徐州市2015-2016学年八年级下期中数学试卷含答案解析
- 格式:doc
- 大小:410.71 KB
- 文档页数:20
2015-2016学年陕西省西安市碑林区铁一中学八年级(下)期末数学试卷一、选择题1.下列图形是中心对称图形的是(.下列图形是中心对称图形的是( )A. B. C. D.2.下列说法不一定成立的是(.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若a>b,则1+a>b﹣13.下列各式从左到右的变形正确的是(.下列各式从左到右的变形正确的是( )A.B.C.D.4.若分式的值为零,则x的取值为(的取值为( )A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣35.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,)的解集为(﹣2),4x+2<kx+b<0的解集为(A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣16.下列命题中,真命题是(.下列命题中,真命题是( )A.两条对角线互相垂直平分的四边形是矩形B.有一条对角线平分一组对角的四边形是菱形C.两条对角线相等的四边形是矩形D.一组对边平行,一组对角相等的四边形是平行四边形7.如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是(的关系是( )A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定8.已知关于x的不等式组有且只有3个整数解,则a的取值范围是( )A.a>﹣1 B.﹣1≤a<0 C.﹣1<a≤0 D.a≤09.如图,在△ABC中,AB=8,BC=12,∠B=60°,将△ABC沿着射线BC的方向平的面积是()移4个单位后,得到△A'B'C',连接AC,则△A'B'C的面积是(A.16 B. C. D.10.已知点D与点A(0,8),B(0,﹣2),C(x,y)是平行四边形的四个顶点,长的最小值为()其中x,y满足x﹣y+6=0,则CD长的最小值为(A . B. C. D.10二、填空题11.分解因式:ax2﹣8ax+16a= .12.已知一个多边形的内角和为540°,则这个多边形是,则这个多边形是 边形. 13.关于x的方程=3+无解,则m的值为的值为 .14.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=6,AF=BF,则四边形BCDE的面积是.的面积是15.已知等腰三角形的一边长是10m,面积是30m2,则这个三角形另两边的长为 .16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .三、解答题17.解方程:=2﹣.18.先化简,再求值:÷(x+2﹣),其中x=2.19.小明同学正在黑板上画△ABC绕△ABC外一点P旋转60°角的旋转图,当他完成A、B两点旋转后的对应点Aʹ、Bʹ时,不小心将旋转中心P擦掉了(如图所示).请你帮助小明找到旋转中心P,(要求只作图,不写作法,保留作图痕迹)20.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD 相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.21.为加快城市群的建设与发展,建成后,为加快城市群的建设与发展,在在A,B两城市间新建一条城际铁路,两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.22.学校计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购学校计划购买一批平板电脑和一批学习机,经投标,买4台学习机多200元,购买2台平板电脑和3台学习机共需8100元. (1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过166600元,且购买学习机的台数不超过购买平板电脑台数的 1.5倍.请问有哪几种购买方案?哪种方案最省钱?23.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.24.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC(∠BAC是一个可以变化的角),AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小明是这样思考的:利用变换和等边三角形将边的位置重新组合,他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A'BC,连接A'A,当点A落在A'C 上时,此题可解(如图2).的最大值是(1)请你回答:AP的最大值是参考小明同学思考问题的方法,解决下列问题:(2)如图3,等腰,等腰Rt△ABC,边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是多少?为什么?(结果可以不化简)提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的作法,把△ABP绕B 点逆时针旋转60°,得到△A'BP'.(3)如图4,O是等边△ABC内一点,OA=3,OB=4,OC=5,则S△AOC +S△AOB= .2015-2016学年陕西省西安市碑林区铁一中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列图形是中心对称图形的是(.下列图形是中心对称图形的是( )A. B. C. D.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.2.下列说法不一定成立的是(.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若a>b,则1+a>b﹣1【解答】解:A、两边都加c不等号的方向不变,故A不符合题意;B、两边都减c不等号的方向不变,故B不符合题意;C、c=0时,ac2=bc2,故C符合题意;D、a>b,则1+a>b+1>b﹣1,故D不符合题意;故选:C.3.下列各式从左到右的变形正确的是(.下列各式从左到右的变形正确的是( )A.B.C.D.【解答】解:分子分母都乘以15,分式的值不变,故D符合题意;故选:D.4.