金属材料论文
- 格式:doc
- 大小:63.50 KB
- 文档页数:9
标题:浅谈形状记忆合金材料的发展趋势班级:车辆1001班姓名:黄仟叁高分子形状记忆合金的发展及趋势摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。
关键词:形状记忆合金、形状记忆合金效应、应用一、引言形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。
形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。
研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。
到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。
形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。
二、形状记忆合金的发展史1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。
1938年。
当时美国的在Cu-Zn合金小发现了马氏体的热弹件转变。
随后,前苏联对这种行为进行了研究。
1951年美国的Chang相Read在Au47·5Cd(%原子)合金中发现了行状记忆效应。
这是最早观察到金属形状记忆效应的报道。
数年后,Burkhart 在In-Ti 合金中观察到同样的现象。
然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。
直至1962年,美国海军机械研究所r发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断。
铝的应用及其发展趋势论文铝是一种重要的金属材料,广泛应用于各个领域,其应用范围和发展趋势备受关注。
本文将探讨铝的应用及其发展趋势,并针对其中的一些特殊领域进行更加深入的研究。
首先,铝在建筑领域中得到了广泛应用。
由于铝具有优异的强度和轻质特性,它可以减少建筑物的自重,提高建筑物的稳定性。
同时,铝的耐腐蚀性能和可塑性使其成为一种理想的建筑材料。
铝合金窗框、外墙板、屋顶等产品都广泛应用于建筑物中。
未来,随着环境保护意识的增强,铝的应用还将得到进一步拓展,例如利用铝的可回收性来减少建筑废弃物的产生。
其次,铝在交通工具领域也具有广泛的应用。
由于铝的轻量化特性,它可以显著减少汽车、火车、飞机等交通工具的重量,提高其燃油效率和运行效率。
铝合金车身、发动机部件、制动系统等都是常见的应用领域。
未来,随着新能源汽车的崛起,铝的应用也将迎来新的发展机遇,例如利用铝在电池领域的优势来提高电动汽车的续航里程。
再次,铝在包装领域也起着重要的作用。
铝箔是一种常见的包装材料,具有优异的屏障性能,能够有效保护食品、药品等产品的质量和安全。
此外,铝罐也是一种常见的包装容器,广泛应用于饮料、食品等行业。
未来,随着包装行业对环保性能的要求越来越高,铝的应用也将得到进一步发展,例如推动可回收包装材料的使用,减少环境污染。
在特殊领域中,铝在电子领域中的应用也非常重要。
由于铝具有良好的导电性能和热传导性能,可以广泛应用于电子器件中,如电容器、散热器等。
此外,铝还可以作为太阳能电池板的基板材料,发挥其优异的导电性能。
未来,随着人们对新能源和节能环保技术的需求不断增加,铝在电子领域的应用也将迎来更广阔的发展空间。
总的来说,铝作为一种重要的金属材料,其应用范围广泛,并且在各个领域都具有良好的发展前景。
未来,随着科技的进步和人们对环保和可持续发展的重视,铝的应用还将得到进一步拓展和提升。
为了更好地应对需求的变化和市场的挑战,相关产业应该加强研发和创新,不断提高铝材料的质量和性能,推动铝的应用与发展。
钢铁材料论文引言钢铁是一种重要的金属材料,广泛应用于建筑、制造业、交通运输等领域。
其优良的机械性能和良好的可塑性使其成为首选材料之一。
本文旨在探讨钢铁材料的特性、制造工艺和应用领域,以及未来的发展趋势。
钢铁特性机械性能钢铁具有优良的机械性能,包括强度、韧性和硬度等。
其高强度使其能够承受大的荷载,广泛应用于高层建筑和桥梁等工程项目中。
韧性使其具有较好的抗震性能和抗疲劳能力。
而硬度则使其能够抵抗磨损和变形。
可塑性钢铁具有较好的可塑性,可以通过热加工和冷加工等工艺得到各种形状的产品。
例如,使用铸造工艺可以生产出复杂形状的零件,而冷轧工艺则可以得到细致的薄板材料。
钢铁的可塑性使其能够满足不同行业对材料形状和尺寸的需求。
耐腐蚀性通过合金化和镀层等方法,钢铁可以提高其耐腐蚀性能。
例如,不锈钢是一种具有抗腐蚀性能的特殊钢铁,广泛应用于化工和食品加工等领域。
