2020年八年级数学上册第十五章小结与复习
- 格式:ppt
- 大小:1.50 MB
- 文档页数:24
第十五章分式小结与复习
要点梳理一、分式
1.分式的概念:
一般地,如果A 、B 都表示整式,且B 中含有字母,那么称
为分式.其中A 叫做分式的分子,B 为分式的分母.
2.分式有意义的条件:
对于分式:当_______
时分式有意义;当_______
时无意义.B≠0B=0
3.分式值为零的条件:
当___________
时,分式的值为零.
A =0且
B ≠04.分式的基本性质:0A A
C A A C C B B C B B C
(),.⋅÷==≠⋅÷
约分的基本步骤
(1)若分子﹑分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;
(2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母所有的公因式.。
八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。
精品基础教育教学资料,仅供参考,需要可下载使用!人教版数学初二上学期第十五章知识点总结第十五章分式一、知识框架:二、知识清单:1.分式:形如AB,A B、是整式,B中含有字母且B不等于0的整式叫做分式.其中A叫做分式的分子,B叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.分式方程的意义:分母中含有未知数的方程叫做分式方程.9.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根);④写出分式方程的解.11.列分式方程解应用题:①审题,弄清题意;②设未知数,根据题意,设未知数;③根据题意列方程④解方程求出未知数的值⑤检验,看未知数的值是否符合题意,是否符合方程⑥下结论,写出方程的解.。
2019-2020年八年级数学上册(人教课标)小结与复习:第十五章 分式小结与复习 1.形如AB(A 、B 是 ,且B 中含有 ,B ≠0)的式子,叫做分式. 2.分式有、无意义的条件:当分母 时,分式有意义;当分母 时,分式无意义.3.分式值为零的条件:当分式的分子 ,分母 时,分式的值为零. 4.分式的基本性质是:分式的分子与分母都 (或 )同一个 的整式,分式的值 .5.分式的乘除法:分式乘分式,用分子的积作为积的 ,分母的积作为积的 ;分式除以分式,把除式的分子、分母 后,与被除式 .6.分式的乘方:分式乘方,把分子、分母 .7.同分母分式的加减法法则:同分母的分式相加减,分母 ,把分子 ;异分母分式的加减法法则:异分母的分式相加减,先 ,变为同分母的分式,然后再 .8.分母中含有 的方程叫做分式方程. 9.解分式方程的步骤:(1)分式方程两边都乘以各分式的最简公分母,约去分母,转化为 方程; (2)解这个 方程;(3)检验,把 方程的解代入最简公分母,如果最简公分母的值 ,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,它是原方程的增根,应当舍去.10.我们规定:任何不等于零的数的零次幂都等于 ,即0a = (a ≠0). 11.一般地,当n 是正整数时,n a -= (a ≠0).即任何不等于零的数的n -(n 是正整数)次幂,等于这个数的n 次幂的 .12.一般地,绝对值小于1的数可以表示成10n a ⨯的形式,其中110a ≤<,即a 是整数位数只有 位的数;n 是一个 整数.考点呈现考点1 分式值为0的条件例1 (2013年温州)若分式43+-x x 的值为0,则x 的值是( ) A .x =3 B .x =0 C .x =-3 D .x =-4 解析:因为分式43+-x x 的值为0,所以x -3=0,x +4≠0,所以x =3.故选A . 点评:分式的值为0的条件是分子为0,分母不为0,这两个条件缺一不可. 考点2 分式的基本性质例2 (2013年淄博)下列运算中错误的是( )A.22)()(a b b a --=1 B.b a b a +--=-1 C.b a b a b a b a 321053.02.05.0-+=-+ D.a b a b b a b a +-=+- 解析:2222)()()()(b a b a a b b a --=--=1,A 选项正确;b a b a b a b a b a b a ++-=++-=+--)(=-1,B 选项正确;ba ba b a b a b a b a 3210510)3.02.0(10)5.0(3.02.05.0-+=⨯-⨯+=-+,C 选项正确;ab ab a b a b b a b a +--=+--=+-)(,D 选项错误.