个输入通道、模拟至数字转换器(ADC)、时钟源和接口等组件。
通过连接传感器、测量设备等到不同的通道上,数据采集卡可以将多个信号同时转换为数字信号,并提供给计算机进行存储、处理和分析。
2. 数据采集前的准备工作在进行实验之前,我们需要做一些准备工作。
首先,明确实验目的和所需的采集信号类型。
例如,如果需要监测温度和湿度,我们需要选择合适的传感器,并将它们连接到数据采集卡的相应通道上。
其次,确保数据采集卡和计算机之间的连接正常。
一般来说,数据采集卡通过USB、PCIe等接口与计算机连接。
根据设备型号和接口类型,我们可以选择合适的连接线缆,并确保稳定的连接。
另外,对于模拟信号的采集,我们需要进行校准和滤波处理。
校准可以提高信号的测量精度,滤波处理可以减少噪音对信号的干扰。
因此,在实验开始之前,我们应该对采集卡的设置进行调整,并根据需要进行校准和滤波操作。
3. 实验过程及应用案例在实验过程中,我们可以使用软件或编程语言来控制和接收数据。
许多数据采集卡提供了自带的软件,可以用于实时数据监测和保存。
此外,我们也可以使用LabVIEW、Python等编程语言进行数据采集和处理。
对于应用案例,我们以心电信号采集为例进行说明。
在实验中,我们可以将心电传感器连接到多通道数据采集卡的相应通道上,然后通过软件接收和记录心电信号。
通过设置采样频率和时间间隔,我们可以获取不同时间段内的心电数据。
然后,我们可以使用信号处理算法对心电信号进行滤波、去噪、心律分析等操作,以获得更有用的信息。
除了心电信号的采集,多通道数据采集卡还可以应用于许多其他领域,如振动分析、声音信号处理、工业自动化等。
多路视频采集卡的设计与实现摘要:视频是人类信息的一个主要渠道。
想要获取影像信息,必须完成图像信息收集。
作为视频采集设备的基础,影像信息采集卡的设置非常关键。
而本章针对多路视频采集卡进行了分析,该视频采集卡以 FPGA为逻辑控制中心,采用SAA7111将 4路视频信号分别转换为数字图像数据,经 FIFO缓存后,由 PCI总线接口芯片 PCI9052将数据送入计算机,最后通过应用程序将图像显示出来。
实验分析表明该视频采集卡能实现 4路实时传输显示,能够真实的将采集卡采集到的影像信息通过驱动传递到应用监控软件,以便进行显示和存储,希望能为相关人员提供参考。
关键词:多路视频采集卡;设计;实现数字视频监控管理系统因其直观、便捷、内容丰富的优点日益引起人们的关注,已成为保安防范体系的主要部分。
视频采集子系统主要进行视频图像的采集与压缩工作,是数字化视频监测中最核心的组成部分,直接影响到了整个监测系统性能与品质的高低[1]。
针对新一代的视频监测系统对于视频图象的高品质与实时性的需求。
1相关概念概述1.1视频信号概述视频信号是一个比较复杂的信息,它不但包括了画面本身的数据内容,而且包含着某些供采集用的处理数据,将这些内容混杂在一起,并按照特定的顺序和规则加以传递。
标准的电视信号是黑白CCD摄像头,通过连接设备将光学数据转换成幅值恒定的电信号,再配合机会支持组合产生的最终电视信号,而信号是黑白全视频(也称为混合电视信号)主要由图像数据、消隐数字、同步数字、开槽脉冲和图像脉冲等几部分构成。
彩色图像的每一位像素值中不但包括了亮度数据,而且也包括了色彩数据RGB建模作为经典的色彩空间建模,广泛应用在计算机、显卡和监视器件上,它利用了红绿蓝黄三种色彩的通道,形成了一个色彩空间结构。
但由于RGB模式信息内容在数据传输中占有的巨大带宽,亮度数据容易引起色彩干涉,而且与黑白计算机并不兼容,所以在PAL制影像数据中采用了YUV建模。
FPGA课程设计题目:基于FPGA的多通道采样系统设计院(系):电气工程及其自动化学院专业:电子信息工程12-01摘要本论文介绍了基于FPGA的多通道采样系统的设计。
用FPGA设计一个多通道采样控制器,利用VHDL语言设计有限状态机来实现对AD7892的控制。
由于FPGA器件的特性是可以实现高速工作,为此模拟信号选用音频信号。
由于音频信号的频率是20Hz-20KHz,这样就对AD转换的速率有很高的要求.因为FPGA的功能很强大,所以我们把系统的许多功能都集成到FPGA器件中,例如AD通道选择部分,串并输出控制模块,这样使得整个系统的外围电路简单、系统的稳定性强。
FPGA的配置模式选用被动串行模式,这样就增强了系统的可扩展性。
输出模式可选择性使得系统的应用相当广泛,串行输出可以用于通信信号的采集,方便调制后发射到远程接受端,远程接收端对采集的数据进行解调;而并行输出模式则可以通过高速存储器将采集的信号放到微机或者其他的处理器上,根据采集的数据进行相应的控制。
此系统的缺点是由于FPGA器件配置是基于SRAM查找表单元,编程的信息是保持在SRAM中,但SRAM在掉电后编程信息立即丢失,所以每次系统上电都需要重新配置芯片,这对在野外作业的工作人员很不方便,解决的方法是专用的配置器件来配置FPGA,在每次系统上电的时候会自动把编程信息配置到FPGA芯片中。
但设计中没有采用到这种配置方案主要是考虑到专用配置器件的价格问题。
本文开始介绍了多通道系统的组成部分,然后分别介绍了各个组成部分的原理和设计方法,其中重点介绍了FPGA软件设计部分。