若分式的值为零,则x的取值为(的取值为( )A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣3【解答】解:由题意得:x2﹣9=0,x﹣3≠0,解得:x=﹣3,故选:D.5.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,的解集为()﹣2),4x+2<kx+b<0的解集为(A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣1【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选:B.6.下列命题中,真命题是(.下列命题中,真命题是( )A.两条对角线互相垂直平分的四边形是矩形B.有一条对角线平分一组对角的四边形是菱形C.两条对角线相等的四边形是矩形D.一组对边平行,一组对角相等的四边形是平行四边形【解答】解:A、两条对角线互相垂直平分的四边形是菱形,故错误,是假命题;B、一条对角线平分一组对角的四边形可能是菱形或者正方形,故错误,是假命题;C、两条对角线相等的平行四边形是矩形,故错误,是假命题;D、一组对边平行,一组对角相等的四边形是平行四边形,正确,是真命题,故选:D.7.如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是(的关系是( )A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定【解答】解:∵E,F分别为DC、AB的中点,G是AC的中点,∴EG=AD,FG=BC,在△EFG中,EF<EG+FG,∴EF<(AD+BC),∴2EF<AD+BC.故选:C.8.已知关于x的不等式组有且只有3个整数解,则a的取值范围是( )A.a>﹣1 B.﹣1≤a<0 C.﹣1<a≤0 D.a≤0【解答】解:∵解不等式x﹣a>0得:x>a,解不等式3x+4<13得:x<3,∴不等式组的解集为a<x<3,∵关于x的不等式组有且只有3个整数解,∴﹣1≤a<0,故选:B.9.如图,在△ABC中,AB=8,BC=12,∠B=60°,将△ABC沿着射线BC的方向平)的面积是(移4个单位后,得到△A'B'C',连接AC,则△A'B'C的面积是(A.16 B. C. D.【解答】解:∵△ABC沿着射线BC的方向平移4个单位后,得到△AʹBʹCʹ,∴AʹBʹ=AB=8,∠AʹBʹCʹ=∠B=60°,BʹC=12﹣4=8,过点Aʹ作AʹD⊥BʹC于D,则AʹD=AʹBʹ=×8=4,∴△AʹBʹC的面积=BʹC•AʹD=×8×4=16.故选:C.10.已知点D与点A(0,8),B(0,﹣2),C(x,y)是平行四边形的四个顶点,)其中x,y满足x﹣y+6=0,则CD长的最小值为(长的最小值为(A. B. C. D.10【解答】解:根据平行四边形的性质可知:对角线AB、CD互相平分,∴CD过线段AB的中点M,即CM=DM,∵A(0,8),B(0,﹣2),∴M(0,3),∵点到直线的距离垂线段最短,∴过M 作直线的垂线交直线于点C ,此时CM 最小,直线x ﹣y +6=0,令x=0得到y=6;令y=0得到x=﹣6,即F (﹣6,0),E (0,6), ∴OE=6,OF=6,EM=3,EF==6,∵△EOF ∽△ECM , ∴, 即,解得:CM=,则CD 的最小值为2CM=3.因为当AB 为边时,CD 长恒为10,当AB 为对角线时CD 最短是3根号2, 10>3, 故选:B .二、填空题11.分解因式:ax 2﹣8ax +16a= a (x ﹣4)2 . 【解答】解:ax 2﹣8ax +16a , =a (x 2﹣8x +16),(提取公因式) =a (x ﹣4)2.(完全平方公式)12.已知一个多边形的内角和为540°,则这个多边形是,则这个多边形是 五 边形. 【解答】解:根据多边形的内角和可得:(n ﹣2)180°180°=540°=540°, 解得:n=5.则这个多边形是五边形.故答案为:五.13.关于x的方程=3+无解,则m的值为的值为 8 .【解答】解:去分母可得:5x+3=3(x﹣1)+m∴5x+3=3x﹣3+m∴x=由于该分式方程无解,故将x=代入x﹣1=0,∴﹣1=0∴m=8故答案为:814.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线18 .于点E,若∠A=30°,BC=6,AF=BF,则四边形BCDE的面积是的面积是【解答】解:∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=6,∴DF=BC=3,在Rt△ADF中,∠A=30°,DF=3,tan30°==,即AD=3,∴tan30°∴CD=AD=3,则矩形BCDE的面积S=CD•BC=18.故答案为:18.15.已知等腰三角形的一边长是10m,面积是30m2,则这个三角形另两边的长为 m、m或10m、2m或10m、6m .【解答】解:分三种情况计算.不妨设AB=10m,过点C作CD⊥AB,垂足为D, 则S=AB•CD,△ABC∴CD=6m.当AB为底边时,AD=DB=5m(如图①).AC=BC==m;当AB为腰且三角形为锐角三角形时(图②)AB=AC=10m ,AD==8m,BD=2m,BC==2m;当AB为腰且三角形为钝角三角形时(图③).AB=BC=10m ,BD==8m,AC==6m.所以另两边的长分别为m、m,或10m、2m,或10m、6m.故答案为:m、m或10m、2m或10m、6m.16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= 2﹣3 .【解答】解:连接BH ,如图所示: ∵四边形ABCD 和四边形BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在Rt △ABH 和Rt △EBH 中,,∴Rt △ABH ≌△Rt △EBH (HL ),∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴∠BHA=∠BHE=60°,∴∠KHF=180°﹣60°﹣60°60°=60°=60°, ∵∠F=90°,∴∠FKH=30°, ∴AH=AB•tan ∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt △FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH ﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.