一元二次不等式基础题50道加解析
- 格式:docx
- 大小:3.47 KB
- 文档页数:3
高二数学一元二次不等式试题答案及解析1.设函数,记不等式的解集为.(1)当时,求集合;(2)若,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,不等式是一个具体的一元二次不等式,应用因式分解法可求得其解集;(2)注意这个条件只能用于第(1)小问,而不能用于第(2)问,所以不能用第(1)小问的结果,来解第(2)问;不等式从而可得,然后由画出数轴,就可列出关于字母a的不等式组,从而求出a的取值范围.试题解析:(1)当时,,解不等式,得, 5分. 6 分(2),,又,,. 9分又,,解得,实数的取值范围是. 14分【考点】1.一元二次不等式;2.集合间的关系.2.如果恒成立,则实数a的取值范围为 ________;【答案】【解析】当时,原不等式变为,恒成立,所以适合题意;当时,由恒成立得,解得:综上,实数的取值范围为所以答案应填:.【考点】二次函数、一元二次方程及一元二次不等式的解的关系.3.不等式的解集是( )A.B.C.D.【答案】B【解析】二次函数开口向上,方程的两根为,所以不等式的解集为,故选B.【考点】一元二次不等式的解法.4.一元二次不等式的解集是,则的值是()。
A.B.C.D.【答案】D【解析】方程的两个根为,,, , , 故选D【考点】一元二次不等式解集与一元二次方程根的关系.5.不等式的解集为()A.B.C.D.【答案】A【解析】一元二次不等式解法,依据“大两边,小中间”解决.先十字相乘因式分解因为“小中间”所以解集为故答案为A考点: 一元二次不等式6.已知不等式的解集为.(1)求的值;(2)解关于不等式:.【答案】(1);(2)若,原不等式的解集为;若,原不等式的解集为;若,原不等式的解集为.【解析】对于(1)可根据根与系数的关系来求解;对于(2),因为方程可化为,所以根据和的大小关系来分类讨论不等式的解集.试题解析:(1)由题意知方程的两根为,从而解得;(2)由条件知,即故若,原不等式的解集为;若,原不等式的解集为;若,原不等式的解集为.【考点】本题考察了一元二次方程根与系数的关系以及对一元二次不等式的解法,掌握一元二次方程的根与一元二次不等式的解集的关系是解题的关键.7.设不等式对任意正整数都成立,则实数的取值范围是.【答案】1-p1+【解析】根据题意,由于不等式对任意正整数都成立,可知结合二次函数图形可知,当x=0时,则函数值大于零,同时根据二次函数的最小值大于等于零即可,对于对称轴要讨论正负,分情况得到结论。
一元二次不等式及其解法练习题一、选择题1.不等式-3<4x -4x 2≤0的解集是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x ≤0或1≤x <32 B .{x |x ≤0或x ≥1} C.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <32D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-12或x ≥32 2.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4}3.一元二次不等式ax 2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫-1<x <13,则ab 的值为( ) A .-6 B .6 C .-5 D .54.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎭⎫-∞,-235 5.对任意实数x ,不等式2x +2x 2+x +1>k 恒成立,则k 的取值范围为( )A .[0,+∞)B .(2,+∞)C.⎝⎛⎭⎫-∞,-23 D .(2,+∞)∪⎝⎛⎭⎫-∞,-23 6.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12二、填空题7.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是________.8.若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是________.三、解答题9.(1)求函数f (x )=log 2(-x 2+2x +3)的定义域;(2)若不等式x 2-2x +k 2-1≥0对一切实数x 恒成立,求实数k 的取值范围.10.m 为何值时,方程mx 2-(2m +1)x +m =0满足下列条件: (1)没有实数解; (2)有实数解;(3)有两个不相等的实数解.11.解关于x 的不等式ax 2-(2a +1)x +2≤0,a ∈R .参考答案与解析1. 【解析】选A.不等式可化为⎩⎪⎨⎪⎧4x (x -1)≥04x 2-4x -3<0⇒⎩⎪⎨⎪⎧x ≤0或x ≥1,-12<x <32⇒-12<x ≤0或1≤x <32.2.【解析】选D.若a =0时符合题意.当a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4},故选D.3.【解析】选B.由已知得ax 2+bx +1=0的两个根为-1,13所以⎩⎨⎧-1+13=-b a,-1×13=1a ,解得⎩⎪⎨⎪⎧a =-3b =-2,所以ab =6.4.【解析】选A.根据题意,由于关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,可知a >-x 2+2x =-x +2x 在[1,5]上有解,又由于函数y =-x +2x 在区间[1,5]上是减函数,故只需a大于函数的最小值即可,又y =-x +2x ≥-5+25=-235,故a 的取值范围是⎝⎛⎭⎫-235,+∞,故选A.5.【解析】选C.不等式2x +2x 2+x +1>k 等价于2x +2>k (x 2+x +1),kx 2+(k -2)x +(k -2)<0对任意x ∈R 均成立;注意到k =0时该不等式不恒成立,于是有⎩⎪⎨⎪⎧k <0,Δ=(k -2)2-4k (k -2)<0, 由此解得k <-23,因此k 的取值范围是⎝⎛⎭⎫-∞,-23. 6.【解析】选C.因为(x -a )⊗(x +a )<1,所以(x -a )(1-x -a )<1,即x 2-x -a 2+a +1>0.因为此不等式对任意实数x 成立,则有1-4(-a 2+a +1)<0.所以-12<a <32.故选C.7.【解析】x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.【答案】k ≥4或k ≤28.【解析】函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对一切x ∈R 恒成立.①当a 2+4a -5=0,即a =-5或a =1时,由a =-5,不等式化为24x +3>0,不满足题意;由a =1,不等式化为3>0,满足题意. ②当a 2+4a -5≠0时,由题意可得⎩⎪⎨⎪⎧a 2+4a -5>0,16(a -1)2-12(a 2+4a -5)<0, 解得1<a <19.综合①②,a 的取值范围是1≤a <19.9.【解】(1)由-x 2+2x +3>0,得x 2-2x -3<0, 即(x -3)(x +1)<0,所以-1<x <3,所以f (x )=log 2(-x 2+2x +3)的定义域为(-1,3).(2)法一:若x 2-2x +k 2-1≥0对一切实数x 恒成立,则Δ=(-2)2-4(k 2-1)≤0⇒k 2≥2⇒k ≥2或k ≤- 2.即实数k 的取值范围是(-∞,-2]∪[2,+∞).法二:若x 2-2x +k 2-1≥0对一切实数x 恒成立,即k 2≥-x 2+2x +1对一切实数x 恒成立. 因为-x 2+2x +1=-(x -1)2+2≤2, 所以当k 2≥2时,x 2-2x +k 2-1≥0恒成立, 所以k ≤-2或k ≥ 2.即实数k 的取值范围是(-∞,-2]∪[2,+∞).10.【解】当m =0时,原方程可化为x =0;当m ≠0时,Δ=[-(2m +1)]2-4m 2=4m +1<0,即m <-14时,原方程没有实数解;由Δ=4m +1>0,得m >-14且m ≠0时,原方程有两个不相等的实数根;Δ≥0时原方程有实数解.此时m ≥-14且m ≠0.综上,(1)当m <-14时,原方程没有实数解.(2)当m ≥-14时,原方程有实数解.(3)当m >-14且m ≠0时,原方程有两个不相等的实数解.11.【解】原不等式可以变形为(ax -1)(x -2)≤0.(1)当a =0时,(ax -1)(x -2)≤0可化为-(x -2)≤0,所以x ≥2. (2)当a <0时,(ax -1)(x -2)≤0可化为⎝⎛⎭⎫x -1a (x -2)≥0. 所以x ≤1a或x ≥2.(3)当a >0时,(ax -1)(x -2)≤0可化为(x -1a )(x -2)≤0,对应方程的两个根分别为1a 和2,①当1a >2,即0<a <12时,⎝⎛⎭⎫x -1a (x -2)≤0⇒2≤x ≤1a;②当1a =2,即a =12时,⎝⎛⎭⎫x -1a (x -2)≤0⇒(x -2)2≤0,所以x =2; ③当0<1a <2,即a >12时,⎝⎛⎭⎫x -1a (x -2)≤0⇒1a ≤x ≤2. 综上所述,当a <0时,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≤1a或x ≥2; 当a =0时,原不等式的解集为{x |x ≥2}; 当0<a <12时,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2≤x ≤1a ; 当a =12时,原不等式的解集为{x |x =2};当a >12时,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫1a ≤x ≤2.。
1 / 10 第2章 一元二次函数、方程和不等式 章末测试(基础) 一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分) 1.(2021年广西)不等式(x+5)(3-2x)≥6的解集是( )
A.x x≤-1或x≥92 B.x -1≤x≤92 C.x x≤-92或x≥1 D.x -92≤x≤1 【答案】D 【解析】方法一 取x=1检验,满足,排除A;取x=4检验,不满足,排除B,C.
