备考2014中考数学——--中位线
- 格式:doc
- 大小:2.68 MB
- 文档页数:18
中考数学的备考⽅法和解题技巧如何有针对性的⾼效提分⾄关重要。
中考更像是⼀场竞技赛,除了不断提升⾃⼰,踏实做好训练,更重要的是找准进攻⽅向,知道中考命题规律,同时也要把握好⾃⼰的作战节奏。
好好把握,则马到成功;有所偏离,则功亏⼀篑!⼀、备考⽅法⼤胆取舍——确保中考数学相对⾼分“有所不为才能有所为,⼤胆取舍,才能确保中考数学相对⾼分。
”针对中考数学如何备考,著名数学特级⽼师说,这⼏个⽉的备考⼀定要有选择。
“⾸先,要进⾏⼀次全⾯的基础内容复习,不能有所遗漏;其次,⼀定要⽴⾜于基础和难易度适中,太难的可以放弃。
在全⾯复习的基础上,再次把掌握得似懂⾮懂,知道但⼜不是很清楚的地⽅搞清楚。
在做题练习上要学会选择,决不能不加取舍地做题,即便是⽼师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但⼜不能肯定的题认真做⼀做,把根本没有感觉的难题放弃不做。
千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精⼒。
”做到基本知识不丢⼀分某外国语学校资深中考数学⽼师建议考⽣在中考数学的备考中强化知识⽹络的梳理,并熟练掌握中考考纲要求的知识点。
“⾸先要梳理知识⽹络,思路清晰知⼰知彼。
思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识⽹络,对知识做到⼼中有谱。
”他说,“其次要掌握数学考纲,对考试⼼中有谱。
掌握今年中考数学的考纲,⽤考纲来统领知识⼤纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢⼀分,那就离做好中考数学的答卷⼜近了⼀步。
根据考纲和⾃⼰的实际情况来侧重复习,也能提⾼有限时间的利⽤效率。
”做好中考数学的最后冲刺距离中考越来越近,⼀⽅⾯需按照学校的复习进度正常学习,另⼀⽅⾯由于每个⼈学习情况不⼀样,⾃⼰还需进⾏知识点和丢分题型的双重查漏补缺,找准短板,准确修复。
压轴题坚持每天⼀道,并及时总结⽅法,错题本就发挥作⽤了。
最后每周练习⼀套中考模拟卷,及时总结考试问题。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学 习 资 料 专 题线段垂直平分线、角平分线、中位线一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8D第7题图【答案】B【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO 是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt△ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B. 【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) .A .32B .2C .52D .3第8题图【答案】C ,【解析】∵△ABC的周长为19,BC=7,∴AB+AC=12.∵∠ABC的平分线垂直于AE,垂足为N,∴BA=BE,N是AE的中点.∵∠ACB的平分线垂直于AD,垂足为M,∴AC=DC,M是AD的中点.∴DE=AB+AC-BC=5.∵MN是△ADE的中位线,∴MN=12DE=52.故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC中,点D在AB边上,DE//BC,与边AC交于点E,连接BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若2AD>AB,则3S1>2S2B. 若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D. 若2AD<AB,则3S1<2S2【答案】D【思路分析】首先考虑极点位置,当2AD=AB即AD=BD时S1,S2的关系,然后再考虑AD>BD 时S1,S2的变化情况。
关键点十七 图形的分割与剪拼纵观近年来全国各地的中考试卷,图形操作型的问题渐多,而这些题又可分为两大类:一类是围绕“图形变换”展开的(我们已有专题论及),另一类是围绕图形的分割与剪拼展开的。
我们现在要研究的,就是这后边的一类,分割与剪拼的形式与依据主要有:Ⅰ、原图形基础上进行分割,而分割的要求又分为: (1)借助于“边、角”计算的分割; (2)依“面积等分”为要求的分割;Ⅱ、将原图形等面积地变化成新图形的“剪与拼”。
一、图形的分割1、借助于“边、角”计算的分割例1 (1)已知ABC ∆中,︒=∠︒=∠5.67,90B A ,请画一条直线,把这个三角形分割成两个等腰三角形。
(2)已知ABC ∆中,C ∠是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求ABC ∠与C ∠之间的关系。
【观察与思考】对于(1)只需“构造等角”;对于(2), (1) 可从“等边”推演角之间的关系。
解:(1)如图①,图②,有两种不同的分割法。
(2)设ABC ∠y =,C ∠x =,过顶点B 的直线 ① 交边AC 于D 。
在等腰三角形DBC 中,①若C ∠是顶角,如图③,则︒>∠90ADB ,,2190)180(21x x CDB CBD -︒=-︒=∠=∠ y x A --︒=∠180。
②此时只能有ABD A ∠=∠,即)2190(180x y y x -︒-=--︒, ︒=+∴54043y x ,即ABC ∠与C ∠的关系是:C ABC ∠-︒=∠43135。