三、解答题17.解方程:=2﹣.【解答】解:去分母得:2x=4x﹣4﹣3,解得:x=3.5,经检验x=3.5是分式方程的解.18.先化简,再求值:÷(x+2﹣),其中x=2.【解答】解:原式=÷=•=,当x=2时,原式=.19.小明同学正在黑板上画△ABC绕△ABC外一点P旋转60°角的旋转图,当他完成A、B两点旋转后的对应点Aʹ、Bʹ时,不小心将旋转中心P擦掉了(如图所示).请你帮助小明找到旋转中心P,(要求只作图,不写作法,保留作图痕迹)【解答】解:如图所示,点P即为所求.20.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD 相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.【解答】解:(1)∵△ABC是等边三角形,且BD⊥AC,AE⊥BC,∴∠C=60°,CE=BC,CD=AC;而BC=AC,∴CD=CE,△CDE是等边三角形.(2)由(1)知:AE、BD分别是△ABC的中线,∴AO=2OE,而AO=12,∴OE=6.21.为加快城市群的建设与发展,两城市间新建一条城际铁路,建成后,建成后,为加快城市群的建设与发展,在在A,B两城市间新建一条城际铁路,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.22.学校计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购学校计划购买一批平板电脑和一批学习机,经投标,买4台学习机多200元,购买2台平板电脑和3台学习机共需8100元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过166600元,且购买学习机的台数不超过购买平板电脑台数的 1.5倍.请问有哪几种购买方案?哪种方案最省钱?【解答】解:(1)设购买1台平板电脑和1台学习机各需x元,y元,根据题意得:,解得:,答:购买1台平板电脑和1台学习机各需3000元和700元;(2)设购买平板电脑x台,学习机(100﹣x)台,根据题意得:,解得:40≤x≤42,∵x只能取正整数,∴x=40,41,42,当x=40时,y=60;x=41时,y=59;x=42时,y=58;方案1:购买平板电脑40台,学习机60台,费用为120000+42000=162000(元); 方案2:购买平板电脑41台,学习机59台,费用为123000+41300=164300(元); 方案3:购买平板电脑42台,学习机58台,费用为126000+40600=166600(元), 则方案1最省钱.23.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.【解答】证明:(1)在平行四边形ABCD 中,AB∥CD,AB=CD∵E、F分别为AB、CD的中点∴DF=DC,BE=AB∴DF∥BE,DF=BE∴四边形DEBF为平行四边形,∴DE∥BF;(2)∵AG∥BD,∴∠G=∠DBC=90°,∴△DBC 为直角三角形,又∵F为边CD的中点,∴BF=DC=DF,又∵四边形DEBF为平行四边形,∴四边形DEBF是菱形.24.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC(∠BAC是一个可以变化的角),AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小明是这样思考的:利用变换和等边三角形将边的位置重新组合,他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A'BC,连接A'A,当点A落在A'C 上时,此题可解(如图2)(1)请你回答:AP的最大值是的最大值是6 .参考小明同学思考问题的方法,解决下列问题:(2)如图3,等腰,等腰Rt△ABC,边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是多少?为什么?(结果可以不化简)提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的作法,把△ABP绕B 点逆时针旋转60°,得到△A'BP'.(3)如图4,O是等边△ABC内一点,OA=3,OB=4,OC=5,则S△AOC +S△AOB=6+ .【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△AʹBC,∴∠AʹBA=60°,AʹB=AB,AP=AʹC,∴△AʹBA是等边三角形,∴AʹA=AB=BAʹ=2,在△AAʹC中,AʹC<AAʹ+AC=6,即AP<6,当点Aʹ、A、C三点共线时,AʹC=AAʹ+AC,即AP=6,∴AP的最大值是:6,故答案是:6.(2)AP+BP+CP的最小值是2+2.理由:如图3,∵Rt△ABC是等腰三角形,∴AB=BC,以B为中心,将△APB逆时针旋转60°得到△A'P'B,则A'B=AB=BC=4,PA=PʹAʹ,PB=PʹB,∴P A+PB+PC=PʹAʹ+P'B+PC.∵当A'、P'、P、C四点共线时,P'A+P'B+PC最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵由旋转可知,∠A'BA=60°,∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中,A'C=====2+2,∴AP+BP+CP的最小值是:2+2(或).(3)如图4,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至带你O',连接OO',则△AOO'是边长为3的等边三角形,△COO'是边长为3、4、5的直角三角形,∴S△AOC +S△AOB=S四边形AOCO'=S△COO'+S△AOO'=×3×4+×3×=6+.故答案为:6+.。