方法二 原不等式可化为2x2+7x-9≤0,即(x-1)(2x+9)≤0,解得-92≤x≤1.
2.(202··海南鑫源)若1,2ab,则ab的取值范围是( ) A.3, B.,3 C.3, D.
3,
【答案】C 【解析】因为1,2ab,所以3ab,即ab的取值范围是3,.故选:C. 3.(2021·全国高一课时练习)已知m,n∈R,m2+n2=100,则mn的最大值是( ) A.25 B.50 C.20 D.52 【答案】B 【解析】由m2+n2≥2mn,得 mn≤222mn=50,当且仅当m=n=±52时等号成立.所以mn的最大值是50.故选:B 4.(2021·湖南怀化市)关于x的不等式
2
10xax的解集为R,则实数a的取值范围是( )
A.,22, B.,22, C.22, D.2,2 【答案】D 【解析】关于x的不等式210xax的解集为R,故对应方程的判别式240a,即24a,2a,故22a.故选:D. 5.(2021·镇雄县第四中学高一期末)若关于x的不等式
2
20xax在区间1,5上有解,则实数a的取
值范围是( ) 2 / 10
A.
23,15 B.23,5
一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f〔x〕g〔x〕的形式.(2)将分式不等式转化为整式不等式求解,如:f 〔x 〕g 〔x 〕>0 ⇔ f (x )g (x )>0; f 〔x 〕g 〔x 〕<0 ⇔ f (x )g (x )<0; f 〔x 〕g 〔x 〕≥0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≥0,g 〔x 〕≠0; f 〔x 〕g 〔x 〕≤0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≤0,g 〔x 〕≠0.(2021·课标Ⅰ)集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},那么A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].应选A .设f (x )=x 2+bx +1且f (-1)=f (3),那么f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.应选B. -12<1x <2,那么x 的取值范围是( ) A.-2<x <0或0<x <12 B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,应选D.不等式1-2xx +1>0的解集是 .解:不等式1-2xx +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .(2021·武汉调研)假设一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,那么k的取值范围为________.解:显然k ≠0.假设k >0,那么只须(2x 2+x )max <38k ,解得k ∈∅;假设k <0,那么只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,那么a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b=-13是解此题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合 (2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解以下不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}. (3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2021·金华十校联考)函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 那么不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +〔x +1〕[-〔x +1〕+1]≤1 或 ②⎩⎪⎨⎪⎧x +1≥0,x +〔x +1〕[〔x +1〕-1]≤1, 解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.应选C.类型三 二次不等式、二次函数及二次方程的关系关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5.不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)假设1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)假设1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)假设1m =1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m 与1大小的不确定性,对m <1、m>1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧〔x +2〕〔2x +1〕≥0,2x +1≠0. 得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2〔x +2〕〔x +1〕>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,那么要注意分式的分母不能为零.※用“数轴标根法〞解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根〞的右上方向左下方画线,穿过此根,再往左上方穿过“次右根〞,一上一下依次穿过各根,“奇穿偶不穿〞来记忆.(5)写出不等式的解集:假设不等号为“>〞,那么取数轴上方穿根线以内的范围;假设不等号为“<〞,那么取数轴下方穿根线以内的范围;假设不等式中含有“=〞号,写解集时要考虑分母不能为零.(1)假设集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,那么A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x 〔x -2〕≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.应选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧〔x -1〕〔2x +1〕≤0,2x +1≠0得-12<x ≤1.应选A.类型六 和一元二次不等式有关的恒成立问题(1)假设不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,那么a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,那么x 的取值范围是( )A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g 〔1〕>0,g 〔-1〕>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,应选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,那么f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f 〔-2〕>0,f 〔2〕>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.类型七 二次方程根的讨论假设方程2ax 2-x -1=0在(0,1)内有且仅有一解,那么a 的取值范围是( )A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,那么f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.应选B.1.不等式x -2x +1≤0的解集是( )A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],应选D.2.关于x 的不等式(mx -1)(x -2)>0,假设此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,那么m 的取值范围是( )A.m >0B.0<m <2C.m >12D.m <0解:由不等式的解集形式知m <0.应选D.3.(2021·安徽)一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,那么f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,应选D.4.(2021·陕西)在如下图的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影局部),那么其边长x (单位:m )的取值范围是( ) A.[15,20] B.[12,25] C.[10,30]D.[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.应选C.5.