换热网络设计教程
- 格式:doc
- 大小:2.29 MB
- 文档页数:22
换热网络的设计——第一部分:主要是Aspen导入与自动设计1.启动Aspen Energy Analyzer2.新建HI Case/HI Project3.工具介绍4.从Aspen 流程中导入数据(也可直接输入物流信息与公用工程)从Hysys 流程中导入数据从Aspen 流程中导入数据从Excel 中导入数据 打开目标查看窗口 打开复合曲线窗口 打开总复合曲线窗口打开公用工程复合曲线窗口打开换热网络网格图窗口第一行:选择文件类型,公用工程文件,模拟文件,经济文件第二行:设定详细的选项第三行:选择流程第四行:改变公用工程或添加公用工程第五行:选择加热器的公用工程第六行:选择冷却器的公用工程第七行:选择换热器的经济数据右下角“Tips”有较详细介绍在点击最右下角“Next”中之前,需要判断要导入的Aspen Plus流程模拟文件:模拟文件必须收敛,且没有错误;是否有不必要的物流和不必要的单元操作;是否有隐藏物流(在Aspen Plus流程里,右键——Reved Hidden objects,可将隐藏物流显示);模拟文件在稳态模式;是否有内部物流,是否有多流股换热器,不支持内部物流和多流股换。
热器;是否有循环及循环精度是否合适。
检查完成可以点击“Next”右下角“Browse”是要导入的文件路径,其左侧是要导入的文件名称点击“Next”第一项里选only streams with phase changes 只考虑相变,忽略过热过冷(注:若后期不能进行自动设计,则选上面Do not segment,在自动设计方法里有详细步骤)第二项里全选第三项里选lgnore 忽略泵第四项里全不选点击“Next”点击“Next”点击“Next”点击“Next”点击“Next”点击“Next”点击“finish”至此,数据已导入完成。
保存文件。
5.目标查看窗口数字1:物流名称,不需要的可以删除,比如流量太小或能量太少数字2:冷热物流符号,蓝色代表冷物流,红色代表热物流,箭头弯的代表有相变,点击弯箭头可显示该物流的区间能量变化数据数字3和4:代表进出口温度数字5:温度每度能量变化值数字6:该物流总的能量数字8:该物流质量流量数字9:该物流比热6.复合曲线窗口7.总复合曲线窗口公用工程复合曲线8.换热网络网格图窗口9.换热器参数设定窗口点击换热网络网格图窗口里换热器图标可显示换热器参数设定窗口10.换热网络网格图11.自动设计换热网络——首先将Case文件转换为Project文件12.HI Project13.右击Case1选择Recommended Designs14.Recommend Designs参数设置窗口15.自动设计方案窗口16.自动设计方案无法正常运行在导入Aspen plus模拟流程时选择Do not seqment 如下图导入以后点击convert to H1project可以先将公用工程不用的物流删除,如本设计不用空气将工艺物流中能量太小或为0的物流删除点击下方或在Case 1上右键点击“Recommend Designs”出现界面Recommend Near-optimal Designs界面将分离数改为5,设计方案为3或更多点击“Solve”出现警告如下主要是塔设备塔顶冷凝器或再沸器温差太小,适当加大温差,本例加大2°C再次点击“Recommend Designs”,可以显示自动设计的三个方案如左上侧各方案比较:分析三个方案的数据——可比较总费用、换热器面积、换热单元数、设备投资费用、冷热公用工程费用、操作费用,还可查看各参数目标值。
夹点技术(下)换热网络设计详细教程(附Aspen源程序文件)本教程以丙烯环氧化工段为例对换热网络的夹点设计过程进行详细说明,模拟的源文件来源于某一届化工设计大赛国赛特等奖作品。
本教程重在过程,夹点的原理已在本人的夹点技术原理与应用一文进行了详细介绍,因此本文不再进行解释说明。
另本教程参考了熊杰明老师及包宗宏老师的相关书籍,大家有什么不懂可以买来参考。
有兴趣学习的同学可以在本文文末获取Aspen源程序文件。
下面正式开始介绍使用Aspen Energy Analyzer进行换热网络设计的过程。
1、修改单位在进行设计之前,根据需要我们可以对单位进行修改,修改的方法具体为T ools/Preference/Variables/Variables/Units/Available Unit Sets页面下选用或者修改单位集。
本例采用默认的单位集。
