15W纯甲类功放电路图及原理
- 格式:docx
- 大小:22.71 KB
- 文档页数:9
6N13P自制甲类推挽功放去年12 月,我花1400 元购一台6N13P 胆机套件,装成后虽有“胆味”,但功率储备不够,显得力度较小。
分析原因是电路总增益不够,推动级输出激励电压较小。
为追求更好的效果,我自己动手,设计电路,提高前级增益,使推动级有足够大的不失真输出电压;自己设计输出变压器,仅花800 元钱,就设计制作了一台甲类推挽胆机。
6N13P 是一只大功率、低内阻双三极管,国外型号为6AS7,原用于稳压电源和电视垂直电路上。
从该管屏极特性曲线可以看出,6N13P 也适用于音频功率输出上。
由一只6N13P 双三极管,作推挽输出,可获得12~15W 的功率。
若由两只6N13P 管作并联推挽,就有25W 以上的输出,适合一般家庭用途。
线路简介6N13P 甲类推挽胆机电路图见附图。
本机采用4 只国产双三极管,构成四级放大电路。
其中前级由6N11、6N9、6N8 双三极管作二极电压放大、一级倒相、一级推动;后级由6N13P 作推挽功率放大。
各级均为阴极自给栅偏压,采用电容级间耦合,有利于各级静态工作点的调整。
本机取消了整体大环路负反馈电路后,输出电路很稳定,试听效果也不错。
各级屏极对地、阴极对地电压,都标注在附图的电路图上。
只要按标注电压调整,可使本机工作在甲类工作状态。
附图中,第一级为电压放大电路,采用的是低噪声双三极管6N11(6N4、E88CC 等双三极管也可)。
第二级是普通电压放大电路,采用高μ双三极管6N9。
目的是使这一级有足够的电压放大。
第三级是分负载倒相电路,采用的是高μ双三极管6N9,倒相电路没有电压放大作用,主要是起倒相作用。
第四级是推动级,采用的是中低μ、低内阻的6N8P 双三极管。
推动级电路主要是为末级推挽输出管,提供足够高的激励电压。
该级采用共阴电压放大接法。
当加上190V 左右的屏极电压,并选合适的负载电阻R17、R18 时,可满足末。
许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3885、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。
这里推荐几款容易制作的靓声甲类功放电路以供参考。
其组成框图如图1所示。
该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。
2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。
3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。
限于篇幅,这里简介电压放大部分与电流放大部分。
以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略一、电压放大部分使用厂家提供的成品板。
该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。
原理简图如图2所示。
使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。
完善,音质也更理想。
二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。
1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。
2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。
3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。
几种常见的放大电路原理图解展开全文能够把微弱的信号放大的电路叫做放大电路或放大器。
例如助听器里的关键部件就是一个放大器。
放大器有交流放大器和直流放大器。
交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。
此外还有用集成运算放大器和特殊晶体管作器件的放大器。
它是电子电路中最复杂多变的电路。
但初学者经常遇到的也只是少数几种较为典型的放大电路。
读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。
