生物质蒸汽锅炉的原理和构造
- 格式:docx
- 大小:28.52 KB
- 文档页数:2
生物质蒸汽锅炉运行原理工况介绍生物质蒸汽锅炉是锅壳式、炉胆、烟管型锅炉,采用三回程湿背式结构,燃料在炉胆内燃烧产生的高温烟气经回燃室→对流管束→前烟箱→第二对流管束→后烟箱→(冷凝器)→烟囱排烟大气,同时在回燃室安装有检查孔或防爆检查门,有利于锅炉的安全运行及维修,锅炉安全控制严格按照相关标准执行。
产品特点1,节能环保:锅炉使用的燃料为国家推广的生物质燃料,来源广泛,经济实惠,2,国家专利技术:大大提高了换热面积,换热效率90%以上,节约了锅炉热量损耗。
3,控制系统:安装有触摸屏微电脑控制系统,具有温度设定,循环控制,超温自停,及故障报警功能,使用操作简单方便。
4,自动化程度高:先进的送料装置,极大程度上减少了锅炉工的劳动强度,使其更具具人性化。
5,锅炉整体采用保温材料,减少了热损耗,提高了锅炉热效率。
6,锅炉外观设计新颖,美观大方,无噪音,耗电少,无需架设高大烟囱,出墙即可,无烟无尘。
7,锅炉排烟温度低,效率高,排烟温度在<120度左右。
生物质颗粒锅炉的运行原理主要是通过点火助燃、燃烧、烟气回收等过程实现能源转换。
它有以下的优点:受热面积大,烟气温度高;构造简单、操作方便、投入运行少;构造紧凑、占地面积小;使用寿命长。
以下是它的工况介绍:生物质颗粒锅炉主要是通过生物质颗粒燃烧产生大量热能,通过点火助燃、燃烧、烟气回收等过程实现能源转换。
锅炉的燃烧系统包括生物质颗粒的投加,点火及稳燃装置,炉排的转动和烟气的排放。
首先,生物质颗粒进入炉膛后,经过多次的燃烧过程,逐渐达到完全燃烧。
其次,烟气在高温状态下停留一段时间,此时可以对锅炉进行加温,加温后温度降低至一定程度,通过烟囱排出。
在运行过程中,锅炉可以实现自动控制,操作简单方便。
另外,生物质颗粒锅炉在运行时主要考虑锅炉的负荷和颗粒的配比。
负荷越高,燃烧的时间需要越长,同时要保证生物质颗粒的配比量足够。
颗粒的配比对锅炉的运行影响很大,配比不好会造成锅炉运行不稳定,甚至造成锅炉熄火。
生物质锅炉的工作原理
生物质锅炉是一种利用生物质燃料进行供热或发电的设备。
其工作原理如下:
1. 加料系统:将生物质燃料(如木屑、秸秆等)通过输送带或螺旋送料器送入锅炉燃烧室。
2. 燃烧系统:生物质燃料在炉膛内被点火燃烧。
燃料在高温下分解,释放出可燃气体和灰分。
3. 燃烧控制系统:通过设定燃烧过程中的风量、燃料投入量和燃烧温度等参数,实现燃烧过程的控制和调节,以确保燃烧效率和安全性。
4. 热交换系统:燃烧产生的高温烟气通过锅炉管道与水进行热交换,转化为热能,使水得以加热。
5. 蒸汽或热水系统:经过热交换后,水转化为蒸汽或热水,用于供应热能或驱动汽轮机等发电设备。
6. 烟气处理系统:燃烧产生的烟气经过除尘、脱硫、脱硝等处理,以减少对环境的污染。
整个工作过程中,生物质锅炉通过控制燃烧过程和热交换过程,将生物质燃料的化学能转化为热能,实现供热或发电的目的。
同时,生物质锅炉具有可再生能源的特性,对环境影响较小,且生物质燃料的来源广泛,具有较好的可持续性。
生物质锅炉是烧生物质燃料的锅炉,生物质燃料作为一种可再生能源,其主要原料为农林废弃物,如秸秆、树枝、树叶、锯末、稻壳等。