2015-2016学年天津市武清区八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.三角形的高、中线、角平分线都是()A.直线 B.射线C.线段 D.以上三种情况都有2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.3.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°4.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等5.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm6.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A.30°B.40°C.50°D.60°7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC8.利用作角平分线的方法,可以把一个已知角()A.三等分B.四等分C.五等分D.六等分9.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°10.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形 D.不能确定形状11.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A. B.C.D.12.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m二、填空题(共6小题,每小题3分,满分18分)13.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.14.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.15.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有个.16.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是.17.如图,已知∠AOB=60°,点P是OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN=2cm,则ON=cm.18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.三、解答题(共4小题,满分36分)19.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.20.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)作出△ABC的边BC边上的高AE,垂足为点E.(不写画法);(3)△ABC的面积为.21.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.22.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.2015-2016学年天津市武清区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.三角形的高、中线、角平分线都是()A.直线 B.射线C.线段 D.以上三种情况都有【考点】三角形的角平分线、中线和高.【分析】根据三角形的角平分线、中线和高的定义即可求解.【解答】解:三角形的高、中线、角平分线都是线段.故选C.【点评】本题考查了三角形的角平分线、中线和高,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.注意:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.2.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.4.下列说法正确的是()A.两个等边三角形一定全等B.腰对应相等的两个等腰三角形全等C.形状相同的两个三角形全等D.全等三角形的面积一定相等【考点】全等图形.【分析】根据全等图形的判定和性质对各个选项进行判断即可.【解答】解:两个等边三角形边长不一定相等,所以不一定全等,A错误;腰对应相等的两个等腰三角形对应角不一定相等,所以不一定全等,B错误;形状相同的两个三角形对应边不一定相等,所以不一定全等,C错误;全等三角形的面积一定相等,所以D正确,故选:D.【点评】本题考查的是全等图形的判定和性质,对应角相等、对应边相等的两个图形确定,全等形的周长和面积相等.5.下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形任意两边的和大于第三边,可知A、2+3>4,能组成三角形,故A正确;B、2+3=5,不能组成三角形,故B错误;C、2+5<10,不能够组成三角形,故C错误;D、4+4=8,不能组成三角形,故D错误;故选A.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.6.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A.30°B.40°C.50°D.60°【考点】三角形内角和定理.【分析】直接根据三角形内角和定理解答即可.【解答】解:∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣40°=40°.故选B.【点评】此题比较简单,考查的是三角形内角和定理,即三角形的内角和是180°.7.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.利用作角平分线的方法,可以把一个已知角()A.三等分B.四等分C.五等分D.六等分【考点】作图—基本作图.【分析】利用角平分线的性质进而分析得出答案.【解答】解:利用作角平分线的方法,可以把一个已知角2等分,进而可以将两角再次等分,故可以把一个已知角四等分.故选:B.【点评】此题主要考查了基本作图,正确把握角平分线的性质是解题关键.9.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.10.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形 D.不能确定形状【考点】等边三角形的判定.【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【解答】解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.11.如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A. B.C.D.