钢铁的耐腐蚀性使其能够在恶劣的环境中长期使用。
钢铁制造工艺炼铁炼铁是从铁矿石中提取铁的核心工艺。
它包括矿石的矿石炼制、熔融和铸造等步骤。
在矿石炼制过程中,铁矿石经过碳还原反应得到铁和炉渣。
随后,通过熔融和铸造,铁水被浇铸成不同形状的铁坯。
钢铁冶炼钢铁冶炼是通过炼铁和炉外精炼来提高钢铁的纯度和性能。
炼铁过程中,控制炉料的成分和温度可以调整钢铁的成分和质量。
炉外精炼则通过加入合金元素和进行真空处理等方法来进一步改善钢铁的性能。
钢铁加工钢铁加工是将铸造或锻造的钢铁材料通过切削、冲压、焊接等工艺进行成型和加工。
切削工艺包括铣削、车削和钻削等,可以得到具有精确尺寸和表面质量的零件。
冲压工艺可以通过模具对薄板进行冲压,制作出各种形状的零件和外壳。
焊接工艺可以将多个钢铁零件连接在一起,形成更复杂的结构。
钢铁应用领域建筑业钢铁在建筑业中广泛应用于高层建筑、桥梁和地下工程等。
其高强度和韧性使其能够承受大的荷载和抗震性能,保证了建筑物的结构安全。
此外,钢铁还可以用于建筑的外墙、屋顶和门窗等部件。
关于材料成型的论文精选4篇关于材料成型的论文篇一浅谈新型金属材料成型加工技术【摘要】随着现代科学技术的发展以及新型金属材料的应用,新型金属材料成型加工技术也得到了相应的发展。
在本文中,笔者将基于金属材料成型加工的实际工作经验,在对新型金属材料固有特性与加工特性深入分析的基础上,对当前的七种成型加工技术进行综合探究,以期促进新型金属材料成型加工技术的发展。
【关键词】新型金属材料;成型加工;加工技术;技术创新当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。
除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。
那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。
1 关于新型金属材料的综述1.1 新型金属材料的固有特性新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。
当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。
1.2 新型金属材料的加工特性1.2.1 焊接性焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。
新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。
新型金属材料具有好的焊接性通常收缩小、导热性能好。
1.2.2 锻压性锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。
除此之外,金属的锻压性还会受到加工条件的影响。
1.2.3 铸造性金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。
金属材料毕业论文金属材料的研究已经有着很长的历史,并且它在工业生产中扮演着重要的角色。
近年来,随着新材料技术和高科技产业的发展,金属材料在世界各个领域的应用越来越广泛。
作为一位金属材料专业的毕业生,我在近几年所学习和研究的金属材料方面,深刻认识到了金属材料在现代工业生产中的地位和作用。
在此,本文将就金属材料的种类、制备方法和应用进行介绍和探讨。
一、金属材料的种类金属材料是一种广泛的材料类型,按其结构划分可分为晶体和非晶体金属;按其组成划分可分为铁基金属、有色金属和合金三大类。
其中,铁基金属包括铁、钢、铸铁、钢铁等;有色金属包括铜、铝、镁、锌、铅等;合金则是由两个或两个以上的金属或非金属混合而成的金属材料,常见的有不锈钢、花纹板、航空材料等。
二、金属材料的制备方法一般来说,金属材料的制备方法可以按其材料特性分为两大类,即铸造法和变形加工法。
下面简要介绍一下两种方法。
1、铸造法铸造法是指将金属熔化后注入到模具里,所得金属坯料就是铸造件。
铸造法是金属材料制备中比较基本的方法,其优点是生产率高、多样性大且在制备大型件方面具有独特的优势。
但它也有缺点,比如制品的纯净度较低、力学性能较差等。
2、变形加工法变形加工法是指对已经得到的金属坯料进行改变其形状、大小、厚度等特性的方法,包括锻造、轧制、拉伸、冲压和剪切等工艺。
变形加工法具有许多优点,例如制品的密度高、结构致密、力学性能好、化学稳定等。
出于不同目的,变形加工法也可以被分为热变形加工和冷变形加工两种。
三、金属材料的应用金属材料的应用范围非常广泛,几乎涵盖了现代工业的所有领域。
下面列举一些常见的金属材料应用。
1、金属制造业:金属制造业是指经过铸造、质量控制和加工工艺处理的金属制品。
例如,汽车、电子产品、航空航天工业、建筑业等等,实际上都离不开金属材料的应用。