故选D. 点评:解“判断下列运算(或说法)错误(或正确)”类型的选择题,除了采用逐一验证四个选项进行求解之外,还可以利用排除法选出符合题意的答案. 考点3 分式的运算例3 (2013年凉山州)化简:)1(111+⎪⎭⎫ ⎝⎛+-m m 的结果为 .解析:)1(111+⎪⎭⎫ ⎝⎛+-m m =)1(1111+⎪⎭⎫ ⎝⎛+-++m m m m =)1(1+∙+m m m =m .故填m. 例4 (2013年泰安)化简分式⎪⎭⎫ ⎝⎛++-÷-1112122x x x 的结果是( ) A .2 B .12+x C .12-x D .-2 解析:⎪⎭⎫ ⎝⎛++-÷-1112122x x x =()()()()221111x x x x x x ⎡⎤-÷+⎢⎥---⎣⎦+1+1 =()()211x x x x ÷--+1+1=()211x x ∙--=2.故选A . 点评:分式的混合运算,要注意运算顺序:先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果要化成最简分式或整式. 考点4 分式的化简求值例5 (2013年重庆)先化简,再求值:4442122+--÷⎪⎭⎫ ⎝⎛---+x x x x x x x ,其中x 是不等式173>+x 的负整数解.解:4442122+--÷⎪⎭⎫ ⎝⎛---+x x x x x xx =444)2()1()2)(2(2-+-⋅---+-x x x x x x x x x=4)2()2(4222--⋅-+--x x x x x x x=4)2()2(42--⋅--x x x x x =xx 2-.由173>+x ,解得2->x . 又x 为负整数,所以1-=x . 当1-=x 时,原式=3121=---. 点评:分式的化简求值,要根据所给式子的特点,按照分式化简的步骤化简,最后代值计算.考点5 科学记数法例6(2013年茂名)PM2.5是指大气中直径小于或等于2.5 μm (0.000 002 5 m )的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.将0.000 002 5用科学记数法表示为( )A .25×10-7B .2.5×10-6C .0.25×10-5D .2.5×106解析:0.000 002 5=2.5×10-6.故选B.点评:把一个数写成a ×10n的形式(其中1≤a <10,n 为整数),称为科学记数法.当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非0数前0的个数(含整数位数上的0). 考点6 解分式方程 例7(2013年资阳)解方程24x x -+22x +=12x -.解:方程两边乘(x +2)(x -2),得x +2(x -2)=x +2. 解得x =3.检验:当x =3时,(x +2)(x -2)≠0.所以,原分式方程的解为x =3.点评:解分式方程的基本思想是“化分式方程为整式方程”,解分式方程后一定要注意检验.考点7 根据方程的解确定字母的值或取值范围 例8 (2013年扬州)已知关于x 的方程2123=++x nx 的解是负数,则n 的取值范围为 .解析:化简方程2123=++x nx ,得x=n -2.根据题意,得x<0且2x+1≠0,所以n -2<0且2(n -2)+1≠0,解得2<n 且23≠n . 点评:解含有字母系数的分式方程时,通常先化为整式方程,把未知数用其他字母表示,进而求解.要注意分式方程增根的存在. 考点8 列分式方程解应用题例9 (2013年湘西)吉首城区某中学组织学生到距学校20 km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.解:设骑自行车学生的速度为x km/h ,则汽车的速度为2x km/h. 根据题意,得2122020=-x x . 解得x =20.经检验,x =20是原方程的解,且符合题意. 答:骑自行车学生的速度为20 km/h .点评:分析题意,弄清楚已知量与未知量之间的关系,得到等量关系式,进而引进未知数,列方程解决问题.误区点拨易错点1 分式的基本性质理解不深例1 若A ,B 为不等于0的整式,则下列各式成立的是( ) A.EB E A B A ⋅⋅=(E 为整式) B.E B EA B A ++=(E 为整式)C.()()1122+⋅+⋅=x B x A B AD.()()2211+⋅+⋅=x B x A B A 错解:选A 或D.