②若C∠是底角,则有两种情况。
③AC A BC︒5.67 ︒5.67 ︒5.22︒5.22AB C︒45 ︒5.22︒5.22︒45 ABC DABD ∆中,x y ABD x ADB -=∠=∠,2。
Ⅰ、由AD AB =,得x y x -=2,此时有x y 3=,即有关系C ABC ∠=∠3。
④ Ⅱ、由BD AB =,得x yx 2180=--︒,此时 ︒=+1803y x ,即C ABC ∠-︒=∠3180。
中考数学重点知识专题讲解{线段、角的计算与证明问题}【知识点诠释】中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中,难题了。
大家研究今年的北京一模就会发现,第二部分,或者叫难度开始提上来的部分,基本上都是以线段,角的计算与证明开始的。
城乡18个区县的一模题中,有11个区第二部分第一道题都是标准的梯形,四边形中线段角的计算证明题。
剩下的7个区县题则将线段角问题与旋转,动态问题结合,放在了更有难度的倒数第二道乃至压轴题当中。
可以说,线段角问题就是中考数学有难度题的排头兵。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
在这个专题中,我们对各区县一模真题进行总结归纳,分析研究,来探究线段,角计算证明问题的解题思路。
第一部分真题精讲【例1】如图,梯形ABCD 中,AD BC ∥,9038BD CD BDC AD BC =∠===,°,,.求AB 的长.【思路分析】线段,角的计算证明基本都是放在梯形中,利用三角形全等相似,直角三角形性质以及勾股定理等知识点进行考察的。
所以这就要求我们对梯形的性质有很好的理解,并且熟知梯形的辅助线做法。
这道题中未知的是AB,已知的是AD,BC 以及△BDC 是等腰直角三角形,所以要把未知的AB 也放在已知条件当中去考察.做AE,DF 垂直于BC,则很轻易发现我们将AB 带入到了一个有大量已知条件的直角三角形当中.于是有解如下. 【解析】作AE BC ⊥于E DF BC ⊥,于F .DF ∥AE ∴,AD BC ∴∥,四边形AEFD 是矩形.3EF AD AE DF ∴===,.BD CD DF BC =⊥,,DF ∴是BDC △的BC 边上的中线. 19042BDC DF BC BF ∠=∴===°,. 4431AE BE BF EF ∴==-=-=,. 在Rt ABE △中,222AB AE BE =+ 224117AB ∴=+=.【例2】(2010,海淀,一模已知:如图,在直角梯形ABCD 中,AD ∥BC ,90DCB ∠=︒,AC BD ⊥于点O ,2,4DC BC ==,求AD 的长.ODCB A【思路分析】这道题给出了梯形两对角线的关系.求梯形上底.对于这种对角线之间或者和其他线段角有特殊关系(例如对角线平分某角的题,一般思路是将对角线提出来构造一个三角形.对于此题来说,直接将AC 向右平移,构造一个以D 为直角顶点的直角三角形.这样就将AD 转化成了直角三角形中斜边被高分成的两条线段之一,而另一条线段BC 是已知的.于是问题迎刃而解.OEDCBA【解析】过点D 作//DE AC 交BC 的延长线于点E . ∴ BDE BOC ∠=∠. ∵ AC BD ⊥于点O , ∴ 90BOC ∠=︒.∴ 90BDE ∠=︒. ∵ //AD BC ,∴四边形ACED 为平行四边形. ∴ AD CE =.∵ 90,90BDE DCB ∠=︒∠=︒, ∴ 2DC BC CE =⋅. ∵ 2,4DC BC ==, ∴ 1CE =. ∴ 1AD =此题还有许多别的解法,例如直接利用直角三角形的两个锐角互余关系,证明△ACD 和△DBC 相似,从而利用比例关系直接求出CD 。
《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12n A A A 、、在同一个圆上的方法 当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为.(1)直线和⊙O 没有公共点直线和圆相离.(2)直线和⊙O 有唯一公共点直线和⊙O 相切. (3)直线和⊙O 有两个公共点直线和⊙O 相交.4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径. ②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】 类型一、圆的基础知识【高清ID 号: 362179 高清课程名称:《圆》单元复习 关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.【答案】13;【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得4+a 2-6a+9=9+a 2+4a+4解得 a=0即△ABC 外接圆圆心为P(1,0) 则22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵∠DEB =60°,∴∠EOF =30°, ∴112EF OE ==,∴223OF OE EF =-=. 在Rt △DFO 中,OF =3,OD =OA =3,∴22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长.举一反三:【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC =.【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD =.【答案】65°.【解析】连结OD ,则∠D OB = 40°,设圆交y 轴负半轴于E ,得∠D OE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】如图所示,△ABC 内接于⊙O ,点D 是CA 延长线上一点,若∠BOC=120°,∠BAD 等于( )°°°°【答案】本题可先求出∠BAC 的度数,∠BAC 所对的弧是优弧,则该弧所对的圆心角度数 为360°-120°=240°,所以,因此,.故选B.N MO C BAyxOABDC(第3题)类型三、与圆有关的位置关系【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线. 举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x 、y).(1)求与直线相切时点P 的坐标. (2)请直接写出与直线相交、相离时x 的取值X 围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5). 当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,). (2)当时,与直线相交. 当或时,与直线相离.类型四、圆中有关的计算5.如图所示,已知正方形的边长为a ,求阴影部分的面积.【答案与解析】(几何方法)∵ 正方形边长为a , ∴2S a =正方形,2221112228a S R a πππ⎛⎫=== ⎪⎝⎭半圆.∵22S S S -=正方形半圆个空白处,∴2222211284S a a a a ππ=-⨯=-个空白处. ∴22421222S S a a π==-个空白处个空白处. ∴22222411222S S S a a a a a ππ⎛⎫=-=--=- ⎪⎝⎭阴影正方形个空白处. ∴ 阴影部分的总面积为2212a a π-. (代数解法)观察图形,可知2个“叶瓣”与1个空白组成1个半圆;4个“叶瓣”与4个空白组成一个正方形.设每个“叶瓣”面积为x ,每个空白面积为y ,则2222,244,a x y x y a π⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪+=⎩①②由①×4-②,得22142x a a π=-,即为阴影部分的总面积. 【总结升华】比较以上两种方法,代数解法更加简捷,在运用此法时,不需把两个未知数求出来,只要求出表示阴影部分面积的代数式的值即可.叶形的总面积可看做四个半圆面积减去正方形面积,则22221144222a S S S a a a ππ⎛⎫=-=⨯-=- ⎪⎝⎭阴影正方形半圆. 也可以用正方形面积减去四个空白处面积.以上均为几何方法,还可以设每个“叶瓣”面积为x ,每个空白面积为y ,列方程组解答.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB,过点O作OE⊥AB,垂足为E,交AB于点F,如图(2).由垂径定理,可知E是AB中点,F是AB的中点,∴1232AE AB==,EF=2.设半径为R米,则OE=(R-2)m.在Rt△AOE中,由勾股定理,得222(2)(23)R R=-+.解得R=4.∴ OE=2,12OE AO=,∴∠AOE=60°,∴∠AOB=120°.∴AB的长为120481803ππ⨯=(m).∴帆布的面积为8601603ππ⨯=(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以AB为底面的圆柱的侧面积.根据题意,应先求出AB所对的圆心角度数以及所在圆的半径,才能求AB的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.。
2014-2023北京中考真题数学汇编相似三角形②若点C 是弦2AB 的“关联点”,直接写出OC 的长;(2)已知点()0,3M ,5N ⎛⎫ ⎪ ⎪⎝⎭.对于线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.(1)比较BAE ∠与CAD ∠的大小;用等式表示线段(2)过点M 作AB 的垂线,交DE 于点7.(2021北京中考真题)如图,O (1)求证:BAD CAD ∠=∠;(2)连接BO 并延长,交AC 于点F ,a 、若12C B 与O 相切,AC 经过点O ,则12C B 、1AC 所在直线为:20y x y ⎧=-⎪⎨=⎪⎩,解得:()12C ,0,∴12OC =,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,∵PJ OM ⊥,∴MPO POJ ∽ ,∴OP OM OJ OP =,即13OJ=,解得13OJ =,∴根据勾股定理得,22223PJ PO OJ =-=,123Q J =根据勾股定理,22111233PQ Q P Q J =+=,同理,2PQ ∴当S 位于点()0,3M 时,1PQ 的临界值为233和263.②当S 位于经过点O 的MN 的垂直平分线上即点K 时,∵点()0,3M ,65,05N ⎛⎫ ⎪ ⎪⎝⎭,∴22955MN OM ON =+=,∴2OK OM ON MN =⨯÷=,又∵O 的半径为1,∴30OKZ ∠=︒,∴三角形OPQ 为等边三角形,∴在此情况下,1PQ =,3PQ =,∴90EQB HQB ∠=∠=︒,由(1)可得ABE ACD ≌,∴ABE ACD ∠=∠,BE CD =,∵AB AC =,∴ABC C ABE ∠=∠=∠,∵BQ BQ =,。