生物质锅炉主要烧生物质成型颗粒,生物质成型颗粒是生物质散料通过机械压缩成型为块状(棒状)、颗粒的一生物质燃料,不含任何添加剂。
其含水分低,密度高,便于组织炉内燃烧并能实现自动化输送料,环境清洁。
生物质锅炉根据介质分为:生物质蒸汽锅炉、生物质热水锅炉、生物质导热油锅炉。
主要用途为工业生产中提供热源、供暖、生活用水方面。
生物质锅炉有SZL(双锅筒纵置式链条炉排水管锅炉)、DZL(单锅筒纵置式链条炉排锅炉)、DZH(单锅筒纵置式活动炉排锅炉)三个系列。
DZH系列生物质锅炉为活动炉排,需要人工操作。
同吨位的锅炉价格是最低的。
SZL系列和DZL系列锅炉都是链条炉排,价格是相差不多的~!DZH型生物质锅炉如果您是需要1-6吨生物质锅炉,您可以结合自身需要选择DZL系列和SZL系列锅炉,如果您是需要8-40吨生物质锅炉,推荐您SZL系列生物质锅炉,该系列锅炉为组装结构,上部大件为本体受热面,下部大件为燃烧设备。
据运行现场实测,实际蒸发量高于额定蒸发量,可超负荷运行,且工况良好。
SZL系列生物质锅炉DZL系列生物质锅炉生物质锅炉产品优势:1.根据生物质燃料挥发份含量高、着火温度低的特性,大炉膛设计匹配新型炉拱,燃烧充分效率高,防止结焦;2.合理配置二次风机,配风充分、均匀,强化燃烧效果;3.独特设计的落灰孔及清灰装置,便于清理,避免结焦;4.配置锁料装置,有效防止燃料回火返烧;5.可根据生物质燃料种类,定制设计炉拱、炉排;如今锅炉市场上的厂家很多,很多用户挑选来挑选去也不知道选择哪一家。
如何从众多的锅炉厂家中选择合适的锅炉等,下面给大家几个考量方向:1.锅炉厂家的资质、规模2.锅炉厂家的技术、生产设备3.锅炉厂家的项目案例、口碑4.锅炉厂家的售后服务从以上四个数据可以看出,用户在考察锅炉厂家时,还是实地考察更能看清一个厂家的实力及发展情况。
新疆生物质蒸汽锅炉技术参数
新疆生物质蒸汽锅炉,是以处理含水率低、碳水化合物多的生物质制品为燃料,以蒸汽作为能源的一种发电方式。
它采用高效环保的燃烧方式,使燃烧时产生的污染物减少,且能有效利用节能资源,在工业生产和农业生产中得到广泛应用。
新疆生物质蒸汽锅炉的技术参数主要有:
1.燃料类型:它可以用各种低水分、碳水化合物含量较高的生物质燃料来利用,如木屑、秸秆、稻壳、棕榈屑等;
2.燃烧方式:新疆生物质蒸汽锅炉采用先进的间歇燃烧(ISG)技术,可以有效的控制烟气排放,减少污染物;
3.蒸汽压力:新疆生物质蒸汽锅炉的蒸汽压力可调节,一般可达0.6-2.5MPa;
4.蒸汽温度:新疆生物质蒸汽锅炉的蒸汽温度一般在170-350℃之间;
5.蒸汽产量:新疆生物质蒸汽锅炉的蒸汽产量可根据实际情况进行调节,一般可达500kg/h-3000kg/h;
6.电压:新疆生物质蒸汽锅炉的电压根据实际情况进行调节,一般可达380V;
7.安装尺寸:新疆生物质蒸汽锅炉的安装尺寸根据不同型号而定;
8.安全性:新疆生物质蒸汽锅炉采用自动调节系统,可以自动监测蒸汽压力、温度和流量,确保锅炉的安全性。
新疆生物质蒸汽锅炉在燃料、技术、安全性等多方面都具有很好的优势,在工业生产和农业生产中得到了广泛的应用。
通过上述介绍,我们可以得出结论:新疆生物质蒸汽锅炉是一种先进的、高效的、环保的发电方式,具有良好的技术参数。