2、数据导入本例采用直接从Aspen plus的模拟文件导入的方法,具体过程如下:(1)首先新建一个热集成文件,即点击Creat New HI Case创建新文件,出现如图的界面图1 新建文件其中上面的图标表示的含义从左往右依次是:从Hysys流程中导入数据、从Aspen流程中导入数据、从Excel中导入数据、打开目标查看窗口、打开复合曲线窗口、打开总复合曲线窗口、打开公用工程复合曲线窗口、打开换热网络网格图窗口。
(2)从Aspen流程中导入数据图2 从Aspen流程中导入数据图3 数据导入在左侧的Steps栏中,是导入的具体步骤,每一步都有相应的提示,从上往下步骤依次为选择文件类型,公用工程文件,模拟文件,经济文件、设定详细的选项、选择流程、改变公用工程或添加公用工程、选择加热器的公用工程、选择冷却器的公用工程、选择换热器的经济数据。
在右下角中的Tips中会提示你提供的模拟文件必须收敛,没有错误等等,有兴趣的可以将此提示看看,此处不再详细介绍。
点击“Next”,选择文件的路径。
换热⽹络设计⼀.简介:化学⼯业是耗能⼤户,在现代化学⼯业⽣产过程中,能量的回收及再利⽤有着极其重要的作⽤。
换热的⽬的不仅是为了改变物流温度使其满⾜⼯艺要求,⽽且也是为了回收过程余热,减少公⽤⼯程消耗。
在许多⽣产装置中,常常是⼀些物流需要加热,⽽另⼀些物流则需要冷却。
将这些物流合理的匹配在⼀起,充分利⽤热物流去加热冷物流,提⾼系统的热回收能⼒,尽可能减少蒸汽和冷却⽔等辅助加热和冷却⽤的公⽤⼯程(即能量)耗量,可以提⾼系统的能量利⽤率和经济性。
换热⽹络系统综合就是在满⾜把每个物流由初始温度达到制定的⽬标温度的前提下,设计具有最加热回收效果和设备投资费⽤的换热器⽹络。
我们主要介绍利⽤夹点技术对换热⽹络进⾏优化。
通过温度分区及问题表求出夹点及最⼩公⽤⼯程消耗,找出换热⽹络的薄弱环节提出优化建议,寻求最优的匹配⽅法。
再从经济利益上进⾏权衡提出最佳的换热⽹络⽅案。
提⾼能量的利⽤效率。
⼆.换热⽹络的合成——夹点技术1、温度区间的划分⼯程设计计算中,为了保证传热速率,通常要求冷、热物流之间的温差必须⼤于⼀定的数值,这个温差称作最⼩允许温差△Tmin。
热物流的起始温度与⽬标温度减去最⼩允许温差△Tmin,然后与冷物流的起始、⽬标温度⼀起按从⼤到⼩顺序排列,⽣称n个温度区间,热物流按各⾃冷、个温区,n从⽽⽣成表⽰,Tn+1……T1,T2分别⽤.的始温、终温落⼊相应的温度区间。
温度区间具有以下特性:(1).可以把热量从⾼温区间内的任何⼀股热物流,传给低温区间内的任何⼀股冷物流。
(2).热量不能从低温区间的热物流向⾼温区间的冷物流传递。
2、最⼩公⽤⼯程消耗(1).问题表的计算步骤如下:A:确定温区端点温度T1,T2,………Tn+1,将原问题划分为n个温度区间。
B:对每个温区进⾏流股焓平衡,以确定热量净需求量:Di=Ii-Qi=(Ti-Ti+1)(∑FCPC-∑FCPH)C:设第⼀个温区从外界输⼊热量I1为零,则该温区的热量输出Q1为:Q1=I1-D1=-D1根据温区之间热量传递特性,并假定各温区间与外界不发⽣热交换,则有:Ii+1=QiQi+1=Ii+1-Di+1=Qi-Di+1利⽤上述关系计算得到的结果列⼊问题表(2).夹点的概念(⾃⼰画图7-3)从图中可以直观的看到温区之间的热量流动关系和所需最⼩公⽤⼯程⽤量,其中SN2和SN3间的热量流动为0,表⽰⽆热量从SN2流向SN3。
换热网络设计说明1.综述尊敬的评委老师,您好!为了防止您在对我们小组的作品评分时出现失误,而导致我们小组作品不必要的失分,所以我们特意在此对我们小组的换热网络设计过程进行说明,希望您能够耐心的阅读完这个说明。
2.用夹点技术分析过程将Aspen 模拟文件(不带流股间换热)导入Aspen Energy Analysiser 中,删去能量较小的流股。
得到未实施热集成技术前的组合曲线如下图所示:图一未实施热集成技术组合曲线此时夹点温度为80℃对于该换热网络,我们分析夹点温差与节能综合效益的关系,得到如下曲线图2 温度与经济效益关系图根据这一结果确定夹点温差为17℃。
并得到实施热集成技术的组合曲线如下图所示:图3 热集成技术组合曲线最后,使用软件对全厂进行换热网络设计,得到十种设计方案,如下所示:图4 全厂换热网络设计方案最终我们比较换热面积,费用,设备数等因素得到了最优的换热网络如下:图5 最优换热网络设计结果选择了最优设计方案后进入Retrofit 模式进行优化,确定最终的换热网络方案。