首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。
放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。
在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
下面我们介绍几种常见的放大电路:低频电压放大器低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。
( 1 )共发射极放大电路图 1 ( a )是共发射极放大电路。
C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。
1 、 3 端是输入, 2 、 3 端是输出。
3 端是公共点,通常是接地的,也称“地”端。
静态时的直流通路见图1 ( b ),动态时交流通路见图 1 ( c )。
电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。
( 2 )分压式偏置共发射极放大电路图 2 比图 1 多用 3 个元件。
基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。
发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。
全平衡、新甲类纯后级功放这是一台双声道、全平衡、新甲类纯后级功放,每声道8Ω输出120W,4Ω输出200W。
今年五月份已经做完,但一直没时间编辑文字,搁至今日。
先上几张图,本人打字速度超慢,待我慢慢上,诸君莫急。
先说几句概念性的话:在论坛上常看到有人问“什么是全平衡”?在平衡式功放中所说的“平衡”或“全平衡”,是指信号的传输方式。
它是将信号分解成幅度相同、相位相反的两个信号,由两个相同或互补的放大器将信号放大,扬声器接在两个放大器的输出端之间,从输出形式上看是BTL接法。
全平衡传输方式,从输入到输出的全过程中,信号不通过地线传输。
通常我们说的“平衡”,或在有些普通功放中还带有平衡调节旋钮,这里所谓的“平衡”,是指把两个声道的音量(或增益)调到一致。
此平衡非彼平衡。
“非平衡”传输是以“地”为基准,信号是通过信号线和地线传输的。
至于BTL功放和全平衡功放的区别,从输出端看上去是一样的,都是桥式接法。
其主要区别在:从输入到放大的全过程中,看信号的传输是否与地线有关,既信号的负端是否接地。
以上概念不知是否说清,有大侠和高手敬请补充,请勿拍砖!闲话休提,言归正传。
先说说设计思路:平衡式放大器以其动态大、谐波小、频带宽、信噪比高、解析力强、输入阻抗高、输出阻抗低、直流性能稳定等诸多优点被高档功放采用。
然而,平衡式放大器由于电路结构不同,其效果也不尽相同。
有的平衡式放大器只用两个独立的放大器将平衡信号各自放大,在输出端接成BTL形式,如图1。
这种接法是典型的反相(或同相)放大器的接法。
其闭环共模抑制比等于1,它将输入端的共模电压直接送到输出端,并没有有效的抑制共模电压。
对于电位器产生的联动误差,以及两个放大器的差异造成的信号不对称,也没有增进平衡和对称的能力。
图2是由两个减法器构成的平衡式放大器,它的闭环共模抑制比等于开环共模抑制比,所以有很强的共模抑制能力。
同时,由于两个放大器“你中有我,我中有你”,解决了放大器和电位器差异造成的信号不对称、不平衡问题。
功率放大器电路图全集一.驻极体麦克风前置放大器该电路适用于采用驻极体麦克风的许多应用场合,这里用了以个1.5V的电池.C1和R3用来增强高音和压制低音,也可以根据愿意把它们去掉驻极体麦克风前置放大器二.TDA7057/TDA7057AQ伴音功放电路图· [图文] 差分功放仿真电路· [图文] 飞利浦有源重低音音箱功放电路图(SW2000)· [组图] 采用LM386制作的微小音频放大器电路· [图文] 5000W超轻,高功率放大器电路,无开关电源· [图文] 5,000W ultra-light, high-power amplifier, without switching-mode power supply· [图文] 简单实用的三极功放电路· [图文] 2N3055三极管功率放大器电路 (2N3055 Power Amplifier)· [组图] 摩托罗拉高保真功率放大器电路 (Motorola Hi-Fi power amplifier)· [图文] 带低音炮的10W的音频放大器(10W Audio Amplifier withBass-boost)· [图文] OPA604构成的音频功率放大器电路· [组图] STK465组成的2x30W(立体声)放大器及电路 (Amplifier 2x30W with STK465)·实用的大功率可控硅触发电路原理图· [组图] 低通滤波器电路/低音炮 (Low pass filter-Subwoofer)· [组图] 低阻抗麦克风放大器电路 (Low impedance microphone amplifier) · [图文] 22W音频放大器电路 (22W audio amplifier)· [图文] 100W RMS的放大器电路 (100W rms amplifier)· [组图] 50W功放电路 (50Watt Amplifier)· [图文] 迷你音箱:2W放大器电路 (Mini-box 2W Amplifier)· [图文] Two way cross-over 3500Hz· [组图] 25W场效应管音频放大器(25W Mosfet audio amplifier)· [图文] KMW-306通道无线话筒的原理及电路· [组图] LM1875功放器· [组图] 用LM317制作的功放电路图· [图文] LM1875制作功放电路(含电源电路)· [图文] TA8220功放电路图· [图文] XPT4990音频放大器应用电路· [图文] 大电流输出稳压电源· [图文] LM317高精度放大器电路· [图文] 2030功放电路图· [图文] 什么是高功率放大器· [图文] ZM312型十二路载波机线路放大器的功率放大级部分电路· [图文] 单边功率放大器的基本电路· [图文] 最大功率达到280W的LM3886功放电路图· [图文] BA328录音磁头放大电路· [组图] tda2822m功放电路· [组图] 大功率OCL立体声功放的制作及电路(20~100W×2双通道)· [组图] 用TDA1514制作的简单功放及电路· [组图] TDA2030型立体声功率放大器· [图文] DU30麦克前置放大器电路· [组图] 宽频带视频放大输出电路图· [图文] CD唱机加装自动放音电路· [组图] 傻瓜式混合型功率放大器电路及原理· [图文] 用TDA2822制作的助听器电路· [图文] 影像信号放大电路· [图文] 声音信号放大电路· [图文] 运算放大器音频电路· [图文] 四灯电子管发射机电路· [图文] 带有音频放大器的矿石收音机· [图文] 音频滤波电路· [图文] TDA2030功放电路双电源接法· [图文] TDA2030功放电路单电源电路· [图文] 视频放大器· [图文] 视频前置放大器· [图文] 由电子线路控制的可变增益视频支路放大器· [图文] 视频支路差动放大器· [图文] 双输入视频有线电视放大器· [图文] 简易视频放大器· [图文] 4.5MHz伴音中频放大器· [图文] 通用输出放大器· [图文] 具有低音控制的立体声电唱机放大器· [图文] 立体声前置放大器· [图文] 小型立体声放大器· [图文] 具有音调控制的单片机立体声前置放大器· [图文] 带晶体滤波器的45MHz IF放大器· [图文] RF前置放大器· [图文] 宽带前置放大器· [图文] LC调谐放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 455KHZ IF放大器· [图文] 可转换的HF VHF有源天线· [图文] 455KHz的中频放大器· [图文] 144-2304MHz的UHF宽带放大器· [图文] UHF放大器· [图文] 455KHz简易中频放大器· [图文] 20W 1296KHz的放大器模块· [图文] 采用MAR-1MMIC接收机和扫描机功率放大器· [图文] 用于手提式步话机的2M FET功率放大器· [图文] 10W 10M的线性放大器· [图文] 电视伴音系统· [图文] 宽带功率放大器· [图文] 20W 450MHz放大器· [图文] 30MHZ放大器· [图文] 小型宽带放大器· [图文] 70MHz RF功率放大器· [图文] 广播波段RF放大器· [图文] 435MHz的低噪音GASFET前置放大器· [图文] 宽频带RF放大器· [图文] 