锅炉结构及工作原理锅炉是一种用于产生蒸汽或加热水的设备,广泛应用于工业生产、供暖和发电等领域。
它的结构和工作原理对于保证安全运行和高效能利用燃料至关重要。
本文将详细介绍锅炉的结构和工作原理。
一、锅炉结构1. 炉膛:炉膛是燃烧室,用于燃烧燃料。
常见的炉膛结构包括水管式、火管式和燃烧室式等。
炉膛内的燃料燃烧产生高温烟气,通过烟管或水管传热。
2. 烟管:烟管是连接炉膛和烟囱的管道,用于传递烟气。
烟管内壁通常覆盖有传热面,增加传热效果。
3. 水管:水管是连接炉膛和汽水容器的管道,用于传递热量。
水管内壁通常覆盖有传热面,将热量传递给水。
4. 汽水容器:汽水容器是用于分离蒸汽和水的装置,保证锅炉工作时的正常运行。
它通常分为汽包和水位计两部分。
5. 空气预热器:空气预热器用于预热燃烧所需的空气,提高燃烧效率。
它通常位于烟气通道上方,通过与烟气交换热量,将进入炉膛的空气预热至一定温度。
6. 烟囱:烟囱是排放烟气的管道,通常位于锅炉顶部。
它通过自然排烟或辅助设备(如引风机)排烟,保证燃烧产生的烟气能够顺利排出。
二、锅炉工作原理锅炉的工作原理是利用燃料的燃烧产生的热能,通过传热将水加热为蒸汽或热水。
1. 燃烧过程:燃料在炉膛内燃烧,产生高温烟气。
燃烧需要氧气,因此需要通过空气预热器预热进入炉膛的空气,提高燃烧效率。
2. 传热过程:传热是锅炉的核心过程,将燃烧产生的热量传递给水,使其加热为蒸汽或热水。
传热方式主要包括辐射传热、对流传热和传导传热。
- 辐射传热:炉膛内的高温烟气通过辐射作用,将热量传递给炉膛内的水管或烟管。
- 对流传热:烟气在烟管或水管内流动,通过对流作用,将热量传递给管壁和水。
- 传导传热:烟气通过烟管或水管的管壁,将热量传递给管壁内的水。
3. 蒸汽或热水产生:当水被加热至一定温度时,就会产生蒸汽或热水。
蒸汽通常用于驱动涡轮发电机或提供工业生产过程中的热能,热水则用于供暖或其他热水需求。
4. 安全保护装置:为了保证锅炉的安全运行,通常会配备一系列安全保护装置,如压力表、安全阀、水位计、燃烧器控制装置等。
生物质锅炉与生物质炭化炉对比方案
生物质锅炉和生物质炭化炉是两种利用生物质能源的设备,分别用于能源利用和生物质转化。
下面是它们的对比方案:
1. 原理:
生物质锅炉利用生物质燃烧产生的热能进行水的加热和蒸汽的产生,从而驱动发电机或供热系统;
生物质炭化炉则通过加热生物质材料,在缺氧或低氧条件下使其发生炭化反应,制备生物质炭。
2. 适用领域:
生物质锅炉主要适用于大规模能源供应,如电力、热力等;生物质炭化炉主要适用于小规模生物质加工,如木炭和活性炭的制备。
3. 能源转化效率:
生物质锅炉的能源转化效率较高,可以利用生物质燃烧产生的热能进行发电或供热,能够利用生物质的综合能源价值;
生物质炭化炉的能源转化效率较低,只能将生物质转化为生物质炭,不能充分利用生物质的能源价值。
4. 环境影响:
生物质锅炉燃烧生物质时会释放二氧化碳,对环境造成一定的碳排放;
生物质炭化炉则可通过适当的炭化条件,降低二氧化碳排放,并能够得到高质量的生物质炭。
5. 经济可行性:
生物质锅炉投资较大,适用于大规模能源供应;
生物质炭化炉投资较小,适合小规模生物质加工和利用。
综上所述,生物质锅炉和生物质炭化炉各有各的优势和适用领域。