假设关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,那么实数a 的取值范围是( ) A.a <-12 B.a >-4 C.a >-12D.a <-4解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,那么a <-4.应选D.6.假设不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,那么实数k 的取值范围是____________.解:∵x ∈(1,2),∴x -1>0.那么x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2].7.(2021·江苏)函数f (x )=x 2+mx -1,假设对于任意x ∈[m ,m +1],都有f (x )<0成立,那么实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f 〔m 〕=2m 2-1<0,f 〔m +1〕=2m 2+3m <0, 解得-22<m <0.故填⎝⎛⎭⎫-22,0.8.假设关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围. 解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.9.二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)假设方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)假设f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式 f (x )=-15x 2-65x -35. (2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝⎛⎭⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0. 故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).10.解关于x 的不等式:a 〔x -1〕x -2>1(a >0). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0, 假设a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1};假设a -2a -1=2,即a =0时,解集为∅; 假设a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。
3.2 一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃(二)、检测题一、选择题1、不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为 ( ) A 、11|32x x ⎧⎫<<⎨⎬⎩⎭ B 、1|2x x ⎧⎫>⎨⎬⎩⎭ C 、1|3x x ⎧⎫<⎨⎬⎩⎭ D 、11|32x x x ⎧⎫<>⎨⎬⎩⎭或 2、在下列不等式中,解集为φ的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+->3、函数()2log 3y x =+的定义域为 ( )A 、()(),13,-∞-⋃+∞B 、()3,1--C 、(][),13,-∞-⋃+∞D 、(][)3,13,--⋃+∞4、若2230x x -≤,则函数()21f x x x =++ ( ) A 、有最小值34,无最大值 B 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值5、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-6、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14-B .14C .10-D .10 二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为 。
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
“解含参一元二次不等式”数学练习(9.27)班级:___________ 姓名:___________一、解答题1.解关于x 的不等式:()22210x m x m m -+++<.2.解关于x 的不等式:()210x x a a --->.3.解关于x 的不等式()()21440ax a x a ---<∈R .4.若R a ∈,解关于x 的不等式2(1)10ax a x +++>.5.解关于x 的不等式()222R ax x ax a ≥-∈-.6.当a ≤0时,解关于x 的不等式()21220ax a x +--≥.7.解关于x 的不等式:()2220mx m x +-->.8.解关于x 的不等式22(1)40()ax a x a R -++>∈.9.解关于x 的不等式 220x x a ++>.10.解关于x 的不等式2220ax x a +-+>“解含参一元二次不等式”数学练习参考答案(9.27) 1.(,1)m m +【分析】把已知不等式的左边因式分解,判断出对应方程两根大小后,利用不等式解法求得解集.【详解】解:由题意得:1m m <+又()2221()(1)0x m x m m x m x m -+++=---<∴解得不等式解为:1m x m <<+∴不等式()22210x m x m m -+++<的解集为(,1)m m +.2.见解析【解析】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->,讨论12a >,12a =,12a <三种情况计算得到答案.【详解】不等式()210x x a a ---可化为()()10x a x a --⎡⎤⎣⎦->.①当12a >时,1a a ,解集为{x x a >,或}1x a <-; ①当12a =时,1a a ,解集为12x x ⎧⎫≠⎨⎬⎩⎭; ①当12a <时,1a a <-,解集为{x x a <,或}1x a >-. 综上所述, 当12a >时,原不等式的解集为{x x a >,或}1x a <-; 当12a =时,原不等式的解集为12x x ⎧⎫≠⎨⎬⎩⎭; 当12a <时,原不等式的解集为{x x a <,或}1x a >-. 【点睛】本题考查了含参不等式的解法,考查了分类讨论的数学思想,属于常考题型. 3.答案见解析【分析】分0a =和0a ≠讨论,当0a ≠时,由原不等式可得()140x x a ⎛⎫-+< ⎪⎝⎭,讨论1a 与4-的大小关系即可得出不等式的解.【详解】①当0a =时,原不等式可化为40x --<,解得4x >-;①当0a >时,原不等式可化为()140x x a ⎛⎫-+< ⎪⎝⎭,解得14x a -<<; ①当0a <时,原不等式可化为()140x x a ⎛⎫-+> ⎪⎝⎭, <i>当14a <-,即104a -<<时,解得1x a <或4x >-; <①>当14a =-,即14a =-时,解得4x <-或4x >-; <①>当14a >-,即14a <-时,解得4x <-或1x a>. 综上所述,当14a <-时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当14a =-时,不等式解集为{}4x x ≠-; 当104a -<<时,不等式解集为14x x x a ⎧⎫-⎨⎬⎩⎭或; 当0a =时,不等式解集为{}4x x >-;当0a >时,不等式解集为14x x a ⎧⎫-<<⎨⎬⎩⎭. 4.答案见解析. 【分析】分类讨论求解含参数的一元二次不等式作答.【详解】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>, 当0a <时,1()(1)0x x a ++<,解得11x a-<<-, 当0a >时,1()(1)0x x a++>, 若1a =,则1x ≠-,若01a <<,则1x a<-或1x >-,若1a >,则1x <-或1x a >-, 所以当0a <时,原不等式的解集是{}|11x x a-<<-;当0a =时,原不等式的解集是{|1}x x >-; 当01a <≤时,原不等式的解集是1{|x x a<-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-. 5.详见解析.【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;①当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 6.答案见解析【分析】不等式化简为(ax +1)(x -2)≥0,分类讨论a =0,12a =-,102a -<<及12a <-,求出不等式的解集,即可求出答案.【详解】解:由()21220ax a x +--≥可得(ax +1)(x -2)≥0①当a =0时,原不等式即x -2≥0﹐解得x ≥2﹔①当a <0时,(ax +1)(x -2)≥0,方程(ax +1)(x -2)=0的两根为11x a =-,22x = 当12a =-时,原不等式解为:x =2﹔ 当102a -<<时,12a ->,原不等式的解为;12x a≤≤-, 当12a <-时,12a -<,原不等式的解为:12x a-≤≤, 综上,当a =0时,原不等式的解集为{}2x x ≥; 当12a =-时,原不等式的解集为{}2x x =;当102a -<<时,原不等式的解集为:12x x a ⎧⎫≤≤-⎨⎬⎩⎭; 当12a <-时,原不等式的解为:12x x a ⎧⎫-≤≤⎨⎬⎩⎭. 