还对当前十分流行的基于FPGA的设计技术作了简单的阐述,最后对系统的调试和应用作了简短的说明。
关键词:音频放大;滤波器;FPGA;VHDL;AD7892;有限状态机;目录摘要 (2)引言 (3)1题目来源 (3)2研究意义 (3)3多通道采样系统的组成 (3)4方案设计 (4)5 单元电路的设计 (4)5.1音频放大、滤波部分 (4)(1)音频放大部分 (4)(2)有源滤波器的设计 (4)5.2 AD采样电路 (5)5.3 FPGA控制部分 (5)(1)通道选择模块 (6)(2)延时模块的设计 (6)(3)串并输出选择控制 (7)5.4 FPGA的硬件设计 (8)6 软件介绍 (8)7 整机调试 (8)7.1 硬件电路的调试步骤 (8)(1)音频放大部分调试 (8)(2)滤波部分调试 (8)(3)FPGA硬件电路调试 (9)(4)AD采样模块调试 (9)(5) 联机调试 (9)8 结论 (9)参考文献 (10)附录 (11)引言FPGA(Field-Programmable Gate Array 现场可编程门阵列)是近年来广泛应用的超大规模、超高速的可编程逻辑器件,由于其具有高集成度(单片集成的系统门数达上千万门)、高速(200MHz 以上)、在线系统可编程等优点,为数字系统的设计带来了突破性变革,大大推动了数字系统设计的单片化、自动化,提高了单片数字系统的设计周期、设计灵活性和可靠性。
第25卷第1期2008年1月机 电 工 程M EC HAN ICAL &ELECTR ICAL ENG INEER I NG M AGA Z I NE V o.l 25N o .1Jan .2008收稿日期:2007-07-24作者简介:高 健(1982-),男,浙江安吉人,主要从事嵌入式系统设计方面的研究。
多通道数据采集卡同步功能的设计与实现高 健,杨成忠,唐明明(杭州电子科技大学自动化学院,浙江杭州310018)摘 要:介绍了多通道数据采集卡同步功能的实现方法,讨论和处理了实现同步功能的相关问题。
该设计采用一种二级时钟分配方案,不仅实现了板内各通道的真正实时的同步采集,并且可以方便灵活地实现多块板卡的板间同步,具有高速、高精度、多路同步采集的特点,可广泛应用于对信号的同步性能要求较高的数据测量系统中。
关键词:数据采集;同步触发;A /D 转换中图分类号:TP393 文献标识码:A文章编号:1001-4551(2008)01-0082-04D esign and rea lization of t he si m ult aneous f unction in t he m ult-i channel data acquisition cardGAO Jian ,YANG Cheng -zhong ,TANG M ing -m i n g(C ollege of A uto m ation ,H angzhou D ianzi University,H angzhou 310018,China)Abstrac t :The design and rea lization of the s i m u ltaneous f unc ti on i n the mu lt-i channe l data acqu isiti on card w ere i ntroduced .A nd also the corre l a ti ve po i nts o f t he si m ultaneous function w ere d iscussed and d i sposed .The desi gn used a t w o -step c l ock distr-i bu tion ,which not only rea lized the rea-l ti m e mu lt-i channe l si m u ltaneous acqu isiti on i n one card ,bu t also rea lized t he si m u ltane -ous acqu i sition f uncti on i n m ore t han one card v ery conven ientl y.The ca rd has the feat ures o f h i gh -speed ,h i gh precision and mu lt-i channel si m ultaneous acqu i s ition ,can be w i de l y used in t he da ta acqu isiti on system w hich has h i gh request of t he si m ulta -neous si gna.lK ey word s :data acquisiti on ;si m u ltaneous tri gge r ;A /D conve rt0 前 言随着电子技术的深入发展和科研生产的需要,人们已经不再满足于用单路A /D 数据采集来分时采集多路测试信号。
多通道数据采集卡同步功能的设计与实现
高健;杨成忠;唐明明
【期刊名称】《机电工程》
【年(卷),期】2008(025)001