剖析:分式的基本性质是分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.所以B 选项明显不正确;A 选项和D 选项中E 和2)1+x (均可能为零,所以A ,D 选项错误;C 选项中112≥+x ,C 选项正确.正解:选C.易错点2 忽视分母不为0的条件 例2 若方程08242=---x x x ,则=x .错解:填±4.剖析:若分式的值为0,则分子为0且分母不为0,所以04=-x ,且0822≠--x x , 则4-=x .错解未考虑分式的分母不为0.正解:填-4. 易错点3 轻易约分 例3 x 取何值时,分式()()223x x x +++有意义?错解:原式13x =+.由03≠+x ,得3-≠x .所以当3-≠x 时,分式()()223x x x +++有 意义.剖析:错解约去分母中的2+x ,但无法确定2+x 不为零,使得未知数x 的取值范围 扩大,导致漏解.正解:由(x+2)(x+3)023x x ≠≠-≠-,得且.所以当32-≠-≠x x 且时,分式()()223x x x +++有意义.易错点4 分式的运算顺序错误例4 计算()()222111x x x x x ÷+-+.错解:原式=121122-=+÷-x x x x x . 剖析:分式的乘除运算是同一级运算,应按照从左向右的顺序依次计算,不可因为计 算简便而颠倒顺序,导致结果出现错误.正解:原式=()()()222212122421111x x x x x x x xx x +++++==---. 易错点5 分式的增根认识不清 例5 若关于x 的方程0111=--+x ax 有增根,则a 的值为________. 错解:原方程两边乘(x-1),得ax+1-(x-1)=0.解得x=12--a .因为原分式方程有增根,所以x-1≠0,即x≠1. 所以112≠--a ,解得a≠-1. 剖析:分式方程的增根应是最简公分母分母为0的x 值,即x=1而不是x≠1.正解:原方程两边乘(x-1),得ax+1-(x-1)=0.解得x=12--a . 因为原分式方程有增根,所以x-1=0,即x=1. 所以211a -=-,解得a=-1. 跟踪训练1.(2013年攀枝花)若分式211x x -+的值为0,则实数x 的值为______.2.(2013年永州)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为 平方公里.3.(2013年大连)化简:x +1-122++x x x =___________.4.(2013年德阳)已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围是__________.5.(2013年盘锦)小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为____________.6.(2013年宁夏回族自治区)解方程1326-+=-x xx .7.(2013年普洱)先化简,再求值:2222211a a a aa a a +++÷-+,其中a=2013.8.(2013年三明)兴发服装店老板用4500元购进一批某款式T 恤衫,由于深受顾客喜爱,很快售完.老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元?(利润=售价-进价)分式小结与复习知识梳理:略.跟踪训练:1. 1 2. 4810-⨯ 3.11+x 4. m>﹣6且m≠﹣4 5. 61255=-x x 6. 解:方程两边乘(x -2)(x+3),得)3)(2()2()3(6+---=+x x x x x . 解得x=34-. 检验:当x=34-时,(x -2)(x+3)≠0. 所以,原分式方程的解为x=34-.7. 解:2222211a a a a a a a +++÷-+=222(1)(1)1a a a a a a +⋅-++=211a aa a -++ =21a a a -+=1aa +. 当a=2013时,原式=201320131+=20132014.8. 解:(1)设第一批T 恤衫每件进价x 元. 根据题意,得450049509x x =+. 解得90x =.经检验,90x =是原方程的解,且符合题意. 答:第一批T 恤衫每件进价是90元.(2)由(1)知,第二批购进T 恤衫49505099=(件). 设剩余的T 恤衫每件售价y 元,根据题意,得411205050495065055y ⨯⨯+⨯⨯-≥.解得y ≥80.答:剩余的T恤衫每件售价至少要80元.。
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。