7.答案见解析【分析】对m 进行分类讨论,结合一元二次不等式的解法求得不等式的解集.【详解】当0m =时,不等式化为220x -->,解得1x <-;当0m >时,不等式化为()()210mx x -+>,解得1x <-,或2x m >; 当20m -<<时,21m <-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m<<-; 当2m =-时,不等式化为()210x +<,此时无解;当2m <-时,21m >-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m-<<; 综上,0m =时,不等式的解集是{}1x x <-;0m >时,不等式的解集是{|1x x <-或2x m ⎫>⎬⎭; 20m -<<时,不等式的解集是21x x m ⎧⎫<<-⎨⎬⎩⎭; 2m =-时,不等式无解;2m <-时,不等式的解集是21x x m ⎧⎫-<<⎨⎬⎩⎭. 8.答案见解析.【分析】对a 分0a =、0a <、01a <<、 1a =和1a >五种情况讨论得解.【详解】当0a =时,不等式240x -+>的解为2x <;当0a ≠时,不等式对应方程的根为2x a=或2, ①当0a <时,不等式22(1)40()ax a x a R -++>∈即 ()()220ax x --+<的解集为2,2a ⎛⎫ ⎪⎝⎭; ①当01a <<时,不等式()()220ax x -->的解集为 2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; ①当1a =时,不等式()220x +>的解集为 (,2)(2,)-∞⋃+∞;①当1a >时,不等式()()220ax x -->的解集为 2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 综上所述,当0a =时,不等式解集为(),2-∞;当0a <时,不等式的解集为2,2a ⎛⎫ ⎪⎝⎭; 当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【点睛】易错点睛:解答本题有两个易错点:(1)漏掉0a =这一种情况,因为不确定不等式是不是一元二次不等式,所以要讨论;(2)当0a ≠时,分类出现错误或遗漏. 9.分类讨论,答案见解析.【分析】利用含参一元二次方程不等式的解法求解.【详解】方程220x x a ++=中()4441a a =-=-,①当10a -<即1a >时,不等式的解集是R ,①当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R ,①当10a ->即1a <时,由220x x a ++=解得:1211x x =-=-1a ∴<时,不等式的解集是{|1>-x x 1<-x ,综上,1a >时,不等式的解集是R ,1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|1>-x x 1<-x ,10.答案不唯一,具体见解析【分析】原不等式可化为()()120x ax a +-+>.然后分0a =,0a >和0a <三种情况求解不等式【详解】解:关于x 的不等式2220ax x a +-+>可化为()()120x ax a +-+>.(1)当0a =时,()210x +>,解得{}|1x x >-.(2)当0a >,所以()210a x x a -⎛⎫+-> ⎪⎝⎭. 所以方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为-1和2a a -, 当21a a --<,即1a >时,不等式的解集为{|1x x <-或2a x a ->}, 当21a a --=,即1a =时,不等式的解集为{}|1x x ≠-. 当21a a -->,即01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或1x >-},. (3)当0a <时,()210a x x a -⎛⎫+-< ⎪⎝⎭. 因为方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为—1和2a a -, 又因为2211a a a-=->,所以21a a --<,. 即不等式()210a x x a -⎛⎫+-< ⎪⎝⎭的解集是2|1a x x a -⎧⎫-<<⎨⎬⎩⎭, 综上所述:当0a <时,不等式的解集为2|1a x x a -⎧⎫-<<⎨⎬⎩⎭ 当0a =时,不等式的解集为{}1x x -,当01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或1}x >- 当1a =时,不等式的解集为{}|1x x ≠-,当1a >时,不等式的解集为{|1x x <-或2a x a->},。
[基础巩固]1.已知集合A ={x |x 2+x -2>0},B ={-3,-2,-1,0,1,2,3},则A ∩B =( )A .{-3,2}B .{-3,2,3}C .{-1,0,1,2}D .{-3,-2,2,3} 解析 由x 2+x -2>0,解得x <-2或x >1,故A ={x |x <-2,或x >1},故A ∩B ={-3,2,3}.故选B.答案 B2.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A .⎩⎨⎧⎭⎬⎫x |1t <x <t B.⎩⎨⎧⎭⎬⎫x |x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x |x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x |t <x <1t 解析 ∵0<t <1,∴1t >1,∴t <1t, ∴(x -t )⎝⎛⎭⎫x -1t <0⇔t <x <1t. 答案 D3.(多选)下列四个不等式,其中解集不为R 的是( )A .-x 2+x +1≥0B .x 2-25x +5>0C .x 2+6x +10>0D .2x 2-3x +4<1解析 A 显然不可能;B 中Δ=(-25)2-4×5>0,解集不为R ;C 中Δ=62-4×10<0.满足条件;D 中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选A 、B 、D.答案 ABD4.若关于x 的不等式mx 2+8mx +21<0的解集为{x |-7<x <-1},则实数m 的值为________.解析 由题意知,x 1=-7,x 2=-1是方程mx 2+8mx +21=0的两根,则(-7)×(-1)=21m,∴m =3. 答案 35.不等式x (3-x )≥x (x +2)+1的解集是________.解析 原不等式即为3x -x 2≥x 2+2x +1,可化为2x 2-x +1≤0,由于判别式Δ=-7<0,所以方程2x 2-x +1=0无实数根,因此原不等式的解集是∅.答案 ∅6.解关于x 的不等式x 2-x -a (a -1)>0.解析 原不等式可以化为:(x +a -1)(x -a )>0,∴当a >-(a -1)即a >12时,原不等式的解集为{x |x >a ,或x <1-a }; 当a =-(a -1)即a =12时, 由⎝⎛⎭⎫x -122>0,得原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≠12. 当a <-(a -1)即a <12时,原不等式的解集为{x |x <a ,或x >1-a }. [能力提升]7.(2022·毕节模拟)已知不等式ax 2+bx +1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13,则a ,b 的值是( )A .-3,-6B .-6,-1C .6,3D .3,6解析 由题意知x 1=-12和x 2=13是方程ax 2+bx +1=0的两个根, 可得x 1+x 2=-b a ,x 1x 2=1a ,即-b a =-16,1a =-16,解得a =-6,b =-1. 故选B.答案 B8.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________. 解析 因为a <0,所以原不等式等价于(x +1)·⎝⎛⎭⎫x +1a >0,方程(x +1)⎝⎛⎭⎫x +1a =0的两根为-1,-1a ,显然-1a >0>-1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >-1a ,或x <-1. 答案 ⎩⎨⎧⎭⎬⎫x |x >-1a ,或x <-1 9.已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x |x <-2或x >-12,则ax 2-bx +c >0的解集为________.解析 由题意知,-2,-12是方程ax 2+bx +c =0的两个根且a <0,故⎩⎨⎧-2+⎝⎛⎭⎫-12=-b a ,(-2)×⎝⎛⎭⎫-12=c a ,解得a =c ,b =52a . 所以不等式ax 2-bx +c >0,即为2x 2-5x +2<0,解得12<x <2, 即不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x |12<x <2. 答案 ⎩⎨⎧⎭⎬⎫x |12<x <2 10.已知不等式ax 2-3x +2>0的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解关于x 的不等式x 2-b (a +c )x +4c >0.解析 (1)由题意知,a >0且1,b 是方程ax 2-3x +2=0的根,∴a =1.又1·b =2a,∴b =2. (2)不等式可化为x 2-2(c +1)x +4c >0,即(x -2c )(x -2)>0,当2c >2,即c >1时,不等式的解集为{x |x <2或x >2c };当2c =2,即c =1时,不等式的解集为{x |x ≠2};当2c <2,即c <1时,不等式的解集为{x |x >2或x <2c }.综上:当c >1时,不等式的解集为{x |x <2或x >2c };当c =1时,不等式的解集为{x |x ≠2};当c <1时,不等式的解集为{x |x >2或x <2c }.[探索创新]11.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析 由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为{x |2≤x <8}.答案 {x |2≤x <8}。