3、用夹点分析结果对工艺流程进行优化针对冷热物流组合曲线,该组合曲线存在一个温度接近的平台,如下所示;图6 冷热物流组合曲线于是我们对流程中反应器出口物流进行流股间换热,得到组合曲线如下所示:图7 换热后组合曲线接着我们分析了夹点温度与经济效益的关系,得到如下曲线:图8 夹点温度与经济效益关系图通过软件设计了十种换热方案,并根据费用,设备数,换热面积等进行比选,得到换热网络如下:图9 自动设计换热网络如上图绿色标识所示,我们对换热网络进行优化,去除回路,以及车间间换热等,得到优化后的换热网络如下:图10 优化后换热网络最终我们将换热网络结果返回到Aspen模拟中,结果如下所:图11 Aspen模拟带换热网络。
aspenV10以上版本换热网络设计教程一、Aspen导入1.打开一个Aspen 模拟好的源文件2.激活Energy Saving3.等计算完后,打开Energy Saving页面4.启动Aspen Energy Analyzer点击Yes:之后就进入Aspen Energy Analyzer软件页面:5.计算最小温差设置最小传热温差范围和步长,点击Calculate:通过成本和最低传热温差图得最低点,并将最低点输入左下角DTmin:6.目标查看窗口数字1:物流名称,不需要的可以删除,比如流量太小或能量太少数字2:冷热物流符号,蓝色代表冷物流,红色代表热物流,箭头弯的代表有相变,点击弯箭头可显示该物流的区间能量变化数据。
数字3和4:代表进出口温度数字5:热容流率数字6:该物流总的能量数字8:该物流质量流量数字9:该物流比热7.自动设计换热网络右击Scenario1选择Recommended Designs:8.Recommend Designs参数设置窗口9.自动设计方案无法正常运行如果出现温差太小的问题,如图:则双击对应的流股,点击“Delete All”:再次点击“Recommend Designs”,可以显示自动设计的三个方案如左上侧。
各方案比较:分析三个方案的数据——可比较总费用、换热器面积、换热单元数、设备投资费用、冷热公用工程费用、操作费用,还可查看各参数目标值。
一般以年度总费用最小为目标,则选择方案。
由于新版本推荐出来的方案都带有黄色换热器,说明该换热方案不可行,点击下方或在该方案名称上右键“Enter Retrofit mode”,黄色换热器就会消失。
点击下方或在该方案名称上右键“enter Retrofit mode”会跳出现“options”对话框,可以直接关掉,也可以点击“Enter Retrofit Environment”:如果点击“Enter Retrofit Environment”,则左上方显示该方案在新的Scenario1 1目录内,可以对其编辑,进一步优化。
换热网络设计以下以例题形式给出解题步骤: 下表给出四股工艺物流的工况,最小允许传热温差.汀mi x 为20C。
请用夹点设计法设计一具有最大能量回收的换热网络。
①将热流端点温度减去•汀mi x与冷流端点温度,去掉没有潜热存在的重复温度点(热流加.订mi x),按从大到小顺序排序划分温度区间;340,280,260,80,80,40热流端点温度需+DTm X具体温区:温区:S x 1 S X2S x 3S x 4S x 5热流:360 300 280100100 60冷流:340 280 26080 8040②计算每个温度区间的净需热量;D1=-120; D2=-80; D3=-360; D4=600; D5=-80;③从第一温区开始计算热量平衡;01=120; 02=200; 03=560; O4=-40; 05=40;④找到逆向传热最多的温度点;⑤由外界向第一补充扭转逆向传热所需的热负荷,计算热量平衡;⑥向下一个温区传热为零的温度点即为夹点,第一温区获得的热量即为最小加热负荷,最末温区传出热量即为最小冷却负荷;共3页,第1页共3页,第2页⑦ 跨过夹点进行传热的所有换热匹配均不合理 结果:QHm X =40kW, QCm X =80 kW;夹点位置:S X 4与S X 5的界面;夹点温度:热换热到 100C ;冷换热 潜热位置夹点之上子系统⑧ 设计换热网络方法:{这只是其中的一种方案,只要设计合理均可}〖设计夹点匹配时必须要注意温差的要求,遵循夹点匹配的两种可行性原则〗 a )分别匹配,优先考虑热负荷,然后考虑热容流率相近,一次用尽 夹点之上要优先考虑热流,必须完全通过换热降温到夹点温度 夹点之下要优先考虑冷流,必须完全通过换热升温到夹点温度80C;i) 分夹点画冷热流热负荷分配ii)分别匹配,优先考虑热负荷,然后考虑热容流率相近,一次用尽夹点之上要优先考虑热流,必须完全通过换热降温到夹点温度 CP夹点之下要优先考虑冷流,必须完全通过换热升温到夹点温度热负荷 kWCP热负荷kW 801208040360 C60 C520260033602200 160080 C夹点 匹配夹点100C。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1 给定工艺条件换热网络的设计方法 (2)1.1夹点设计法 (2)1.2数学规划法 (2)1.3人工智能法 (2)2 换热网络的弹性设计方法 (3)3 换热网络控制与工艺一体化设计方法 (4)3.1控制性能指数分析法 (5)3.2换热网络旁路优化法 (5)4 展望 (7)参考文献 (7)换热网络设计方法的研究进展姓名:学号:化学化工学院化学工程与工艺班摘要:回顾了近年来换热网络设计研究的内容和方法。
