基于模板匹配和特征点匹配相结合的快速车牌识别方法
- 格式:pdf
- 大小:272.21 KB
- 文档页数:3
目录1技术要求 (1)2基本原理 (1)3建立模型描述 (2)3.1图像采集 (2)3.2图像预处理 (2)3.3车牌号码定位 (3)3.4车牌字符分割 (3)3.5车牌字符识别 (4)4源程序代码 (5)4.1图像预处理与车牌定位 (5)4.2车牌字符分割 (10)4.3车牌字符识别 (13)4.3.1 构造训练样本如下图所示的数字和字母 (13)4.3.2 构造输入样本,按同样的方法,将前面分割出的样本归一化 (14)4.3.3 神经网络进行识别 (14)5调试过程及结论 (18)6心得体会 (18)7 参考文献 (19)汽车车牌的号码识别1技术要求用相机拍摄获取彩色汽车车牌的图片,对图片进行相应处理(如,去噪,去除背景提取目标,边缘分割,轮廓提取等)提取得到车牌上的数字号码(只能用黑色显示)。
整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,其中字符识别过程主要由以下3个部分组成:①正确地分割文字图像区域;②正确的分离单个文字;③正确识别单个字符。
用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。
2基本原理车牌号码识别的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,得到输出结果。
图1 车牌号码识别系统原理图车牌号码识别系统原理图各部分说明如下:(1)图像预处理:对汽车图像进行图像转换、图像增强和边缘检测等。
(2)车牌定位:从预处理后的汽车图像中分割出车牌图像。
即在一幅车辆图像中找到车牌所在的位置。
(3)字符分割:对车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像。
(4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
车牌相似度算法是一种用于计算两个车牌图像之间的相似程度的算法。
它可以通过比较车牌图像的形状、颜色、纹理等信息来评估它们的相似性。
以下是一个简单的车牌相似度算法的实现过程:1. 预处理:对输入的车牌图像进行预处理,包括灰度化、二值化、噪声去除等操作,以便于后续的特征提取。
2. 特征提取:从车牌图像中提取特征,包括车牌的形状、字符的形状、字符之间的距离、字符的颜色等。
这些特征可以用于构建一个特征向量,用于表示每个车牌图像。
3. 相似度计算:根据特征向量的相似程度,计算两个车牌图像之间的相似度。
可以使用欧几里得距离、余弦相似度等度量方法来衡量两个特征向量之间的相似性。
具体的实现过程如下:1. 确定相似度的阈值,可以根据实际情况进行调整。
2. 对每个输入的车牌图像,提取特征向量,并将其与其他车牌图像的特征向量进行比较。
3. 对于每个特征向量,计算其与所有其他特征向量的相似度,并找到最相似的特征向量。
4. 将所有最相似的特征向量的相似度求和,得到该车牌图像与其他所有车牌图像的平均相似度。
5. 将所有输入的车牌图像的平均相似度进行比较,得到最终的车牌相似度结果。
需要注意的是,车牌相似度算法的准确性和性能受到多种因素的影响,包括车牌图像的质量、特征提取方法的准确性、相似度计算方法的精度等。
因此,在实际应用中,需要根据具体情况进行调整和优化。
此外,还可以使用深度学习等方法来提高车牌相似度算法的性能。
例如,可以使用卷积神经网络(CNN)等深度学习模型来自动提取车牌图像中的特征,并使用分类器来评估两个车牌图像之间的相似度。
这种方法可以自动学习车牌图像的特征,并具有较强的泛化能力,能够更好地适应不同场景下的车牌识别任务。
《数字图像处理》课程设计报告设计题目:基于图像处理的车牌识别技术学院:xxxxxxxxxxxxxxxx专业:xxxxxxxxxxxxxxxxxxxxxxxxxxx姓名:xxxxxxxxxxxxxxxxxxxxxxx学号:xxxxxxxxxxxxxxxxxxx指导教师:xxxxxx2015 年xx 月xx 日摘要智能交通系统已成为世界交通领域研究的重要课题,车牌识别系统作为智能交通系统的核心,起着非常关键的作用。
目前,图像处理技术在车牌识别中的应用研究已经成为科学界的一个重要研究领域。
本课程设计旨在粗浅地运用所学基本原理和知识分析数字图像处理技术在友好环境下的应用(所选车牌识别的车辆图片均为友好环境下,易于处理的实验图片,不具有广泛性)。
以车牌为研究对象,主要研究如何通过图像的预处理、车牌的定位、车牌字符分割和字符识别等一系列过程,完成车牌的识别。