解一元二次不等式专项练习及测试(含专练60道)解一元二次不等式专项练及测试 (含专练60道)本文档提供了解一元二次不等式的专项练和测试,共计包含60道题目。
以下是一些题目示例和解答方法,供学生研究和练使用。
例题1解不等式:(x+2)(x-5)>0解答步骤:1. 找出不等式的根,即使不等式等于0的点。
根据本例,根为x=-2和x=5。
2. 根据根的位置,我们可以将数轴分成三个区间:(-∞, -2),(-2, 5),(5, +∞)。
这些区间划分有助于确定解的范围。
3. 在每个区间内选择一个测试点,并代入不等式进行验证。
例如,在(-∞, -2)选择测试点x=-3,代入不等式得到(-3+2)(-3-5)>0,计算结果为5>0,因而该区间内满足条件。
4. 根据测试点的验证结果,可以推断出不等式的解集。
在本例中,解集为(-∞, -2)并(5, +∞)。
例题2解不等式:x^2 - 4x + 3 < 0解答步骤:1. 找出不等式的根,即使不等式等于0的点。
根据本例,根为x=1和x=3。
2. 根据根的位置,我们可以将数轴分成三个区间:(-∞, 1),(1,3),(3, +∞)。
3. 在每个区间内选择一个测试点,并代入不等式进行验证。
例如,在(-∞, 1)选择测试点x=0,代入不等式得到0^2 - 4*0 + 3 < 0,计算结果为3>0,因而该区间内不满足条件。
4. 根据测试点的验证结果,可以推断出不等式的解集。
在本例中,解集为(1,3)。
...继续如此,解答剩余的题目,共计60道题目供学生练。
希望这份文档对您的学习有所帮助!如需进一步帮助或其他题目的解答,请随时向我提问。
新高考数学计算题型精练解一元二次不等式1.解不等式(1)23400x x -++>(2)311x <+【答案】(1){}58x x -<<(2){2x x >或}1x <-【详解】(1)由23400x x -++>,得23400x x --<,即()()850x x -+<,解得58x -<<,所以不等式的解集为{}58x x -<<;(2)由311x <+,得201x x ->+,即()()210x x -+>,解得2x >或1x <-,所以不等式得解集为{2x x >或}1x <-.2.解不等式:(1)231x x x -+≥+;(2)22222x x x ->+.【答案】(1){}1-(2)∅【详解】(1)由231x x x -+≥+得2210x x ++≤,即()210x +≤,10x ∴+=,1x ∴=-,即不等式231x x x -+≥+的解集为{}1-;(2)由22222x x x ->+得2220x x ++<,即()2110x ++<,不可能成立,即不等式22222x x x ->+的解集为∅.3.解一元二次不等式:(1)24410x x ++>;(2)2230--≤x x .【答案】(1)11,,22⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭(2)31,2⎡⎤-⎢⎥⎣⎦【详解】(1)由()22441210x x x ++=+>可知,不等式24410x x ++>的解集为11,,22⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭.(2)解2230x x --=得1231,2x x =-=,故由不等式2230--≤x x ,得312x -≤≤,故不等式2230--≤x x 的解集为31,2⎡⎤-⎢⎥⎣⎦.4.解下列不等式:(1)1323232x x x -+<-<+;(2)3x +4﹣x 2<0.【答案】(1){x |x >7};(2){x |x >4或x <﹣1}.【详解】(1)1323232x x x -+<-<+ ,1323,3232x x x x -∴+<--<+,7x ∴>且92x >-,∴x >7∴不等式的解集为{x |x >7}.(2)∵3x +4﹣x 2<0,∴x 2﹣3x ﹣4>0,∴(x ﹣4)(x +1)>0,∴x >4或x <﹣1,∴不等式的解集为{x |x >4或x <﹣1}.5.求解下列不等式的解集:(1)2450x x -++<;(2)20252x x ≤-+;(3)4170x --≤;(4)()()()21502x x x +-<-;(5)4123xx -≥+.【答案】(1){1x x <-或}5x >(2)122x x ⎧⎫≤≤⎨⎬⎩⎭(3)322x x ⎧⎫-≤≤⎨⎬⎩⎭(4){}12x x -<<(5)3123x x ⎧⎫-<≤⎨⎬⎩⎭【详解】(1)解:由2450x x -++<可得2450x x -->,解得1x <-或5x >,故原不等式的解集为{1x x <-或}5x >.(2)解:由20252x x ≤-+可得()()2120x x --≤,解得122x ≤≤,故原不等式的解集为122x x ⎧⎫≤≤⎨⎬⎩⎭.(3)解:由4170x --≤可得417x -≤,即7417x -≤-≤,解得322x -≤≤,故原不等式的解集为322x x ⎧⎫-≤≤⎨⎬⎩⎭.(4)解:由()()()21502x x x +-<-可得10250x x x +⎧<⎪-⎨⎪-≠⎩,解得12x -<<,故原不等式的解集为{}12x x -<<.(5)解:由4123x x -≥+可得()23443110232323x x x x x x x +-----==≤+++,解得3123x -<≤,故原不等式的解集为3123x x ⎧⎫-<≤⎨⎬⎩⎭.6.解下列不等式:(1)2560x x -+<;(2)2230x x -++<;(3)3113x x +>--;(4)103x x +≥-.【答案】(1)()2,3(2)()(),13,-∞-⋃+∞(3)()2,3-(4)(](),13,-∞-+∞ 【详解】(1)由2560x x -+<,得()()230x x --<,解得23x <<,故不等式的解集为()2,3.(2)由2230x x -++<,得2230x x -->,即()()130x x +->,解得1x <-或3x >,故不等式的解集为()(),13,-∞-⋃+∞.(3)由3113x x +>--,得2403x x +<-,即()()2430x x +-<,解得23x -<<,故不等式的解集为()2,3-.(4)由103x x +≥-,得()()13030x x x ⎧+-≥⎨-≠⎩,解得1x ≤-或3x >,故不等式的解集为(](),13,-∞-+∞ .7.解下列不等式(1)()22log 21x -≤(2)()()140x x --≥;(3)23280x x --+≥;【答案】(1){|2x x -≤<2}x <≤.(2)1{|}4x x x ≤≥或(3)4{|-2}3x x ≤≤.【详解】(1)由()22log 21x -≤得2022x <-≤,即224x <≤,解得2x -≤<2x <≤.所以原不等式的解集为{|2x x -≤<2}x <≤.(2)由()()140x x --≥解得1x ≤,或4x ≥.所以原不等式的解集为{|1x x ≤或4}x ≥.(3)不等式23280x x --+≥变形为,23280x x +-≤,即()()3420x x -+≤,解得423x -≤≤.所以原不等式的解集为4{|2}3x x -≤≤8.解下列关于x 的不等式:(1)2240x x -++>(2)2311x x -≥+【答案】(1)(1(2)()[),14,∞∞--⋃+【详解】(1)2240x x -++>等价于2240x x --<,即()110x x --<解得11x <<,故该不等式的解集为:()11(2)()()23410041011x x x x x x ---≥⇒≥⇒-+≥++且10x +≠,解得4x ≥或1x <-.即该不等式的解集为:()[),14,∞∞--⋃+9.求下列不等式的解集:(1)4351x x +>-(2)2332x x -<-【答案】(1)(1,8)(2)(1,)+∞【详解】(1)()()4385018011x x x x x x +->⇔<⇔--<--,故解集为(1,8);(2)|23|32322332x x x x x -<-⇔-+<-<-,故解集为(1,)+∞.10.