据实际需要选择适合的设备,能够最大限度地利用生物质能源。
生物质电厂锅炉运行调试分析二、生物质电厂锅炉运行原理生物质锅炉是利用生物质燃料进行能量转化的设备,生物质燃烧产生的热能被传递给锅炉水,使水升温产生蒸汽,再通过蒸汽机组产生电能。
生物质锅炉主要由供料系统、燃烧系统、锅炉本体、除灰系统、烟气系统、控制系统等组成。
供料系统负责将生物质燃料送入锅炉燃烧室,燃烧系统负责对生物质燃料进行燃烧,锅炉本体将热能转化为蒸汽,而除灰系统和烟气系统则负责处理燃料燃烧后产生的废渣和废气。
控制系统则负责对整个锅炉设备进行监控和调节。
三、生物质电厂锅炉运行调试分析1. 燃烧系统生物质燃料的燃烧特性与化石燃料有所不同,因此需要对燃烧系统进行调试分析。
首先要对燃料的种类和质量进行检测和分析,以确定最佳的燃烧参数。
要对燃烧设备进行调试,确保燃烧能够充分进行,并且烟气排放符合环保要求。
为了实现稳定燃烧和高效能转化,还需要对燃烧系统的控制逻辑进行优化和调整。
2. 除灰系统生物质燃料在燃烧过程中会产生大量的灰渣,因此除灰系统的运行对于锅炉的稳定运行至关重要。
要针对生物质燃料的燃烧特性进行除灰系统的调试,确保灰渣能够及时、有效地排除,避免对锅炉的影响。
也要对除灰系统的清灰逻辑和装置进行优化,减少机械损耗,提高清灰效率。
3. 控制系统生物质电厂锅炉的控制系统是整个设备的大脑,负责监控和调节各个部件的运行状态。
要对控制系统的逻辑程序进行分析和调试,确保对生物质锅炉的各个部件进行及时、准确的控制和调节。
还要对控制系统的安全保护功能进行测试和调试,确保在出现异常情况时能够及时采取应对措施,保证设备和人员的安全。
4. 烟气系统燃烧过程产生的废气需要通过烟气系统进行处理和排放。
要对烟气系统进行分析和调试,确保烟气排放符合环保标准,减少对环境的影响。
还要对烟气系统的运行参数进行监测和优化,确保燃烧后的废气能够得到有效处理和利用。
5. 效率分析生物质电厂锅炉的运行效率对于电厂的经济效益至关重要。
要对锅炉的热效率、蒸汽参数、发电效率等进行分析和测试,找出存在的问题并进行改进。
生物质能利用技术的原理与应用1. 背景生物质能是一种可再生的能源,来源于太阳能转化生物质的过程生物质能的利用技术主要包括直接燃烧、生物化学转换、热化学转换和生物质气化等本文将重点介绍这些技术的原理和应用2. 直接燃烧直接燃烧是将生物质直接燃烧转化为热能和光能的一种利用方式这种方式设备简单,操作方便,但能量利用率较低生物质燃烧设备主要包括燃烧锅炉和燃烧炉2.1 燃烧锅炉燃烧锅炉是将生物质燃烧产生的热能用于加热水和生成蒸汽的设备生物质锅炉通常由燃烧室、热交换器和控制系统组成燃烧室用于燃烧生物质,热交换器用于将热能传递给水,控制系统用于控制燃烧过程2.2 燃烧炉燃烧炉是将生物质直接燃烧产生的热能用于加热的设备燃烧炉通常由燃烧室、热交换器和排烟系统组成燃烧室用于燃烧生物质,热交换器用于将热能传递给空气或水,排烟系统用于排放废气3. 生物化学转换生物化学转换是利用微生物将生物质转化为生物质燃料的过程这种方式包括厌氧消化、好氧消化和堆肥等3.1 厌氧消化厌氧消化是在无氧条件下,利用微生物将生物质转化为甲烷和二氧化碳的过程厌氧消化设备主要包括消化池、发酵罐和沼气储存设备3.2 好氧消化好氧消化是在有氧条件下,利用微生物将生物质转化为二氧化碳、水和有机酸的过程好氧消化设备主要包括消化池和曝气设备3.3 堆肥堆肥是将生物质在自然条件下或通过人工方法进行分解和转化的过程堆肥设备主要包括堆肥池和翻堆设备4. 