2、能源:金属材料在能源工业中也发挥着重要的作用。
例如,石油、天然气、煤炭等都需要金属设备进行运输和加工。
金属材料的论文
金属材料是工程领域中最常用的材料之一,其在制造业中扮演着重要的角色。
金属材料的研究不仅涉及到材料的物理性能和化学性质,还包括了材料的加工工艺、应用领域等方面。
本文将从金属材料的分类、性能及应用等方面展开论述。
首先,金属材料根据其成分和结构可以分为铁基金属材料和非铁基金属材料两
大类。
铁基金属材料主要包括铁、钢和铸铁等,而非铁基金属材料则包括铝、镁、铜、镍、钛等。
每一类金属材料都有其独特的物理性能和化学性质,适用于不同的工程领域。
其次,金属材料具有优良的导热性、导电性和机械性能。
其中,铝合金具有较
高的强度和耐腐蚀性,因此在航空航天、汽车制造等领域得到广泛应用;而钢材具有较高的硬度和韧性,适用于建筑结构、机械制造等领域。
除此之外,金属材料还具有良好的可塑性和可焊性,能够满足复杂零部件的加工需求。
另外,金属材料在现代工业中有着广泛的应用。
例如,铝合金被广泛应用于航
空航天领域,用于制造飞机机身、发动机零部件等;而不锈钢则被用于制造化工设备、厨具等。
此外,金属材料还在建筑领域、电子领域、医疗领域等有着重要的应用价值。
总之,金属材料作为工程材料的重要组成部分,其研究和应用对于推动制造业
的发展具有重要意义。
随着科技的不断进步,金属材料的性能和加工工艺也在不断提升,为各个领域的工程应用提供了更多可能性。
希望本文能够对金属材料的研究和应用提供一定的参考价值,推动金属材料领域的进一步发展。
第一章绪论1.1镁合金的性质.特点及应用镁合金是在镁的基础上融入了其他的元素而形成的合金。
它的特点是强度不低,密度不大,散热性好,能抗震,能够承受的冲击力要比铝合金大,抗腐蚀等。
镁是最轻的一种金属,其比重只有铁的四分之一,铝的三分之二。
在所有的实用金属中,其是最轻的,并且强度高,刚性强。
镁合金在合金进行散热的过程中占有很大的优势,比如散热器分别是一块镁合金和一块铝合金,体积相同,形状相同,这表明镁合金所制作出来的散热片的根部其空气温度和顶部的空气温度相比效果要差些,意味着镁合金的散热性要强于铝合金的散热性,所以在空气的扩散对流中,通过对散热器来加速起内部空气的对流,从而提升其散热效率。
所以,在温度一定的情况下,镁合金的散热速度比铝合金的要快一倍。
镁合金这个行业在中国制造的行业中,得到了升级过程中的优惠。
镁合金是资金和材料都很密集的行业,较低的价格和稳定的态势,技术研发等的进步,铸造业的集中性和密集性使得镁合金的发展迅猛,其后市发展的态势很好。
1.1.1镁的基本性质在地壳中,镁的含量最高,分布最广。
其中白云石、花菱镁矿、光卤石等都是极具工业价值的矿物。
并且,海水也是镁资源的发源地之一。
在工业上通过电解熔融氧化镁的让其还原得到金属镁的方法称为熔盐电解法;而在电炉中通过硅铁等来还原金属镁的方法叫做硅热还原法。
物理性质:质地柔软,熔点不高,呈银白色。
镁是一种金属,柔软而具有光泽。
1.1.2 镁合金的特点镁合金主要应用在工程上,质量很轻,镁和镁合金的密度相对来说较小,只有铝的2/3,锌的1/4,铁的1/4。
这些年以来环保要求日益增高,使得汽车行业不得不减少自身的重量,减少排放温室气体,因此镁合金成为了最佳的材料。
镁合金自身的特点,再加上它铸造功能强,具有很好的切割性,尺寸又比较稳定,抗震减压的功能好,所以成为了航空航天和汽车工业上的第一代替品。
并且镁合金的抗冲击性强,具有强烈的抗电磁波干扰,散热功能好,所以如果电子通讯行业3G产品要发展成为短小轻薄的产品的话,镁合金是必选的材料。
金属材料论文金属材料是一种重要的结构材料,在工程领域中具有广泛的应用。
随着科学技术的不断进步和发展,人们对金属材料的研究也越来越深入,涉及到材料的组成、结构、性能以及应用等诸多方面。
首先,金属材料的组成是研究的重点之一。
金属材料通常是由金属元素经过熔炼、合金化等工艺制备而成。
不同的金属元素在材料中的含量和比例,直接影响材料的性能。
例如,铁和碳的合金化可以获得钢材,铝和铜的合金化可以获得铝杂铜。
通过研究金属材料的组成,可以探索材料的结构特征和性能表现。
其次,金属材料的结构是研究的又一关键点。
金属材料的晶格结构和晶粒尺寸对材料的性能具有重要影响。
晶格结构可以通过X射线衍射等方法进行表征,晶粒尺寸可以通过电子显微镜观察得到。
研究金属材料的结构,可以了解材料的内部构造和组织形态,为进一步研究材料的性能提供基础。
再次,金属材料的性能是研究的核心内容。
金属材料具有优异的机械性能,如强度、硬度、韧性等。
此外,金属材料还具有良好的导电性、导热性和耐腐蚀性等特点。
研究金属材料的性能,不仅可以进行性能评估和比较,还可以为材料的设计和应用提供指导。
最后,金属材料的应用是研究的最终目的。