分析了当前求解换热网络最小公用工程设计的3种方法:传统的给定工艺条件的设计法、最近几年得到很大发展的弹性设计法和控制与工艺一体化设计法。
阐述了这些方法各自的优势和尚待改进的问题,并指出换热网络的设计同时应考虑先进控制和动态优化,先进控制与工艺一体化换热网络设计是今后的发展方向。
关键词:换热网络;工艺设计;弹性设计;控制与工艺一体化设计Abstract:The content and methods of heat exchange network design in recent years are reviewed. Analysis of the current solution for thermal network minimum utility engineering design of three kinds of methods: given conditions of traditional design method, by the great development of the elastic design method and integration of process and control design method in recent years. Describes the advantages of monk to be improved, and it is pointed out that for thermal network design should also be considered in the advanced process control and dynamic optimization and advanced control and process integration for thermal network design is the development direction in the future.Keywords:Heat exchange network; designed methods on given process condition; flexible design; integration of process and control前言炼油化工生产过程中,一些物流需要加热,而另一些物流需要冷却,换热网络的设计就是确定出这样的换热网络,它具有最小的设备(换热器、加热器和冷却器)投资费用和操作(公用工程加热与冷却)费用,并满足把每一过程物流由初始温度加热或冷却到指定的目标温度。
利用夹点技术设计换热网络马连强Ξ郑开学 贺鑫平 高建红 华陆工程科技有限责任公司 西安 710054摘要 介绍夹点技术的基本概念以及利用夹点技术设计换热网络的原则,列举利用夹点技术设计换热网络过程的实例,并简单介绍换热网络优化方面的基本知识。
关键词 夹点技术 换热网络 设计 夹点技术(Pinch P oint T echn ology)是由Linnhoff为首的英国帝国化学公司(I1C1I)的系统综合小组开发的。
这个小组曾在1977~1981年对老厂技术改造及新厂建设的18项工程设计进行了重新设计计算,发现用新的原理设计平均可以节能30%,有的项目不仅可以节能,而且重新安排后节省了投资。
1982年美国联碳公司请Linnhoff指导,在一年时间内试算了9个工程实例,结果证明,用这种方法平均可以节能50%,用于老厂技术改造的设备投资一般可以在2~12个月内回收。
因而这种技术被认为是成熟的并可以在工业中普遍推广使用。
经验证明,采用这种方法在新设计中可节省能源和设备投资,在老厂技术改造中可用较少设备投资回收尽可能多的能量。
1 基本概念111 TH图工艺流股的热特性可以用TH图很好地表示出来。
当向某冷流股加入热量dQ时,如果温度变化为dT,则可以用式(1)描述:dQ=W・Cp・dT(1)式中,W为冷流股的质量流量,kg/h;Cp为冷流股的比热,kJ/(kg・℃)。