热化学转换热化学转换是利用化学反应将生物质转化为生物质燃料的过程这种方式包括气化、液化和热解等4.1 气化气化是将生物质在高温条件下转化为可燃气体(如氢、一氧化碳和甲烷)的过程气化设备主要包括气化炉、净化设备和储存设备4.2 液化液化是将生物质转化为生物质燃料(如生物质颗粒、生物油和生物气)的过程液化设备主要包括破碎设备、成型设备和储存设备热解是将生物质在高温条件下分解为可燃气体和固体燃料的过程热解设备主要包括热解炉、净化设备和储存设备5. 生物质能的应用生物质能的应用领域广泛,包括发电、供热、制冷、交通和农业等5.1 发电生物质发电是通过生物质锅炉或生物质气化发电设备将生物质能转化为电能的过程生物质发电厂可以减少温室气体排放,提高能源利用率5.2 供热生物质供热是通过生物质锅炉或生物质燃烧炉将生物质能转化为热能的过程生物质供热可以替代传统的化石能源,降低能源成本和环境污染5.3 制冷生物质制冷是通过生物质热能驱动制冷设备实现制冷的过程生物质制冷可以减少对电能的依赖,降低能源消耗5.4 交通生物质交通是通过生物质燃料驱动交通工具实现运输的过程生物质交通可以减少对化石能源的依赖,降低温室气体排放生物质农业是通过生物质能转化为农业产品或服务的过程生物质农业可以提高农业生产效率,减少对化学肥料的依赖以上就是关于生物质能利用技术的原理与应用的介绍生物质能作为一种可再生的能源,具有广泛的应用前景和重要的环境保护意义随着科技的不断发展,生物质能的利用技术将不断优化和升级,为人类社会的可持续发展做出更大的贡献6. 生物质能利用技术的挑战与解决方案虽然生物质能利用技术具有许多优点,但在实际应用过程中也面临一些挑战6.1 挑战1.生物质资源的收集和处理:生物质资源的收集和处理成本较高,且生物质资源分散,难以大规模收集2.技术设备成本:生物质能利用技术的设备成本较高,初期投资较大3.能源转换效率:生物质能的转换效率相对较低,导致能源损失较大4.环境影响:生物质能利用过程中可能产生污染物,对环境造成影响6.2 解决方案1.生物质资源的优化利用:通过优化生物质资源的收集、运输和储存过程,降低成本2.技术研发:加大对生物质能利用技术的研发投入,提高技术水平和设备性能,降低设备成本3.提高能源转换效率:通过改进生物质能转换工艺,提高能源转换效率,减少能源损失4.环境保护措施:在生物质能利用过程中采取污染物捕集和处理措施,减少对环境的影响7. 生物质能利用技术的未来发展随着全球能源需求的不断增长和环境保护意识的提高,生物质能利用技术在未来发展中具有广阔的前景7.1 发展趋势1.技术创新:未来生物质能利用技术将朝着高效、低成本、环保的方向发展2.规模化应用:生物质能利用技术将在电力、供热、交通等领域得到规模化应用3.政策支持:政府将加大对生物质能利用技术的政策支持力度,推动产业发展4.国际合作:生物质能利用技术领域的国际合作将不断加强,促进技术交流和产业发展7.2 发展挑战1.技术突破:要实现生物质能利用技术的跨越式发展,需要突破关键核心技术2.