解下列不等式:(1)22530x x +-<;(2)2362x x -+≤;(3)5132x x +≤-;(4)()()()12253x x x x --<-+【答案】(1)13,2⎛⎫- ⎪⎝⎭(2),11,33⎛⎡⎫-∞-++∞ ⎪⎢ ⎪⎝⎦⎣⎭ (3)[)13,3-(4)()(),11,-∞+∞ 【详解】(1)22530x x +-< ,()()2130x x ∴-+<,132x ∴-<<,即不等式的解集为13,2⎛⎫- ⎪⎝⎭;(2)2362x x -+≤ ,23620x x -∴+≥,解得1x ≤-1x ≥+即不等式的解集为,11⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭;(3)5132x x +≤- ,()153230x x x ⎧+≤-⎪∴⎨⎪->⎩或()153230x x x ⎧+≥-⎪⎨⎪-<⎩解得133x -≤<,即不等式的解集为[)13,3-;(4)()()()12253x x x x --<-+ ,整理得2210x x -+>,解得1x ≠,即不等式的解集为()(),11,-∞+∞ .11.解下列不等式:(1)234x x <+;(2)220x x +-≥(3)()90x x ->.【答案】(1)()1,4-(2)[]1,2-(3)()0,9【详解】(1)不等式234x x <+,可化为2340x x --<,方程2340x x --=的解为11x =-或24x =,作函数234y x x =--的图象可得,观察图象可得不等式2340x x --<的解集为()1,4-,所以不等式234x x <+的解集为()1,4-;(2)不等式220x x +-≥,可化为220x x --≤,方程220x x --=的解为31x =-或42x =,作函数2y x x 2=--的图象可得,观察图象可得不等式220x x --≤的解集为[]1,2-,所以不等式220x x +-≥的解集为[]1,2-;(3)不等式()90x x ->,可化为290x x -<,方程290x x -=的解为50x =或69x =,作函数29y x x =-的图象可得,观察图象可得不等式290x x -<的解集为()0,9,所以不等式()90x x ->的解集为()0,9.12.求下列不等式的解集:(1)23100x x -->;(2)23540x x -+->【答案】(1){|5x x >或}2x <-(2)∅【详解】(1)原不等式化为()()250x x +->,解得5x >或<2x -,所以原不等式解集为{|5x x >或}2x <-;(2)原不等式化为23540x x -+<,又2(5)434230∆=--⨯⨯=-<,所以原不等式无解,解集为∅.13.解下列不等式:(1)22320x x +->;(2)2230x x -+>.【答案】(1)122x x ⎧⎫-<<⎨⎬⎩⎭(2)R【详解】(1)原不等式可化为22320x x --<,即()()2120x x +-<,故原不等式的解集为122x x ⎧⎫-<<⎨⎬⎩⎭.(2)∵()2243180∆=--⨯⨯=-<,∴原不等式的解集为R .14.解不等式:(1)260x x +-≤(2)2620x x --<.【答案】(1){}32x x -≤≤(2)322x x x ⎧⎫-⎨⎬⎩⎭或【详解】(1)原不等式等价于:()()320x x +-£解得:32x -≤≤所以原不等式解集为:{}32x x -≤≤(2)原不等式等价于:2260x x +->即()()2320x x -+>解得:<2x -或32x >所以原不等式的解集为:3|22x x x ⎧⎫<->⎨⎬⎩⎭或15.解下列不等式:(1)22320x x +->;(2)()()321x x x x -≤+-.【答案】(1)1|22x x ⎧⎫-<<⎨⎬⎩⎭(2)1|2x x ⎧≤-⎨⎩或}1x ≥【详解】(1)原不等式可化为22320x x --<,所以(21)(2)0,x x +-<解得122x -<<,故原不等式的解集是1|22x x ⎧⎫-<<⎨⎬⎩⎭.(2)原不等式可化为2210,x x --≥所以(21)(1)0+-≥x x ,解得12x ≤-或1x ≥,故原不等式的解集为1|2x x ⎧≤-⎨⎩或}1x ≥.16.解下列不等式.(1)x 2-5x +6>0;(2)-3x 2+5x -2>0.【答案】(1)()(),23,∞∞-⋃+(2)2,13⎛⎫⎪⎝⎭【详解】(1)因为()()256230x x x x =-->-+,所以2x <或3x >,即()(),23,x ∈-∞+∞U ;(2)因为23520x x >-+-,即23520x x +<-,所以()()1320x x --<,解得213x <<,即2,13x ⎛⎫∈ ⎪⎝⎭.17.解下列不等式:(1)2230x x +->(2)24410x x -+-≥(3)24320x x -+-<【答案】(1)()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭(2)12⎧⎫⎨⎬⎩⎭(3)R【详解】(1)由2230x x +->可得()()2310x x +->,所以1x >或32x <-,即解集为()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)由24410x x -+-≥可得()2210x -≤,所以12x =,即解集为12⎧⎫⎨⎬⎩⎭;(3)由24320x x -+-<可得2232343220416x x x ⎛⎫-+=-+> ⎪⎝⎭,所以解集为R .18.求下列不等式的解集:(1)23262x x x -++<-;(2)()()()221332x x x +->+【答案】(1){4x x <-或}1x >(2)∅【详解】(1)原不等式整理得,2340+->x x ,即()()140x x -+>,解得<4x -或1x >,∴原不等式的解集为{4x x <-或}1x >(2)原不等式整理得,2590x x ++<,2Δ5419110=-⨯⨯=-< ,∴原不等式的解集为∅.19.解下列不等式:(1)2102x x -≤+;(2)|12|3x ->.【答案】(1)12,2⎛⎤- ⎥⎝⎦;(2){1xx <-∣或2}x >【详解】(1)(2)(21)0211022022x x x x x x +-≤⎧-≤⇒⇒-<≤⎨+≠+⎩,所以不等式的解为12,2⎛⎤- ⎥⎝⎦.(2)|12|3x -> ,123x ∴->或213x ->,1x ∴<-或2x >,所以不等式的解为{1xx <-∣或2}x >.20.解下列关于x 的不等式:(1)2440x x -+-<(2)105xx ->-【答案】(1){}2xx ≠∣(2){15}x x <<∣【详解】(1)由2440x x -+-<可得:()224420x x x -+=->,所以2x ≠,故解集为{}2xx ≠∣.(2) 105x x ->-,105x x -∴<-,等价转化为()()150x x --<,解得15x <<,所以不等式解集为{15}xx <<∣.21.(1)4220x x --<;(2)()222log 5log 60x x -+≥.【答案】(1)(),1-∞;(2)(][)0,48,+∞ .【详解】(1)令()2,0xm m =>,则原不等式可化为:220m m --<,解得:12m -<<,所以02m <<.解不等式22x <,解得:1x <,所以原不等式的解集为(),1-∞(2)令2log n x =,则原不等式可化为:2560n n -+≥,解得:2n ≤或3n ≥,即2log 2x ≤或2log 3x ≥,解得:04x <≤或8x ≥,所以原不等式的解集为(][)0,48,+∞ .22.求下列不等式的解集:(1)23280x x --+≥;(2)3121xx ≤+.【答案】(1)423x x ⎧⎫-≤≤⎨⎬⎩⎭(2)112x x ⎧⎫-<≤⎨⎬⎩⎭【详解】(1)因为23280x x --+≥,所以23280x x +-≤,则()()3420x x -+≤,解得423x -≤≤,所以23280x x --+≥的解集为423x x ⎧⎫-≤≤⎨⎬⎩⎭.(2)因为3121xx ≤+,所以31021x x -≤+,则321021x x x --≤+,即1021x x -≤+,故()()1210210x x x ⎧-+≤⎨+≠⎩,解得112x -<≤,所以3121x x ≤+的解集为112x x ⎧⎫-<≤⎨⎬⎩⎭.23.解下列不等式的解集:(1)2440x x -+>;(2)23520x x +-->;(3)22730x x ++>;(4)221x x <-.【答案】(1)()(),22,-∞+∞ (2)2,13⎛⎫ ⎪⎝⎭(3)()1,3,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭(4)∅【详解】(1)2440x x -+>可化为()220x ->,解得2x ≠,所以不等式的解集为()(),22,-∞+∞ .(2)23520x x +-->可化为23520x x +<-,即()()3210x x --<,解得213x <<,所以不等式的解集为2,13⎛⎫⎪⎝⎭.(3)22730x x ++>可化为()()2130x x ++>,解得3x <-或12x >-,所以不等式的解集为()1,3,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭.(4)221x x <-可化为2210x x -+<,因为不等式对应的方程的判别式()214270∆=--⨯=-<,所以不等式的解集为∅.24.解下列不等式:(1)24410x x -+>;(2)2690x x -+≤;(3)2230x x -+->;(4)(2)(3)6x x +-<.【答案】(1)1{|}2x x ≠(2){|3}x x =(3)∅(4){|34}x x -<<【详解】(1) 24410x x -+>,∴()2210x ->,解得:12x ≠.所以解集为:1{|}2x x ≠(2) 2690x x -+≤,∴()230x -≤,解得:3x =.