采用MAR-x的VHF和UHF前置放大器· [图文] HF前置放大器· [图文] 可增益放大器· [图文] 示波器前置放大器· [图文] 短波接收机的噪声放大限制器· [图文] 场效应管运算放大器传声器混合电路· [图文] 放大器冷却的电路Ⅱ· [图文] 放大器冷却电路Ⅰ· [图文] 前置放大器的收发定序器· [图文] 三极管功率放大电路· [图文] LMC6062仪表放大器· [图文] 红外光电二极管选择性前置放大器· [图文] 电子二分频功率放大器电路· [图文] 2×100W高保真双声道功率放大器· [图文] 单片音响功放集成电路TDA7294构成的100W功率放大器· [图文] 用两块高保真音响集成电路LM1875构成的BTL功率放大器· [图文] 2×70W双声道高保真功率放大器· [图文] 采用STK4040X1构成的70W音频功率放大器· [图文] 采用LM3875T构成的60W高保真功率放大器· [图文] 50W高保真功率放大器电路· [图文] 高保真音响功放集成电路TDA1514构成的40W功率放大器· [图文] 2×30W双声道音频功率放大器· [图文] 单电源、低压、低功耗运算放大器电路· [图文] NE5532前级放大电路· [组图] lm1875+ne5532功放电路· [图文] F4558基本接线图· [图文] 4558前级放大电路· [图文] 用LM1875构成的集成功率放大器电路· [图文] 甲乙类互补功率放大电路· [图文] 功放三极管的三种工作状态工作状态· [图文] 乙类互补对称功放电路· [图文] 实用OTL功放电路· [图文] 单片集成功率放大电路· [图文] QRP测音发声器/电码操作振荡器· [组图] tda2006单电源功放电路· [图文] 3V峰到峰单电源缓冲器· [图文] MOS场效应缓冲放大器· [图文] VFO缓冲放大器· [图文] 大电流缓冲器· [图文] 缓冲器/放大器· [图文] 分立元件功率放大器原理图· [图文] TDA2030功放集成块和BD907/BD908制作的40w功放电路· [图文] TDA7294功率放大电路· [图文] TDA7057/TDA7057AQ伴音功放电路图· [图文] TDA2822电路图· [图文] TDA2616功率放大电路图· [图文] TDA2040应用电路图· [图文] TDA2009 OTL单/双声道功率放大电路图· [图文] TDA1521A功率放大器电路· [图文] TDA1521双通道功率放大电路· [图文] TDA1514功放电路图· [图文] TDA1013伴音功放电路· [图文] TBA820/TBA820M功率放大电路图· [图文] TA8223/TA8223K双通道功率放大电路· [图文] TA8218/TA8218H三通道功放电路图· [图文] TA8211/TA8211AH双通道功放电路· [图文] TA7270/TA7270P功率放大器电路· [图文] TA7250/TA7250P功率放大器电路· [图文] LA4287伴音功放电路图· [图文] TDA3803/TDA3803A伴音处理器电路图· [组图] 音频分配放大器· [图文] 音频放大器。
最简单的甲类功放2010年7期《无线电》上刊登了《场效应管耳机放大器DIY手记◎梓门编译》,自己DIY一个,感觉电路简单,但音量小,于是在网络上找到一些相近的资料,特对照参考,应加一个前级放大。
BD8MI整理摘自/Solid/IRF610-Class-A-Headphone-Amp/作者:Giovanni Militano,加拿大。
电路简洁、元件都是常见的,适合电脑、MP3等输出信号较大的设备。
原设计专用于耳机,作者为他自己的 32欧姆 Grado SR80 耳机设计的。
但电路同样可以推动小功率的扬声器(偶是推的15W小音箱),音质不错,喜欢静静地欣赏音乐的朋友可以尝试下。
电路如下:下面简要说明制作过程和一点说明:1、电路采用了LM317构成的恒流源作为负载,提高了电流增益,作者注明最大效率为25%。
但因电路没有电压放大,所以只适合输输出信号较大的设备。
当然,你也可以为它再增加一级FET的小信号放大电路,偶用的是常见的2SK245。
2、恒流源的电流取值,作者设定的是250mA,但经过偶试验,电流在100mA听感也不错,而且发热量要小了很多,几乎可以不用散热器。
最好是多准备几个电阻(图中的5W电阻)自己感觉下。