市场竞争:生物质能利用技术面临与其他可再生能源技术的竞争,需要提高竞争力3.投资融资:生物质能利用技术需要大量的资金投入,融资渠道和投资回报成为关键问题4.政策落实:政府支持政策的落实到位与否,将直接影响生物质能利用技术的发展8. 结论生物质能利用技术作为一种可再生能源技术,具有巨大的潜力和广泛的应用领域面对挑战,通过技术创新、政策支持和国际合作等途径,生物质能利用技术将实现可持续发展在未来,生物质能利用技术将在全球能源转型和环境保护中发挥重要作用(本文仅展示文章的一部分内容,如需完整文章,请根据实际需求进行续写)9. 生物质能利用技术的经济性分析生物质能利用技术的经济性是推广和应用的关键因素之一9.1 成本效益分析1.初始投资:生物质能利用设备的初始投资较高,但随着时间的推移,由于生物质资源的价格波动较小,运营成本相对较低2.运行维护:生物质能利用设备的运行维护成本相对较低,且随着技术的发展,维护成本有望进一步降低3.能源价格:生物质能的价格相对稳定,有助于降低能源价格风险9.2 政策经济激励1.补贴:许多国家和地区提供生物质能利用技术的补贴政策,降低企业的初始投资成本2.税收优惠:对生物质能利用企业实施税收减免,以鼓励生物质能的利用3.绿色信贷:金融机构提供优惠贷款利率,支持生物质能利用项目的融资10. 生物质能利用技术的市场分析生物质能利用技术的市场前景广阔,需求不断增长10.1 市场需求1.可再生能源市场:随着可再生能源市场的不断扩大,生物质能利用技术的需求将持续增长2.环保市场:生物质能利用技术有助于减少温室气体排放,满足环保市场的需求3.能源安全市场:生物质能利用技术有助于提高能源供应的安全性,受到越来越多国家的关注10.2 市场竞争1.技术竞争:生物质能利用技术领域的技术创新是市场竞争的关键2.价格竞争:生物质能利用技术的价格竞争将影响市场份额3.服务竞争:优质的售后服务将有助于提高生物质能利用设备的市场竞争力11. 生物质能利用技术的环境效益生物质能利用技术具有显著的环境效益11.1 温室气体减排生物质能利用技术有助于减少温室气体排放,减缓全球气候变化11.2 空气污染减少生物质能利用技术可以减少燃烧化石能源产生的颗粒物、二氧化硫等污染物,改善空气质量11.3 资源循环利用生物质能利用技术有助于实现资源的循环利用,减少资源浪费12. 生物质能利用技术的实例分析以下是一些生物质能利用技术的实例分析12.1 生物质发电厂某国的生物质发电厂利用农业废弃物作为生物质资源,通过生物质锅炉发电,每年减少温室气体排放数十万吨,同时为当地提供清洁、稳定的电力供应12.2 生物质锅炉某企业的生物质锅炉使用木材废弃物作为生物质资源,替代了传统的化石能源锅炉生物质锅炉的运行成本较低,且每年减少温室气体排放数千吨12.3 生物质气化发电站某地区的生物质气化发电站利用农业废弃物和林业副产品进行气化,生成可燃气体发电该项目的年发电量达到数百万千瓦时,同时减少温室气体排放和空气污染13. 总结生物质能利用技术是一种具有广泛应用前景的可再生能源技术通过技术创新、政策支持和国际合作,生物质能利用技术将实现可持续发展,为全球能源转型和环境保护作出重要贡献在未来,生物质能利用技术将在全球能源结构中占据越来越重要的地位。
锅炉结构及工作原理锅炉是一种用于产生蒸汽或加热水的设备,广泛应用于工业生产和供暖领域。