关键词:智能交通、数字图像处理、车牌识别ABSTRACTIntelligent transportation system has become an important research topicin the world of transportation, license plate recognition system as thecore of intelligent transportation system, plays a key role. At present,the application of image processing technology in vehicle license platerecognition has become an important research area of the scientificcommunity.This course is designed to scratch the surface and apply the knowledgeto analyze the basic principles of digital image processing technologyin a friendly environment (experimental vehicle license platerecognition image selected pictures are environment-friendly, easy tohandle, does not have the breadth) . With license plate for the study,the main research how image preprocessing, license plate and licenseplate character segmentation and character recognition process and aseries of complete license plate recognition.Keywords:smart transportation 、Image Processing 、License Plate Recognition目录1、绪论 (4)1.1问题提出 (4)1.2背景及现状分析 (4)1.3目的及意义 (5)1.4开发工具 (5)2、系统设计 (5)2.1总体设计方案 (5)2.2流程图 (5)2.3模块功能分析 (6)2.3.1图像预处理 (6)2.3.2车牌定位 (8)2.3.3字符分割 (8)2.3.4字符识别 (10)3、系统结果分析 (12)3.1本系统结果分析 (12)3.2本系统的不足 (12)4、课程设计总结 (13)5、课程设计体会 (13)6、参考文献 (13)7、附录 (14)1、绪论伴随着工业的迅速发展,城市化的进展和汽车的普及,世界各国的交通量急剧增加。
基于MATLAB的车牌识别系统设计与实现刘忠杰;宋小波;何锋;李芬;周培莹;刘百辰【摘要】This paper introduced a design and experimental simulation method of license plate recognition system based on the research of license plate location,license plate character segmentation and license plate character recognition.This method firstly located%通过对车牌定位、车牌字符分割和车牌字符识别进行研究,提出了一种车牌识别系统的设计和实验仿真方法。
该方法首先采用基于Canny算子边缘检测和数学形态学相结合的方法定位出车牌,进行二值化、滤波和形态学开运算后使用投影二分法分割出7个车牌字符,最后使用模板匹配和特征统计相结合的方法识别出车牌字符。
试验表明该方法是有效的、可行的,与传统使用单一算法相比较,该方法大大提高了车牌识别系统的正确率。
【期刊名称】《微型机与应用》【年(卷),期】2011(030)014【总页数】4页(P37-40)【关键词】图像预处理;车牌定位;车牌字符分割;车牌字符识别【作者】刘忠杰;宋小波;何锋;李芬;周培莹;刘百辰【作者单位】常州先进制造技术研究所机器人系统实验室,江苏常州213164;常州先进制造技术研究所机器人系统实验室,江苏常州213164;常州先进制造技术研究所机器人系统实验室,江苏常州213164;常州先进制造技术研究所机器人系统实验室,江苏常州213164;常州先进制造技术研究所机器人系统实验室,江苏常州213164;常州先进制造技术研究所机器人系统实验室,江苏常州213164【正文语种】中文【中图分类】TP391.43随着世界经济和科学技术的不断发展,智能交通系统越来越多地被人们所关注。