所以解集为:{|3}x x =(3) 2230x x -+->,∴()()2241380∆=-⨯-⨯-=-<,所以方程无解,解集为∅.所以解集为:∅(4) (2)(3)6x x +-<,∴()()340x x +-<,解得:34x -<<.所以解集为:{|34}x x -<<25.解下列不等式.(1)22310x x -+-<;(2)220x x ++<.【答案】(1){1x x >或12x ⎫<⎬⎭;(2)∅【详解】(1)由22310x x -+-<得:()()2110x x -->,解得:12x <或1x >,所以不等式的解集为:{1x x >或12x ⎫<⎬⎭;(2)由220x x ++<,令220x x ++=,可知141270∆=-⨯⨯=-<,又22y x x =++对应抛物线开口向上,所以220x x ++<的解集为:∅.26.求下列不等式的解集.(1)22530x x -+-≤;(2)+42+1x x ≥【答案】(1){1x x ≤或32x ⎫≥⎬⎭(2){}12x x -<≤【详解】(1)22530x x -+-≤,将原不等式变形为22530x x -+≥,即()()2310x x --≥,解得1x ≤或32x ≥,故原不等式的解集为{1x x ≤或32x ⎫≥⎬⎭;(2)+42+1x x ≥,化简得+420+1x x -≥,+20+1x x -≥,等价于()()+2+10x x -≥且+10x ≠,即1x ≠-,由()()+2+10x x -≥且1x ≠-,解得12x -<≤,故原不等式的解集为{}12x x -<≤.27.解下列不等式:(1)220x x +-<(2)()()230x x +-≤【答案】(1)()2,1-(2)(][),23,-∞-+∞ 【详解】(1)()()22210x x x x +-=+-<,解得2<<1x -,即()2,1x ∈-(2)()()230x x +-≤,即()()230x x +-≥,解得3x ≥或2x ≤-,即(][),23,x ∈-∞-+∞ 28.解下列不等式(1)2230x x -++<;(2)21134x x-≥-;(3)()()21x x x --<.【答案】(1)()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)23,34⎡⎫⎪⎢⎣⎭;(3)((),22-∞⋃+∞.【详解】(1)由2230x x -++<,化为2230x x -->,即为()()2310x x -+>,解得1x <-或32x >,所以原不等式的解集为()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)由21134x x -≥-,可得64034x x -≥-,等价为()()64430x x --≤,且430x -≠,解得2334x ≤<,所以原不等式的解集为23,34⎡⎫⎪⎢⎣⎭;(3)由()()21x x x --<,可得2420x x -+<,解得22x <-或22x >+,所以原不等式的解集为()(),2222,-∞-⋃++∞.29.求下列不等式的解集(1)12x x->;(2)25601x x x -++≥-.【答案】(1){}|10x x -<<(2){|1x x ≤-或}16x <≤【详解】(1)已知12x x ->,移项得120x x -->,通分化简得10x x-->,等价于()10x x -->,即()10x x +<,解得:10x -<<,故不等式12x x->的解集为{}|10x x -<<.(2)已知25601x x x -++≥-,等价于()()25610x x x -++-≥且10x -≠,即()()()6110x x x -+-≤且10x -≠,根据穿根法,如图可知不等式25601x x x -++≥-的解集为{|1x x ≤-或}16x <≤30.解下列不等式(组)(1)2134x -<-≤(2)125231x x ⎧-≤⎪⎨->⎪⎩(3)22551233x x x x +>-⎧⎪⎨-+≤⎪⎩【答案】(1)[1,1)-(2)(2,3][2,1)- (3)(,2)-∞【详解】(1)不等式2134x -<-≤可化为132134x x ->-⎧⎨-≤⎩,解得:1<1x ≤-,所以原不等式的解集为[1,1)-.(2)不等式125231x x ⎧-≤⎪⎨->⎪⎩可化为5215231x x -≤-≤⎧⎨->⎩或5215231x x -≤-≤⎧⎨-<-⎩,解得:23x <≤或21x -£<,所以原不等式的解集为(2,3][2,1)- (3)不等式225513x x x +>-⎧⎪⎨-+≤⎪⎩可化为2230x x <⎧⎪⎨-+≥⎪⎩,也即(220x x <⎧⎪⎨≥⎪⎩,解得:2x <,所以原不等式的解集为(,2)-∞.31.解关于x 的不等式.(1)2260x x -->;(2)2230x x -++≥;(3)2320x x --<.【答案】(1)|2x x >{或32}x <-(2)3|12x x ⎧⎫-≤≤⎨⎬⎩⎭(3)|x x ⎧⎪<<⎨⎪⎪⎩⎭【详解】(1)∵2260x x -->,则()()2320x x +->,∴2x >或32x <-,故不等式的解集为|2x x >{或32}x <-(2)∵2230x x -++≥,即2230--≤x x ,则()()2310x x -+≤,∴312x -≤≤,故不等式的解集为3|12x x ⎧⎫-≤≤⎨⎬⎩⎭.(3)令2320x x --=,则32x =或32x =,∵2320x x --<x <<故不等式的解集为33|22x x ⎧+⎪<<⎨⎬⎪⎪⎩⎭.32.解下列不等式:(1)2210x x -++<;(2)221x x -≥-.【答案】(1){|1x x >或1}2x <-(2){|01}x x ≤<【详解】(1)因为不等式2210x x -++<可化为2210x x -->,也即(21)(1)0x x +->,解得:1x >或12x <-,所以原不等式的解集为{|1x x >或1}2x <-.(2)不等式221x x -≥-可化为22(1)01x x x ---≥-,也即01x x -≥-,所以10(1)0x x x -≠⎧⎨-≤⎩,解得:01x ≤<,所以原不等式的解集为{|01}x x ≤<.33.求下列不等式的解集:(1)22530x x -+<;(2)3102x x+<-.【答案】(1)312x x ⎧⎫<<⎨⎬⎩⎭∣(2)123x x x ⎧⎫<->⎨⎬⎩⎭∣或【详解】(1)22530x x -+< ,()()2310x x ∴--<,解得312x <<.∴原不等式的解集为312x x ⎧⎫<<⎨⎬⎩⎭∣.(2)不等式3102x x+<-等价于()()3120x x +-<,()()3120x x ∴+->,解得13x <-或2x >.∴原不等式的解集为13x x ⎧<-⎨⎩∣或}2x >.34.求下列不等式的解集:(1)(x +1)(x -4)>0(2)-x 2+4x -4<0【答案】(1)()(),14,-∞-⋃+∞(2)()(),22,-∞+∞ 【详解】(1)由()()140x x +->,解得1x <-或>4x ,故不等式的解集为()(),14,-∞-⋃+∞.(2)由2440x x -+-<,得2440x x -+>,即()220x ->,解得2x ≠,故不等式的解集为()(),22,-∞+∞ .35.解下列关于x 的不等式:(1)2320x x -+>;(2)210x x ++>.【答案】(1)(,1)(2,)-∞⋃+∞(2)R【详解】(1)不等式x 2﹣3x+2>0可化为(x ﹣1)(x ﹣2)>0,解得1x <或2x >,所以不等式的解集为(-∞,1)∪(2,+∞)(2)因为不等式210x x ++>对应方程的判别式1430∆=-=-<,不等式210x x ++>的解集为R .36.利用函数解下列不等式:(1)22730x x ++>;(2)2450x x --≤;(3)213502x x -+->.(4)307x x -<+(5)413x x-≥-【答案】(1)132x x x ⎧⎫--⎨⎬⎩⎭或(2){}15x x -≤≤(3)∅(4)3{|}7x x <<-(5)732x x ⎧⎫<≤⎨⎬⎩⎭【详解】(1)解:方程22730x x ++=的解为1213,2x x =-=-,所以不等式的解集为132x x x ⎧⎫--⎨⎬⎩⎭或;(2)解:方程2450x x --=的解为121,5x x =-=,所以不等式的解集为{}15x x -≤≤;(3)解:对于方程213502x x -+-=,由于2(6)41040∆=--⨯=-<,所以不等式的解集为∅;(4)解:307x x -<+等价于7)30()(x x <-+,方程0()3)(7x x =-+的解为127,3x x =-=,所以原不等式的解集是3{|}7x x <<-;(5)解:移项得4103x x --≥-通分整理得2703x x-≥-,等价于()()273030x x x ⎧--≥⎨-≠⎩,解得732x <≤,所以原不等式的解集是7|32x x ⎧⎫<≤⎨⎬⎩⎭.37.解关于x 的不等式:(1)214450x x -+≤(2)2111x x +≤-【答案】(1){|59}x x ≤≤.(2){|21}x x -≤<.【详解】(1)由214450.x x -+≤所以()()590x x --≤则59x ≤≤,所以不等式214450x x -+≤的解集为:{|59}x x ≤≤.(2)由2111x x +≤-即20.1x x +≤-所以()()120x x -+≤且1x ≠,则21x -£<,所以不等式2111x x +≤-的解集为:{|21}x x -≤<.38.求下列不等式和不等式组的解集(1)2113x x -≤+(2)()2201x x x ⎧+>⎨<⎩【答案】(1){}34x x -<≤(2){}01x x <<【详解】(1)2113x x -≤+21103x x --≤+403x x -≤+,等价于()()4303x x x ⎧-+≤⎨≠-⎩,解得34x -<£,所以不等式的解集为{}34x x -<≤.