金属材料广泛应用于航空航天、汽车制造、建筑等领域。
例如,钢材用于建筑和桥梁的承重结构,铝合金用于制造航空器的机身和翅膀,不锈钢用于厨具和医疗器械等。
通过研究金属材料的应用,可以发展新的材料和工艺,提高生产效率和质量。
综上所述,金属材料的研究包括组成、结构、性能和应用等方面,这些方面相互关联、相互作用,共同构成了金属材料的科学体系。
通过不断深入研究,可以进一步提高金属材料的性能和应用,推动工程技术的发展和进步。
金属材料与人类社会的发展概要:金属是人类历史发展中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文将围绕金属在人类社会中的地位,应用等方面展开。
主要论述金属材料与人类社会之间的关系,回顾金属过去在人类历史中的作用,分析其在现代社会的地位,并且展望金属才来的在未来的发展前景。
正文:从100万年以前,原始人以石头作为工具,称旧石器时代。
1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。
现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。
我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。
18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。
19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。
与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。
至今,金属材料在材料工业中一直占有主导地位。
金属材料可以说是人类社会发展的全称见证者,我之所以那么说,是与他在人类社会各个转型期所起到的举足轻重的作用所分不开的。
作为人类最早发现并开始加以利用的一种材料,金属可以说从方方面面影响着人类的历史发展进程。
从最初把金属打造成狩猎武器到如今人类的生活已完全离不开金属,可见金属早已融入了整个人类社会,那么金属在人类社会中的过去,现在和将来又会是什么样的呢?金属的在人类社会的过去时中扮演的角色多为一个时期的社会性质的缩影。
如新石器时代,青铜器时代等等,而之所会如此为这些时代命名,归根结底,最主要的原因,便是人类在这一石器开发出了某种新的金属,而这一金属几乎决定了人类在这一时期的文明发展进程。
如在战国石器,由于铁器的发明和使用,既解放了农村的大量生产力,又在投入战争使用后,大大缩短了战争的进程,从而加速了整个国家的统一,结束了乱世的局面,使得我国文明在一段动荡时期后能够继续得以正常的发展。
金属材料毕业论文金属材料毕业论文金属材料在现代社会中扮演着重要的角色,广泛应用于各个领域,如建筑、汽车、航空航天等。
因此,对金属材料的研究和应用具有重要意义。
本文将从金属材料的分类、性能、加工以及未来发展等方面进行探讨。
一、金属材料的分类金属材料可以根据其组成元素和结构特点进行分类。
常见的金属材料包括钢铁、铝、铜、镁等。
钢铁是一种含有碳元素的合金,具有优异的强度和韧性,广泛应用于建筑和机械制造领域。
铝具有轻质、导电性好等特点,被广泛应用于航空航天和汽车制造等领域。
铜是一种良好的导电材料,常用于电子元器件的制造。
镁具有轻质、高强度等特点,被广泛应用于航空航天和汽车制造领域。
二、金属材料的性能金属材料具有许多独特的性能,如强度、韧性、导电性、导热性等。
强度是金属材料抵抗外力破坏的能力,是评价材料质量的重要指标。
韧性是金属材料在外力作用下发生塑性变形的能力,直接影响材料的可靠性和使用寿命。
导电性是金属材料传导电流的能力,是电子元器件制造中的重要性能指标。
导热性是金属材料传导热量的能力,影响材料的热稳定性和散热效果。
三、金属材料的加工金属材料的加工是将原始材料转变为最终产品的过程。
常见的金属加工方法包括锻造、铸造、冲压、焊接等。
锻造是通过对金属材料施加压力,使其发生塑性变形,从而得到所需形状的加工方法。
铸造是将熔化的金属倒入模具中,经过冷却凝固后得到所需形状的加工方法。
冲压是利用冲压设备对金属材料进行剪切、冲孔、弯曲等加工方法。
焊接是将两个或多个金属材料通过加热或施加压力使其连接在一起的加工方法。
四、金属材料的未来发展随着科技的不断进步,金属材料的研究和应用也在不断发展。
未来,金属材料的发展趋势将主要体现在以下几个方面。
首先,金属材料将更加注重环保和可持续发展。
随着环境问题的日益突出,金属材料的生产和使用将更加注重资源利用效率和环境保护。
其次,金属材料将更加注重功能性和多样化。
随着科技的不断进步,人们对金属材料的性能要求越来越高,金属材料将不仅仅满足基本的力学性能,还将具备更多的功能性能,如防腐、防磨、防辐射等。