【摘要】介绍了多通道数据采集卡同步功能的实现方法,讨论和处理了实现同步功能的相关问题.该设计采用一种二级时钟分配方案,不仅实现了板内各通道的真正实时的同步采集,并且可以方便灵活地实现多块板卡的板间同步,具有高速、高精度、多路同步采集的特点,可广泛应用于对信号的同步性能要求较高的数据测量系统中.【总页数】4页(P82-85)
【作者】高健;杨成忠;唐明明
【作者单位】杭州电子科技大学,自动化学院,浙江,杭州,310018;杭州电子科技大学,自动化学院,浙江,杭州,310018;杭州电子科技大学,自动化学院,浙江,杭州,310018【正文语种】中文
【中图分类】TP393
【相关文献】
1.振动信号多通道同步整周期数据采集卡设计 [J], 杨世锡;梁文军;于保华
2.基于PC/104总线与FPGA的多通道同步数据采集卡的研究 [J], 刘朝华;戴怡;石秀敏
3.利用FPGA实现的多通道同步数据采集卡 [J], 田多华;邱宏安;陆宇鹏;邵立群
4.一种多接口多通道的同步数据采集卡的设计与实现 [J], 郑晨曦;吴次南;蒋小菲
5.凌华科技推出高密度多通道同步数据采集卡 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
基于FPGA的高速数据采集卡设计与实现随着科技的不断发展,电子信息技术的应用越来越广泛。
在现代制造业、通讯系统、医学影像等领域中,高速数据采集成为了一项不可或缺的工作。
因此,设计和实现一种高效、高精度的数据采集卡成为了当前电子信息技术研究的热点之一。
本文将介绍一种基于FPGA的高速数据采集卡的设计与实现。
一、高速数据采集卡基本结构高速数据采集卡通常由模数转换器(ADC)、时钟发生器、FPGA芯片、存储器、接口电路等组成。
其中,ADC负责将模拟信号转化为数字信号,时钟发生器负责为ADC提供时钟信号,FPGA芯片负责对数字信号进行处理和分析,存储器则用于存储处理后的数据,接口电路则是将数据输出到外部设备。
二、基于FPGA的高速数据采集卡设计1. ADC选择对于高速数据采集卡来说,ADC是其中最关键的组成部分之一。
ADC的选择与高速数据采集卡的性能有着密切的关系。
本设计采用了采样率为100MSPS的ADI公司的AD9265 ADC作为该高速数据采集卡的核心部件。
2. 时钟发生器时钟发生器为ADC提供高稳定性、高准确度的时钟信号,保证了ADC采集数据的稳定性和准确性。
本设计采用了凯瑞电子公司的CCHD-957时钟发生器,它可以提供高达100MHz的准确稳定时钟信号,从而保证了ADC的正常工作。
3. FPGA芯片在高速数据采集卡中,FPGA芯片是最核心的部分,它负责ADC采集到的原始数据进行处理和分析,并将其存储到存储器中。
本设计采用了Altera公司的Cyclone IV FPGA芯片,它具有高速、低功耗、灵活的特点,可以实现对高速数据的实时处理和分析。
4. 存储器存储器是高速数据采集卡中另一个非常关键的部分,它用于存储FPGA处理后的数据。
本设计采用了容量为1G的DDR3 SDRAM作为数据存储器,其存储速度快、容量大、价格适中、成本低。
5. 接口电路接口电路负责将高速数据采集卡中的数据输出到外部设备中。
基于FPGA的多通道高速数据采集系统设计共3篇基于FPGA的多通道高速数据采集系统设计1随着现代科技的高速发展,各种高速数据的采集变得越来越重要。
而基于FPGA的多通道高速数据采集系统因具有高速、高精度和高可靠性等优点,逐渐受到了越来越多人的关注和青睐。
本篇文章将围绕这一课题,对基于FPGA的多通道高速数据采集系统进行设计和探讨。
1、FPGA的基础知识介绍FPGA(Field-Programmable Gate Array)是可重构的数字电路,可在不使用芯片的新版本的情况下重新编程。
FPGA具有各种不同规模的可用逻辑单元数,可以根据需要进行定制化配置。
FPGA可以根据需要配置每个逻辑单元,并使用活动配置存储器从而实现功能的完整性、高速度和多样化的应用领域。
2、多通道高速数据采集系统的设计在高速数据采集领域中,多通道采集是非常常见的需求。
多通道采集系统通常由高速采集模块、ADC芯片、DSP芯片等核心部件组成。
在本文中,我们将会采用 Analog Devices(ADI)公司的AD7699高速ADC和Xilinx(赛灵思)公司的Kintex-7 FPGA,来设计多通道高速数据采集系统。
2.1系统架构设计系统架构是设计一个多通道高速数据采集系统的第一步。
本系统的架构由两个主要芯片组成,分别为高速的ADC模块和FPGA模块。
其中ADC模块负责将模拟信号转换为数字信号,而FPGA模块则负责将数据处理为人类可以处理的数据。
2.2模块设计由于本系统是多通道高速数据采集系统,所以我们需要设计多个模块来完成数据采集任务。
在本系统中,每个模块包含一个ADC芯片和一个FPGA芯片,用于处理和存储采集的数据。
ADC 芯片可以通过串行接口将数据传递给FPGA芯片,FPGA芯片则可以将数据存储在DDR3内存中。
2.3信号采集与处理对于多通道高速数据采集系统,信号的采集与处理是至关重要的。
因此我们需要谨慎设计。
在本系统中,每个通道的采样速率可以达到1MSPS,采样精度为16位。