3、电源问题,如果打算使用电脑的开关电源(直接用电脑电源的12V供电),需要做好滤波,偶用了两级LC滤波,滤除电源带来的噪声;如果是线性的电源适配器,简单的电容滤波即可。
要求更高的可以用专门线性稳压电源供电。
4、偏置电压的调整:如果没有设备测试,完全可以靠听感进行调整,一般的场效应管栅极开启电压为4V多一点,在附近范围仔细调整,直到获得最佳听感。
如果使用的电源电压并不固定,可以用个TL431甚至78L05~78L09稳压后用电阻分压,再送到偏置电压调整电位器(图中的那个100K),这样能更细致的调整栅极偏压。
5、输出耦合电容,图中的0.47和680uF并联基本能满足要求,但如果要求输出功率较大,可以增加容量。
电子管功放电路全集一.电子管差分放大电路,用的电子管有ECC83 pdf(12AX7)二.前级放大器电源电路图前级放大器电路如图1所示,左右声道完全相同。
它由两级电压放大加阴极输出器组成,V1为第一级电压放大。
现代数码音源CD、DVD的输出电压一般都在2V左右,信号从IN输入,经R1衰减,通过栅极防振电阻R 2加至V1栅极,V1将信号放大,然后从屏极取出放大后的信号电压经C1耦合到下一级。
W1为V1交流负载的一部分,又是V2的栅极回路,同时起着总音量的控制作用。
V2a为第二级电压放大,将放大后的信号电压直接送到V2b栅极,这就叫做直接耦合。
采用直接耦合的V2a 与V2b屏栅电位一致,在静态时足以使V2b管屏流截止而不工作,在动态时由于信号电压的加入,才能使V2b进人工作状态。
这种直接耦合,由于少用了一只耦合电容,不存在信号的电路损耗。
传输效率高,传真度好,减少了低频衰减,有利于改善幅频特性。
V1、V2a阴极电阻R4、R6都未并接旁路电容,有本级电流负反馈作用,能够提高音质、消除失真。
V2b为阴极输出器,把前级放大的音频信号电压从阴极引出,经C2传送给功率放大器。
阴极输出器具有非线性失真小,频率响应宽的特点,它没有放大作用,电压增益小于1,但它有一定的电流输出,有恒压输出特性,带负载能力很强,推动任何纯后级功率放大器从容不迫、轻松自如。
它的输入阻抗高,输出阻抗低,大约才几百欧姆,能和末级功放很好地匹配,即使用较长的信号线传输,也不会造成高频损失,抗干扰能力强,可以提高信噪比,提高音乐的纯度,音质较好。
一台靓声、工作稳定可靠的放大器,离不开优质的电源作保证,特别是前级放大器,对电源的品质要求相当高,不应有交流声和噪声,哪怕只有一丁点儿,经过功率放大后,都会产生可怕的声压级,会严重影响音质。
6922电子管前级放大器图2是前级放大器的电源电路图,高压部分采用晶体二极管作桥式整流,用扼流圈作n型滤波,电子管稳压供电。
音频功率放大器的组成.1 整体电路原理本立体声功率放大器所用的核心芯片是国际通用高保真音频功率放大集成电路TDA2030A。
本电路由三个部分组成,即电源电路、左右声道的功率放大器及输入信号处理电源(四运放)。
电源变压器将220V交流电降为双12V低压交流电,经桥式整流后变为±18V的直流电,作为功放及运放的供电电源,D5、R29组成电源指示电路,以指示电源是否正常,开关K为电源开关。
表一元件清单2.2 电源部分本设计是由TDA2030构成的双声道功率放大器,左右声道对称,TDA2030是一种单声道集成功率放大器,采用单电源或双电源供电方式,电路中主要构成框架如下:前置放大采用GL324四运放的两路运放的负反馈放大,放大倍数为10倍,后经过RC滤波电路组成的高低音调节,在经过平衡和电量调节输入功放芯片即TDA2030。
电路框图整流电路:桥式整流电路的作用是利用单向导电性的整流元件二极管,将正负交替的正弦交流电压整流成为单向脉动电压。
但是,这种单向电压往往包含着很大的脉动成分,距离理想的直流电压还差得很远。
稳压电路:稳压电路的作用是采取某些措施,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。
设计中是利用变压器将电网上面220V的交流电降为双12V低压交流电,再经过桥式整流把12V的交流成分整流成±18V的直流电,经过滤波滤除直流成分中的交流部分,考虑到芯片电源电压要求比较宽泛本设计中没有采用稳压部分。
2.3 前置放大部分前置放大器是各种音源设备和功率放大器的连接设备,起到信号放大的作用。
音源信号在经过前置放大器的放大后,就可以直接送入功率放大器,使功率放大器能正常工作。