它的结构和工作原理对于了解锅炉的性能和操作至关重要。
本文将详细介绍锅炉的结构和工作原理。
一、锅炉结构1. 炉膛:炉膛是锅炉燃烧的核心部件,用于燃烧燃料并产生热能。
炉膛通常由炉壁、炉排和炉膛砖石等构成。
2. 烟道:烟道是燃烧产生的烟气通过的通道,用于传递热能。
烟道通常由烟管、烟室和烟囱等组成。
3. 水壁:水壁是锅炉的传热面,用于吸收炉膛中产生的热能,将水加热为蒸汽或热水。
水壁通常由水管和水壁砖石构成。
4. 锅筒:锅筒是锅炉的主体部件,用于容纳炉膛和水壁。
锅筒通常由上下两部分组成,上部为蒸汽区,下部为水区。
5. 燃烧系统:燃烧系统是锅炉燃烧燃料的装置,包括燃烧器、点火系统和燃料供给系统等。
6. 控制系统:控制系统用于监测和控制锅炉的运行参数,包括水位、压力、温度和燃烧状态等。
二、锅炉工作原理锅炉的工作原理是利用燃料的燃烧产生的热能,通过传热将水加热为蒸汽或热水。
下面将详细介绍锅炉的工作原理。
1. 燃料燃烧:燃料通过燃烧器进入炉膛,在炉膛中与空气进行充分的混合和燃烧,产生高温烟气和燃烧残渣。
2. 传热:燃烧产生的烟气通过烟道,将热能传递给水壁。
水壁吸收烟气的热量,将水加热为蒸汽或热水。
3. 蒸汽产生:水在锅筒中加热后,部分水变为蒸汽。
蒸汽的产生取决于锅炉的工作压力和温度。
4. 蒸汽分离:蒸汽与水分离,蒸汽进入蒸汽区,水回流到水区,形成循环。
5. 蒸汽利用:蒸汽可用于驱动涡轮机产生电力,也可用于工业生产和供暖等领域。
6. 烟气排放:燃烧产生的烟气经过除尘器和烟囱排放到大气中,同时可以进行烟气净化处理,以减少对环境的污染。
三、锅炉性能指标1. 蒸发量:蒸发量是指锅炉单位时间内产生的蒸汽量或加热水量,通常以吨/小时或千瓦表示。
2. 效率:锅炉效率是指锅炉将燃料的热能转化为蒸汽或热水的能力,通常以百分比表示。
锅炉效率受到锅炉结构、燃料性质和操作方式等因素的影响。
水在锅筒中受热变成蒸气,火在炉膛中发出热量,就是蒸气锅炉的原理。
蒸气锅炉的形式太多,就举一个普通的快装4吨蒸气锅炉说说。
说锅炉先说“锅”。
这种锅炉是带水冷璧的锅筒式锅炉,锅筒内左右分区安排两个回程的烟火管,在锅筒前部的前烟箱折返。
锅筒和下连箱之间,有下降管和水冷璧管,构成燃烧室的框架。
锅筒上部有汽水分离器,以减少水蒸气带出的水。
锅体受热面是锅筒的下部,水冷璧管和烟火管。
燃烧部分由链条炉排和驱动装置,加上锅体架在炉排框架上构成的燃烧室组成。
四周围护耐火材料。
燃煤由煤斗进入,有煤闸板控制煤层厚度同时密封前部空气。
燃烧室下部是鼓风进入的地方,这种锅炉阻力较大,需要强制鼓风。
燃烬的煤渣,在炉排后部经“鹰嘴铁”排出,由出渣机送出炉外。
烟气从锅炉后部,由锅筒的一回程烟管前行,由二回程烟管返回后部,再进入除尘器分离灰烬,然后经过引风机由烟囱排出。
引风机不仅是排出烟气,也是锅炉的负压运行必需的。
蒸气锅炉是力容器,安全装置是必要的。
本设备加热核心部分水电分离,不会造成漏电事故。
电阻丝加热部分水电不分离,电热管长期浸泡在水中,容易造成漏电事故,危害人体健康。
燃煤锅炉易爆炸,事故发生率高。
锅炉必备水位计,压力表、安全阀、温度计,还有在压力下能够补水的电动上水泵,和在断电时也能使用的蒸气泵。