本科生毕业设计(论文)题目:车牌识别系统的设计与实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
模糊车牌识别思路------ by:吴谚神,张伟,向刚随着计算机和视频技术的发展,车牌自动识别系统己成为智能交通系统的重要组成部分,并已广泛应用于车辆追查和跟踪、车辆出入控制、公路收费监控等领域。
完整的车牌自动识别系统由图像釆集、图像处理、模糊识别等模块组成,其中对一幅已知车辆数字图像进行预处理、车牌定位、二值转换、车牌分类、车牌分割、字符识别、结果优化的过程简称车牌模糊识别。
目前国内已有众多单位开展了车牌识别技术研发,虽然各家都取得一定的成功,但车牌识别技术本身毕竟要符合实战要求,为此笔者综观各家实际车牌识别系统后提出了车牌识别系统的几点不足之处和改进方法,供该领域的专业人士和领导参考。
一、图像预处理根据三基色原理,世界上任何色彩都可以由红绿蓝(RGB)三色不同比例的混合来表示,如果红绿蓝(RGB)三个信号分别由一个字节表示,则该图像颜色位数就达到二十四位真彩,也就是说在二十四位真彩的数字图像中每个像素点由三个字节来表示,根据数字图像水平和垂直方向像素点数(即图像分辨率)可计算出一幅图像实际位图大小。
事实上,在车牌自动识别系统中车辆图像是通过图像采集卡将运动的车辆图像抓拍下来,并以位图的格式存放在系统内存中。
这时的车辆数字图像虽然没有被人为损伤过,但在实际道路上行驶的车辆常会因为各种各样的原因使得所拍摄的车辆图像效果不理想,如外界光线对车牌的不均匀反射、极强阳光形成的车牌处阴影、摄像机快门值设置过大而引起的车辆图像拖影、摄像头聚焦或后背焦没有调整到位而形成的车辆图像不清晰、由于视频传输线而引起的图像质量下降、所拍摄图像中存在的噪声干扰、所安装的车牌不规范或车辆行驶变形等等。
这些都给车牌的模糊识别增加了难度,在现有的技术条件下任何优秀、先进的车牌识别软件也是无法达到百分之百车牌正确识别率。
但我们可以对车辆图像根据不同应用特点进行识别前的预处理,尽最大可能提高车牌正确识别率,这些图像预处理包括图像平滑、倾斜校正、灰度修正等。
车牌识别毕业设计论文车牌识别是一项实用的技术,已广泛应用于交通管理、安全监控和智能导航等领域。
本毕业设计旨在研究和实现一种高效准确的车牌识别系统,通过图像处理和模式识别的方法,实现车牌的自动检测、字符分割和识别。
在车牌识别系统中,图像处理是最关键的环节之一、首先,需要对图像进行预处理,包括二值化、滤波和去噪等操作,以提高后续处理的准确性。
然后,通过边缘检测和形态学操作,可以实现车牌的自动检测。
通过比较不同车牌的特征,可以找到最佳的车牌位置。
在车牌的字符分割过程中,一般采用基于垂直和水平投影的方法。
首先,通过垂直投影,可以得到每个字符的位置和宽度。
然后,通过水平投影,可以得到字符的高度和行间距。
通过这些信息,可以将车牌字符逐个分割出来,为后续的字符识别提供准备。
字符识别是车牌识别系统的最后一步,也是最复杂的一步。
常用的方法包括基于模板匹配和基于机器学习的方法。
在模板匹配中,需要提前准备一组字符模板,并将待识别的字符与模板进行比较,找出最佳匹配的字符。
在机器学习方法中,常用的算法包括支持向量机(SVM)和深度学习等,通过训练大量的样本数据,建立一个分类模型,实现字符的自动识别。
在实际应用中,车牌识别系统还需要考虑到诸多因素,如车牌大小的变化、光线条件的差异和图像角度的旋转等。
为了提高系统的鲁棒性,可以采用自适应阈值处理、学习算法和特征提取等技术手段。
通过本毕业设计,可以深入了解车牌识别的原理和实现方法,并通过实验验证其准确性和效率。
此外,还可以进一步优化和改进车牌识别系统,以提高其性能和适应性。
停车场系统识别车牌识别原理
停车场系统的车牌识别原理主要包括以下几个步骤:
1. 图像采集:通过安装在停车场入口或出口处的摄像头,对车辆进出的图像进行实时采集。
2. 图像预处理:对采集到的图像进行处理,包括图像的旋转、裁剪、去噪等操作,以便提高后续车牌字符的识别准确率。
3. 车牌定位:通过图像处理技术,识别图像中的车牌位置,并将车牌区域进行标记或框出。
4. 字符分割:对车牌区域进行字符分割,将每个字符分隔开来,便于后续的字符识别。
5. 字符识别:将分割好的字符送入字符识别引擎中,进行字符识别。
常用的识别方法有基于模板匹配、神经网络、支持向量机等。
6. 车牌识别:将识别出的字符组合起来,得到完整的车牌号码。
需要注意的是,车牌识别的准确率受到诸多因素的影响,如光照条件、天气情况、车牌遮挡等。
为提高准确率,还可以采用一些增强技术,如多通道图像融合、自适应阈值等。