前置放大器还可以对信号的频率进行调节和控制。
本设计的前置放大部分是采用GL324四运算放大芯片的负反馈实行的。
优点在于其在分压偏置电路中利用负反馈的原理以稳定放大电路的工作,此外还可以增加增益的稳定性,减小非线性失真,展开频带及控制输入输出阻抗。
·最简单的微型扩音机我们利用一只旧电话机中拆下的炭精送话器,以及几只常用的电子元件,即能组装一台无须调整的结构相当简单,且音质清晰洪亮的最简易微型扩音机,很有趣味。
在一些小空间扩音效果相当不错。
具体电路图见附图所示。
元件选择:炭晶送话器从老式旧电话机的听筒内拆下,大功率三极管采用3AD17,也可以用3ADl8。
但为减少扩音时产生的噪声,三极管要求穿透电流尽可能达到最小,但管子的放大倍值越大越好,一般应在70一90以上。
喇叭和输出变压器采用晶体管收音机上的即可,电源电池用6伏叠层电池,也可用充电电池和整流电源。
安装试音:将几只元件焊装在长条形印刷线路板上,找一支中号的塑料壳体的手电筒,旋下电筒头罩去掉玻璃、反光罩及小电珠,然后将碳晶送话器安装在罩子内,并焊接好送话器引线至电路板上。
在电筒前端各钻3mm小孔二个,将装入微型电源钮子开关及二芯插座各一个,待全部接线连接焊好后,把电池与线路板塞入电筒内,最后旋上已装有送话器的电筒头罩盖便完成。
试音时,把带有喇叭引线插头插入电筒前端插座上,开启电源开关对准送话器喇叭内便传出洪亮扩音声。
(读者若有兴趣在电路中串接入音乐集成块电路,便使成为扩音、放音两用机)。
在调试扩音中,若喇叭出现声音有点失真、沉闷或感觉音量不够大时。
可适当调整R1的电阻值,边调边放音试听,直至音质洪亮不失真为止。
·外围元件最少的25W功放电路TDA1521A用高保真功放IC TDA1521A制作功放电路,具有外围元件少,不用调试,一装就响的特点。
适合自制,用于随身听功率接续,或用于改造低档电脑有源音箱。
TDA1521A采用九脚单列直插式塑料封装,具有输出功率大、两声道增益差小、开关机扬声器无冲击声及可靠的过热过载短路保护等特点。
TDA1521A既可用正负电源供电,也可用单电源供电,电路原理分别见图1(a)、(b)(点此下载原理图)。
双电源供电时,可省去两个音频输出电容,高低音音质更佳。
音频功率放大集成电路浏览214发布时间2009-08-29 FS810是性能优良的音频功率放大器,如图所示为FS810集成功率放大器的实用电路。
图(a)中,扬声器接于输出电容C5和地之间,⑧脚和地之间接100kΩ电阻构成交流反馈支路。
为使低音丰富,另加了C(0.047μF)、R4(8.2kΩ)支路,接于⑥脚和12脚之间,作为低音提升网络。
C10、R5为自举网络,R3、R4为电抗校正网络,用于消除扬声器的感抗分量。
图(b)中,将扬声器接于输出端电容C5的正极和电源正极之间,输出电容C5和喇叭阻抗兼作自举网络元件,因此元件少、电路简单,但扬声器必须悬浮不接地。
LM4765双声道30W功率放大IC浏览351发布时间2009-06-21LM4765采用单列15脚塑料封装,自带小型散热片。
输出功率30W×2,电源电压±9V~±32V范围。
LM4765组成音频功放的典型应用电路如下图:(只画出一个声道)电路中*号元件对音频频响特性影响较大。
LM4765使用时应外加足够面积散热片。
TDA2616双电源接法和单电源接法浏览326发布时间2009-06-12 TDA2616双声道音频功率放大IC既可以采用双电源供电也可以采用单电源供电,TDA2616本身特性较好,如条件许可应首选双电源供电以提高听音质量。
TDA2616的工作电源电压范围是±7.5V~21V。
在±16V,THD=0.5%时,输出功率为2×12W。
TDA2616双电源接法应用电路:TDA2616单电源接法应用电路:TDA2616引脚功能:<< LM4765双声道30W功率放大ICTDA2616双声道功放(2×12W)浏览391发布时间2009-06-12 TDA2616是双声道音频功率放大集成电路,主要应用于彩电、音响家电、有源音箱等设备中用作音频功率放大。
输出功率2×12W。
15W纯甲类功放电路图及原理纵观目前市场上的Hi-Fi功放,输出功率在100W以上的以甲乙类放大产品居多,50~100W的功放中甲类放大产品占有相当的比例。
从高保真的角度来看,功率储备大些当然是好,但若从节省能源的角度来看,就值得考虑了。
由于纯甲类功放的效率很低,所以在您欣赏美妙音乐的同时,约有百分之七八十以上的电能变成热量散发掉了。