2015年中考数学备考资料2014年中考数学分类解析-图形的相似与位似关于本文档:●朱永强搜集整理●共40页;宋体,小四号字目录一、选择题 (2)二、填空题 (6)三、解答题 (9)一、选择题1. (2014•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y 关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.2. (2014•广西玉林市、防城港市,第7题3分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.12考点:位似变换.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.3.(2014年天津市,第8题3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 考点:平行四边形的性质;相似三角形的判定与性质.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.4.(2014•毕节地区,第12题3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C. D.考点:相似三角形的判定与性质解答:解:∵∠C=∠E,∠ADC=∠BDE,△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选A.5.(2014•武汉,第6题3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)考点:位似变换;坐标与图形性质解答:解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为:(3,3).故选:A.6. (2014年江苏南京,第3题,2分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1 考点:相似三角形的性质解答:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.7. (2014年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第2题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。
2013中考全国100份试卷分类汇编 中位线 1、(2013•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为( )
A. 50° B. 60° C. 70° D. 80° 考点: 三角形中位线定理;平行线的性质;三角形内角和定理. 分析: 在△ADE中利用内角和定理求出∠AED,然后判断DE∥BC,利用平行线的性质可得出∠C. 解答: 解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°, ∵点D,E分别是AB,AC的中点, ∴DE是△ABC的中位线, ∴DE∥BC, ∴∠C=∠AED=70°. 故选C. 点评: 本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半.
2、(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的( ) A. 6 B. 8 C. 10 D. 12
考点: 三角形中位线定理;三角形三边关系. 分析: 本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于14小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于7而小于10,看哪个符合就可以了. 解答: 解:设三角形的三边分别是a、b、c,令a=4,b=6, 则2<c<10,14<三角形的周长<20, 故7<中点三角形周长<10. 故选B. 点评: 本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.
3、(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为( ) A. 1:3 B. 2:3 C. 1:4 D. 2:5 考点: 相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理. 分析: 先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断
△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:
S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3. 解答: 解:∵DE为△ABC的中位线, ∴AE=CE. 在△ADE与△CFE中,
, ∴△ADE≌△CFE(SAS), ∴S△ADE=S△CFE. ∵DE为△ABC的中位线, ∴△ADE∽△ABC,且相似比为1:2, ∴S△ADE:S△ABC=1:4, ∵S△ADE+S四边形BCED=S△ABC, ∴S△ADE:S四边形BCED=1:3, ∴S△CEF:S四边形BCED=1:3. 故选A. 点评: 本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.