(2)不等式()20x x +>解得<2x -或0x >;不等式21x <解得11x -<<,所以不等式组的解集为{}01x x <<.39.解不等式:(1)2230x x -->(2)112x x-<【答案】(1){|1x x <-或}3x >(2){|1x x <-或}0x >【详解】(1)()()223310x x x x --=-+>,解得1x <-或3x >,所以不等式2230x x -->的解集为{|1x x <-或}3x >.(2)111211,102222x x x x x x x x x------<-==<,即()210x x --<,解得1x <-或0x >,所以不等式112x x-<的解集为{|1x x <-或}0x >.40.解不等式2230x x -++<.【答案】(,1)(3,)-∞-⋃+∞【详解】由2230x x -++<得2230x x -->,即(1)(3)0x x +->,故原不等式的解集为(,1)(3,)-∞-⋃+∞,41.解下列不等式(1)224xx -<;(2)21131x x ->+【答案】(1){}12x x -<<(2)123x x ⎧⎫-<<-⎨⎬⎩⎭【详解】(1)由224x x -<,则2222x x -<,即22x x -<,220x x --<,()()120x x +-<,解得12x -<<.故解集为{}12x x -<<(2)由21131x x ->+,则211031x x -->+,2131031x x x --->+,2031x x -->+,2031x x +<+,()()2310x x ++<,解得123x -<<-.故解集为123x x ⎧⎫-<<-⎨⎬⎩⎭42.解下列不等式503x x ->+【答案】{}|35x x -<<【详解】解:原不等式等价于()()530x x -+>,即()()530x x -+<,解得35x -<<所以,原不等式的解集是{}|35x x -<<43.解下列不等式:(1)23520x x +->;(2)2121x x ->-.【答案】(1)1<23x x x ⎧⎫->⎨⎬⎩⎭或(2)1142x x ⎧⎫<<⎨⎬⎩⎭【详解】(1)23520x x +->,()()3120x x -+>,解得<2x -或13x >.故不等式的解集为1<23x x x ⎧⎫->⎨⎬⎩⎭或;(2)2121x x ->-,21021x x -->-,221021x x x --+>-,41021x x -+>-,41021x x -<-,()()41210x x --<,解得1142x <<,故不等式的解集为1142x x ⎧⎫<<⎨⎬⎩⎭44.求下列不等式的解集(1)()()120x x --<(2)2540x x -+≤(3)123x -≥(4)2103x x +>-【答案】(1)()1,2(2)[]1,4(3)(][),12,-∞-⋃+∞(4)()1,3,2⎛⎫-∞-⋃+∞ ⎪⎝⎭【详解】(1)由()()120x x --<可得12x <<,所以其解集为()1,2,(2)由2540x x -+≤可得14x ≤≤,所以其解集为[]1,4,(3)由123x -≥可得123x -≥或123x -≤-,解得2x ≥或1x ≤-,所以解集为(][),12,-∞-⋃+∞,(4)由2103x x +>-可得()()2130x x +->,所以3x >或12x <-,所以解集为()1,3,2⎛⎫-∞-⋃+∞ ⎪⎝⎭.45.求下列不等式的解集:(1)2560x x -+>;(2)213502x x -+->.(3)2311x x +≥-【答案】(1){|3x x >或2}x <;(2)∅;(3){|1x x >或4}x ≤-.【详解】(1)因为2560x x -+>,即()()230-->x x ,解得3x >或2x <,所以不等式的解集为{|3x x >或2}x <;(2)因为213502x x -+->,即26100x x -+<,因为()2641040∆=--⨯=-<,所以方程26100x x +=-无实数根,又函数2610y x x =-+开口向上,所以26100x x -+>恒成立,所以不等式213502x x -+->的解集为∅;(3)由2311x x +≥-,即23101x x +-≥-,可得401x x +≥-,等价于(1)(4)0x x -+≥,且1x ≠,解得1x >或4x ≤-,所以不等式的解集为{|1x x >或4}x ≤-.46.解下列关于x 的不等式:(1)2310x x -<(2)1202x x -≥+【答案】(1){}|25x x -<<(2)122x x ⎧⎫-<≤⎨⎬⎩⎭【详解】(1)由2310x x -<得()()250x x +-<,解得25x -<<,所以解集为{}|25x x -<<.(2)原不等式可化为2102x x -≤+,等价于()()212020x x x ⎧-+≤⎨+≠⎩,解得122x -<≤,所以解集为122x x ⎧⎫-<≤⎨⎬⎩⎭.47.解下列不等式(1)14x<;(2)217x -<.【答案】(1){x |x <0或x >14}(2){x |-3<x <4}【详解】(1)由14x <,得140x ->,即410x x ->,则x (4x -1)>0,解得x <0或x >14,∴不等式的解集为{x |x <0或x >14}.(2)由|2x -1|<7,得-7<2x -1<7,解得-3<x <4,∴不等式的解集为{x |-3<x <4}.48.解下列不等式:(1)()()214x x -+<;(2)201x x -≥+.【答案】(1){}|23x x -<<(2){|1x x <-或}2x ≥【详解】(1)由()()214x x -+<得260x x --<即()()023x x +-<,解得23x -<<,所以不等式的解集为{}|23x x -<<.(2)原不等式等价于(2)(1)010x x x -+≥⎧⎨+≠⎩解得1x <-或2x ≥.所以不等式的解集为{|1x x <-或}2x ≥.49.解下列不等式;(1)2230x x -+->;(2)()()2132x x -->;(3)132x x +≥-【答案】(1)∅;(2)4|13x x ⎧⎫⎨<⎩<⎬⎭(3)72,2⎛⎤ ⎥⎝⎦【详解】(1)因为2230x x -+->,所以2230x x -+<,因为()2120x -+<无解,所以x ∈∅,所以原不等式的解集为∅;(2)因为()()2132x x -->,所以23740x x -+->,即23740x x -+<,因为()()3410x x --<,所以413x <<,所以原不等式的解集为4|13x x ⎧⎫⎨<⎩<⎬⎭;(3)因为132x x +≥-,所以2702x x -+≥-,即2702x x -≤-,所以()()272020x x x ⎧--≤⎨-≠⎩解得722x <≤,所以原不等式的解集为72,2⎛⎤ ⎥⎝⎦.。
一元二次不等式基础题50道加解析
一元二次不等式是一种常见的数学问题,涉及到一元二次方程的不等式关系。
解一元二次不等式的方法主要有图像法、代入法和配方法等。
下面将给出50道关于一元二次不等式的基础题目及解析,帮助读者巩固和加深对一元二次不等式的理解和应用。
一、图像法
1.解不等式x^2-4x+3>0
解析:首先求出方程x^2-4x+3=0的根,可以通过求解二次方程或配方法得到x=1和x=3。
然后画出函数y=x^2-4x+3的图像,可知该图像开口向上,且在x=1和x=3两点处与x轴相交。
根据图像的性质,可知不等式x^2-4x+3>0的解集为x∈(-∞,1)∪(3,+∞)。
2.解不等式2x^2-5x+2<0
解析:首先求出方程2x^2-5x+2=0的根,可以通过求解二次方程或配方法得到x=0.5和x=2。
然后画出函数y=2x^2-5x+2的图像,可知该图像开口向上,且在x=0.5和x=2两点处与x轴相交。
根据图像的性质,可知不等式2x^2-5x+2<0的解集为x∈(0.5,2)。
二、代入法
3.求解不等式x^2-6x+8>0
解析:将不等式中的x^2-6x+8替换为一个符号t,得到t>0。
然
后求解t>0的解集,可以得到t∈(-∞,∞)。
最后将t的解集转换回x 的解集,即x^2-6x+8>0的解集为x∈(-∞,∞)。
4.求解不等式x^2+5x+6≤0
解析:将不等式中的x^2+5x+6替换为一个符号t,得到t≤0。
然后求解t≤0的解集,可以得到t∈(-∞,0]。
最后将t的解集转换回x 的解集,即x^2+5x+6≤0的解集为x∈[-3,-2]。
三、配方法
5.求解不等式x^2-4x+3≥0
解析:首先求出方程x^2-4x+3=0的根,可以通过求解二次方程或配方法得到x=1和x=3。
然后将不等式x^2-4x+3≥0转换为(x-1)(x-3)≥0的形式。
根据配方法,可知x-1和x-3的符号相同,且不等式的解集为x∈(-∞,1]∪[3,+∞)。
6.求解不等式2x^2-5x+2≤0
解析:首先求出方程2x^2-5x+2=0的根,可以通过求解二次方程或配方法得到x=0.5和x=2。
然后将不等式2x^2-5x+2≤0转换为(x-0.5)(x-2)≤0的形式。
根据配方法,可知x-0.5和x-2的符号不同,且不等式的解集为x∈[0.5,2]。
通过以上50道基础题目及解析,读者可以对一元二次不等式有更
深入的理解和应用。
在解题过程中,可以根据题目的要求选择合适的方法,并注意将不等式转化为方程的形式,以便于求解和确定解集。
同时,图像法、代入法和配方法都是解一元二次不等式常用的方法,读者应该熟练掌握并加以灵活运用。
在解题过程中,还应注意排除无效解和注意解集的开闭性。
通过不断练习和思考,相信读者可以在一元二次不等式的解题过程中游刃有余,取得优异的成绩。