一台每声道输出功率为50W的纯甲类功放,若以30%计其效率,则静态功耗就有 330W之大,说句玩笑话,简直是“守着火炉吃西瓜”。
笔者在帮人选购功放时就经常遇到这样的情况:很多人虽然为纯甲类功放的音色所倾倒,但也往往因其“发高烧”的工作状态而忍痛割爱。
功耗大也是电子管功放的致命弱点。
市场经济是无情的。
国内几家有名的生产胆机的厂家,如斯巴克、欧博、大极典也先后推出了自己的晶体管功放,就证明了这一点。
根据我国国情,一般工薪阶层的居室面积多在二十平方米以下,并且通常以客厅或卧室兼作听音室。
若音箱的灵敏度在89dB 以上,则10~20W的纯甲类功放就可满足一般欣赏要求。
如果在歌舞厅里那样的环境中让我们的耳朵长期承受大音量,听力就会逐渐减退。
再说,吵得左邻右舍不得安宁,也不合适。
所以说,如果生产一些功率在15W左右的音质音色较好的功放,静态功耗在100W以下,肯定会有市场。
可惜这类功放是个空白。
日本金嗓子有一款A20,每声道纯甲类功放20W,音质有口皆碑,但价钱却令人望而却步。
现在,国内生产功放的厂家似乎在攀比,功率越做越大,重量越做越重,但销路却不见得很好。
何不制作一些“好吃不贵”的功放来投放市场呢?本着这个思想,我们设计了这台15W纯甲类功放,试图在这方面做一些尝试。
一电路原理1、功放电路由 VT1、 VT2组成差动放大电路,每管静态电流约为0.5mA。
R3为VT1的集电极负载电阻,VT1与推动级VT4之间为直接耦合。
输出级由两只型号相同的 NPN型大功率晶体管VT5、VT6组成,而没有采用互补对称推挽电路。
输出管VT6对于负载(扬声器)来说是共发射极电路,而VT5则是射极输出电路,因此是不对称放大。
但实验测试表明,整个放大电路在取消大环负反馈(将R5短路)时的开环失真却很小,而且主要是偶次谐波失真。
这个功劳应该归功于推动级电路。
推动电路是本机最具特色的电路,它的作用和效果与传统的RC自举电路相比,有过之而无不及。
VT4为集-射分割式倒相电路,分别由其集电极和发射极输出一对大小相等、方向相反的信号。
VT4对于输出管VT6来说为射极输出电路,电压放大倍数小于1。
从VT4集电极输出的信号通过交流电阻很小的发光二极体VD1,加到输出推动管VT3的基极。
VD1的正向导通压降约为1.9V 左右,可看作一个噪声很小的稳压二极管,它使得VT3的发射极电阻R7两端的直流电压UEC基本不变,约比VD1的稳压值小0.7V。
对交流信号而言,R7是与VT3的发射结电阻相并联的。
VT3和VT5组成同极性达林顿式复合管。
因此推挽放大的上臂是由一级共射放大电路(VT4)和二级射极输出电路(VT3、VT5)构成的,而推挽电路的下臂是则由一级射极输出电路(VT4)和一级共射放大电路(VT6)构成,可见是不对称的推挽放大电路。
故在选择放大管时,这几只管子的电流放大系数也不必配对。
这一点在工厂大批量生产时尤为重要,可以大大降低成本。
该样机各管β值如下:β1=β2=110,β3=50,β4=90,β5=70,β6=90。
也就是说,要把β值较大的管子优先安排为VT4和VT6。
该功放电路的开环电压放大倍数约为504,闭环电压放大倍数由R4和R5决定,约为15.7。
甲类推挽功率放大电路的理论最高效率为50%,该样机实测最大不失真输出电压的有效值为11V,折合成输出功率约为15W (8Ω),静态功耗约为40W,因此最高效率为37.5%。
当无信号输入时,效率为零,40W功率几乎全部消耗于两只输出管上,因此要加上足够面积的散热器,并且保证通风情况良好。
总之,该功放有以下特点:1功率输出管的电流放大系数不需配对;2用笔者设计的推动电路取代了传统的自举电路,频率响应好;3输出电压幅度大;4电路简单、调整容易、便于制作。
2、稳压电源由于功放为OCL电路,输出端与扬声器直接耦合,故一般应加装延时保护电路,但由于该机采用了具有短路保护及软启动功能的±17V 双路稳压电源,故省略了这部分电路。
正负稳压电路均采用集电极输出式调整电路,效率高且具有短路保护功能,但不能够自启动。
VT7、VT9组成复合电源调整管。
VT11为取样放大管。
由于VT11的基极接地,故发射极电位必须为-0.7V才能使它工作于放大状态。
所以R19的下端不能接地,而是接至-17V。
所以,如果万一负输出电源对地短路,将会使 VT11的发射极与基极间的电压为零,从而使VT11截止,这样调整管VT9、VT7因得不到基极电流也截止,结果使得正输出电源电压为零。