对于特定的冷流股,如果在温升范围内C p 变化不大,可将W・Cp当成常数,定义为热容流率CP,即:CP=W・Cp(2)则式(1)变为:Q=CP(T T-T S)=ΔH(3)式中,T T为冷流股的目标温度,℃;T S为冷流股的供给温度,℃。
这样就可以把该冷流股加热的过程用TH图表示出来,如图1所示。
图1 流股的TH图流股TH图的斜率为热容流率CP的倒数1/ CP,CP越大,斜率越小,在同样的热负荷下流股的温度变化越小。
当冷流股在温升范围内比热Cp变化显著时,流股的TH图是非线性的,在这种情况下可将温升范围分为若干个比较小的温度区间,在各个温度区间分别画出TH图。
换热网络的设计
——第一部分:主要是Aspen导入与自动设计1.启动Aspen Energy Analyzer
2.新建HI Case/HI Project
3.工具介绍
从Hysys流程中导入数据
从Aspen流程中导入数据
从Excel中导入数据
打开目标查看窗口
打开复合曲线窗口
打开总复合曲线窗口
打开公用工程复合曲线窗口
打开换热网络网格图窗口
4.从Aspen流程中导入数据(也可直接输入物流信息与公用工程)
第一行:选择文件类型,公用工程文件,模拟文件,经济文件
第二行:设定详细的选项
第三行:选择流程
第四行:改变公用工程或添加公用工程
第五行:选择加热器的公用工程
第六行:选择冷却器的公用工程
第七行:选择换热器的经济数据
右下角“Tips”有较详细介绍
在点击最右下角“Next”中之前,需要判断要导入的Aspen Plus流程模拟文件:模拟文件必须收敛,且没有错误;是否有不必要的物流和不必要的单元操作;是否有隐藏物流(在Aspen Plus流程里,右键——Reved Hidden objects,可将隐藏物流显示);模拟文件在稳态模式;是否有内部物流,是否有多流股换热器,不支持内部物流和多流股换。
热器;是否有循环及循环精度是否合适。
检查完成可以点击“Next”
右下角“Browse”是要导入的文件路径,其左侧是要导入的文件名称点击“Next”
第一项里选only streams with phase changes 只考虑相变,忽略过热过冷(注:若后期不能进行自动设计,则选上面Do not segment,在自动设计方法里有详细步骤)
第二项里全选
第三项里选lgnore 忽略泵
第四项里全不选
点击“Next”
点击“Next”点击“Next”点击“Next”
点击“Next”点击“Next”
点击“finish”至此,数据已导入完成。
保存文件。
5.目标查看窗口
数字1:物流名称,不需要的可以删除,比如流量太小或能量太少
数字2:冷热物流符号,蓝色代表冷物流,红色代表热物流,箭头弯的代表有相变,点击弯箭头可显示该物流的区间能量变化数据
数字3和4:代表进出口温度数字5:温度每度能量变化值数字6:该物流总的能量
数字8:该物流质量流量
数字9:该物流比热
6.复合曲线窗口
7.总复合曲线窗口公用工程复合曲线
8.换热网络网格图窗口
9.换热器参数设定窗口
点击换热网络网格图窗口里换热器图标可显示换热器参数设定窗口
热流入口温度设定热流出口温度设定热
流
换热器热负荷换热器面积冷
流
冷流出口温度设定冷流入口温度设定
10.换热网络网格图
11.自动设计换热网络
——首先将Case文件转换为Project文件
12.HI Project
13.右击Case1选择Recommended Designs
14.Recommend Designs参数设置窗口
15.自动设计方案窗口
16.自动设计方案无法正常运行
在导入Aspen plus模拟流程时选择Do not seqment 如下图导入以后点击convert to H1project
可以先将公用工程不用的物流删除,如本设计不用空气
将工艺物流中能量太小或为0的物流删除
点击下方或在Case 1上右键点击“Recommend Designs”
出现界面Recommend Near-optimal Designs界面将分离数改为5,设计方案为3或更多
点击“Solve”出现警告如下
主要是塔设备塔顶冷凝器或再沸器温差太小,适当加大温差,本例加大2°C
再次点击“Recommend Designs”,可以显示自动设计的三个方案如左上侧
各方案比较:分析三个方案的数据
——可比较总费用、换热器面积、换热单元数、设备投资费用、冷热公用工程费用、操作费用,还可查看各参数目标值。
一般以年度总费用最小为目标,则选择方案。
点击下方或在该方案名称上右键“enter Retrofit mode”
出现“options”对话框,点击“Enter Retrofit Environment”
左上方显示该方案在新的Case目录内,可以对其编辑,进一步优化。