4、(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
A. 9 B. 10.5 C. 12 D. 15 考点: 梯形中位线定理. 分析: 根据梯形的中位线等于两底和的一半解答. 解答: 解:∵E和F分别是AB和CD的中点, ∴EF是梯形ABCD的中位线, ∴EF=(AD+BC), ∵EF=6, ∴AD+BC=6×2=12. 故选C. 点评: 本题主要考查了梯形的中位线定理,熟记梯形的中位线平行于两底边并且等于两底边和的一半是解题的关键.
5、(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( ) A. 5.5 B. 5 C. 4.5 D. 4
考点: 三角形中位线定理;解一元二次方程-因式分解法;三角形三边关系. 分析: 首先解方程求得三角形的两边长,则第三边的范围可以求得,进而得到三角形的周长l的范围,而连接这个三角形三边的中点,得到的三角形的周长一定是l的一半,从而求得中点三角形的周长的范围,从而确定. 解答: 解:解方程x2﹣8x+15=0得:x1=3,x2=5,
则第三边c的范围是:2<c<8. 则三角形的周长l的范围是:10<l<16, ∴连接这个三角形三边的中点,得到的三角形的周长m的范围是:5<m<8. 故满足条件的只有A. 故选A. 点评: 本题考查了三角形的三边关系以及三角形的中位线的性质,理解原来的三角形与中点三角形周长之间的关系式关键.
6、(2013•张家界)顺次连接等腰梯形四边中点所得的四边形一定是( ) A. 矩形 B. 正方形 C. 菱形 D. 直角梯形
考点: 中点四边形. 分析: 根据等腰梯形的性质及中位线定理和菱形的判定,可推出四边形为菱形. 解答: 解:如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点, 求证:四边形EFGH是菱形. 证明:连接AC、BD. ∵E、F分别是AB、BC的中点, ∴EF=AC. 同理FG=BD,GH=AC,EH=BD, 又∵四边形ABCD是等腰梯形, ∴AC=BD, ∴EF=FG=GH=HE, ∴四边形EFGH是菱形. 故选C. 点评: 此题主要考查了等腰梯形的性质,三角形的中位线定理和菱形的判定.用到的知识点:等腰梯形的两底角相等;三角形的中位线平行于第三边,并且等于第三边的一半;四边相等的四边形是菱形.
7、(2013•绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为( )
A. 1 B. C. D. 考点: 三角形中位线定理;平行四边形的性质. 分析: 根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可. 解答: 解:∵点E,F分别是边AD,AB的中点, ∴AH=HO, ∵平行四边形ABCD的对角线AC、BD相交于点O, ∴AO=CO, ∴CH=3AH,
∴=. 故选C. 点评: 本题考查了平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键.
8、(2013哈尔滨) 如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为( ).
(A) 12 (B) 13 (C) 14 (D) 23 考点:相似三角形的性质。,三角形的中位线 分析:利用相似三角形的判定和性质是解题的关键 解答:由MN是三角形的中位线,2MN=BC, MN∥BC ∴△ABC∽△AMN∴三角形的相似比是2:1,∴△ABC与△AMN的面积之比为4:1.,则△AMN的面积与四边形MBCN的面积比为13, 故选B
9、(2013年深圳市)如图1,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( )
A.8或32 B.10或324 C.10或32 D.8或324 答案:D 解析:如下图,BC=2,DE=1,AB=4,AC=23。 (1)AE与EC重合时,周长为:8; (2)AD与BD重合时,周长为:4+23 所以,选D。
10、(2013年广州市)如图5,四边形ABCD是梯形,AD∥BC,CA是BCD的平分线,
且,4,6,ABACABAD则tanB=( ) A23 B22 C114 D554 分析:先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算. 解:
∵CA是∠BCD的平分线,∴∠DCA=∠ACB, 又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC, 过点D作DE∥AB,交AC于点F,交BC于点E, ∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),
∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt△ADF中,AF==4,则AC=2AF=8,tanB===2.故选B. 点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F是AC中点,难度较大.
11、(2013•烟台)如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 15 .
考点: 三角形中位线定理;平行四边形的性质. 分析: 根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长. 解答: 解:∵▱ABCD的周长为36, ∴2(BC+CD)=36,则BC+CD=18. ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12, ∴OD=OB=BD=6. 又∵点E是CD的中点, ∴OE是△BCD的中位线,DE=CD, ∴OE=BC, ∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15. 故答案是:15.