由于正、负稳压电路是对称的,故当正电源对地短路时,也会使负电源电压为零。
功放电路的输出端省却了扬声器保护电路的原因也在于此,万一有一只输出管发生击穿短路,另一只输出管也会由于上述保护功能而得不到电源电压,这样扬声器中就不会有大的直流电流通过,从而有效地保护了扬声器。
该电源的输出电压基本上由VD4、VD5两只稳压管的稳压值决定,约比它们的稳压值低0.7V左右(即减去VT11、VT12的发射结直流压降),故对两只稳压管要仔细挑选配对。
输入端滤波电容器每边采用两只4700μF的电解电容器并联使用,而输出端的滤波电容器每边仅采用一只10μF的无极性电容器。
通过样机实测,当输出电流为2.4A(满载)时的纹波电压很小:正电源侧为0.8mV,负电源侧为1.25mV。
此外,波形并非100Hz的锯齿状,而是频谱较宽的噪声状。
该电源的稳压性能之所以较好,一是由于集电极输出式稳压电路的调整管具有一定的电压放大倍数,二是由于取样电路的取样比等于1,输出端的电压变化直接通过VD4、VD5耦合到了取样放大管VT11、VT12的发射极。
为了消除一般OCL电路开机时通过扬声器的冲击电流造成的“噗”声,该电源还设计了软启动电路。
其工作原理如下:开机后,滤波电容器C3上的正电压通过 R10向C5充电,C5上的电压按指数规律上升。
该电压通过R12及VD2加到正电源输出端,同时通过R16为VT12的发射极提供电流,使负电源也同时启动。
电源电压达到正常值后,正输出电压通过R14给单向可控硅VD3提供触发电压而使它导通。
VD3导通后,其阳极电压降低到0.7V以下,故二极管 VD2截止。
C5上的电压通过R12和VD3放电。
延迟时间由R10、C5时间常数决定,本例中此常数为0.33秒,开机时音箱中一点儿声响都没有。
该电源的效率很高,调整管集电极和发射极之间电压降至1V 时,输出电压仍可保持稳定。
若市电交流电压为220V时,稳压电路的输入电压设定为±22V (带额定负载),则可以使稳压电源在市电变化±10%时,仍工作在最佳状态。
若以调整管压降为7V计算,在满负荷2.4A时的管耗约17W,因此只需较小的散热器,此时效率在70%以上。
当调整管压降为3V时,效率为85%。
总之,该电源电路特点是:具有软启动功能;具有正负电源分别短路或同时短路的保护功能,可省去扬声器保护电路;高效率,约70~85%以上;低纹波系数。
二、制作与调整要点1.元器件的选择功率输出管VT5、VT6选用东芝的2SC3281,β在70~110之间。
实验时也曾选用过三肯的2SC 2922,但发现容易产生高频自激。
推动管VT4选用NEC的2SD401,β值为70~90,VT3也用2SD401,β在50~70之间。
当输出管的β值在100以上时,VT3、VT4也可选用国产管3DG130(3DG12)。
输入级VT1、VT2可选用9012或9015等,β值在100左右,不宜太高,但要求配对;也可选用P沟道结型场效应晶体管,但耐压应不低于40V(因手头无此类管子,故未曾实验)。
电阻的功率R6、R10应选1W以上, R7、R16、R19应选1/2W以上,其余不作要求。
电阻 R9采用两只1W、0.51Ω电阻并联,作为测量时取样使用。
稳压管VD4、VD5应选1W 以上功率的。
单向可控硅可选1A电流的任何型号。
电源部分的VT7、VT8选用MJ2955和2N3055或其他互补配对管,要求β大些,最好大于80。
推动管VT9、VT10选用中功率管3CK9、3DK9等,β值在50~80之间。
取样放大管VT11、VT12选用9014和9015,β值大于100。
还要注意正负电源各对应管的β值应该相近,即大致配对。
电容C1、C6、C7选用涤纶或聚丙烯电容。
稳压电源输入滤波电容C3、C4采用四只4700μF35V优质电解电容两两并联使用。
电源变压器功率容量应不小于100VA,次级交流电压双18V,电流3A以上。
整流管可用1N5401。
2.调整要点电源部分几乎不需要调整。
如果电源不能自启动,则应适当减小R10的数值,但应在满载时能够自启动的前提下尽量大一些,以增大延迟时间。
功放部分的调整可归结为两项;一是调整R2使输出端电位等于零;二是调整R6使R9上的压降等于0.3V,此时末级静态电流约为 1.18A。
注意一开始可将电流调得稍小些,如0.9A,等预热一段时间以后再调到上述规定的数值。