【考点】轴对称-最短路线问题.【专题】应用题.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.12.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,再判断出△BDE是等腰直角三角形,根据等腰直角三角形的性质可得BE=DE,然后根据AE=AB﹣BE计算即可得解.【解答】解:∵AD是∠CAB的平分线,DE⊥AB,∠C=90°,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵∠B=45°,DE⊥AB,∴△BDE是等腰直角三角形,∴BE=DE=m,∵AE=AB﹣BE=a﹣m,∴AC=a﹣m.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的判定与性质,熟记性质是解题的关键.二、填空题(共6小题,每小题3分,满分18分)13.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.14.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【考点】直角三角形全等的判定.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.【点评】本题考查了对全等三角形的判定定理的应用,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.15.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有5个.【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD、CE分别是∠ABC、∠BCD的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∠BCE=∠ACE=∠ACB=36°,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°﹣∠DBC﹣∠BCD=180°﹣72°﹣36°=72°,∴△EBC、△ABD是等腰三角形;∠BDC=∠BCD,∠CED=∠CDE,∴△BCD、△CDE是等腰三角形,∴图中的等腰三角形有5个.故答案为:5.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形的角平分线等,解题时要找出所有的等腰三角形,不要漏了.16.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是<x<5.【考点】等腰三角形的性质;解一元一次不等式组;三角形三边关系.【专题】压轴题.【分析】本题可根据已知条件得出底边的长为:10﹣2x,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.【解答】解:依题意得:10﹣2x﹣x<x<10﹣2x+x,解得<x<5.故填<x<5.【点评】本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.17.如图,已知∠AOB=60°,点P是OA边上,OP=8cm,点M、N在边OB上,PM=PN,若MN=2cm,则ON=5cm.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】过P作PD⊥OB于点D,在直角三角形POD中,利用含30度直角三角形的性质求出OD 的长,再由PM=PN,利用等腰三角形三线合一的性质得到D为MN中点,根据MN=2求出DN的长,由OD+DN即可求出ON的长.【解答】解:过P作PD⊥OB于点D,在Rt△OPD中,∵∠ODP=90°,∠POD=60°,∴∠OPD=30°,∴OD=OP=×8=4cm,∵PM=PN,PD⊥MN,MN=2cm,∴MD=ND=MN=1cm,∴ON=OD+DN=4+1=5cm.故答案为:5.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半;等腰三角形三线合一.18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是①②③.【考点】等腰三角形的判定与性质;平行线的性质;角平分线的性质.【分析】①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;③根据三角形内心的性质即可得出结论;④连接AG,根据三角形的面积公式即可得出结论.【解答】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故本小题正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题正确;③∵∠ABC和∠ACB的平分线相交于点G,∴点G是△ABC的内心,∴点G到△ABC各边的距离相等,故本小题正确;④连接AG,∵点G是△ABC的内心,GD=m,AE+AF=n,∴S△AEF=AE•GD+AF•GD=(AE+AF)•GD=nm,故本小题错误.故答案为:①②③.【点评】本题考查的是等腰三角形的判定与性质,熟知角平分线的性质、三角形内角和定理及三角形内心的性质是解答此题的关键.三、解答题(共4小题,满分36分)19.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.【考点】三角形内角和定理.【分析】先根据AD是△ABC的高得出∠ADB=90°,再由三角形内角和定理及三角形外角的性质可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°﹣∠ADB﹣∠BED=20°.根据BE平分∠ABC得出∠ABC=2∠DBE=40°.根据∠BAC+∠ABC+∠C=180°,∠C=60°即可得出结论.【解答】解:∵AD是△ABC的高,∴∠ADB=90°.又∵∠DBE+∠ADB+∠BED=180°,∠BED=70°,∴∠DBE=180°﹣∠ADB﹣∠BED=20°.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°﹣∠ABC﹣∠C=80°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)作出△ABC的边BC边上的高AE,垂足为点E.(不写画法);(3)△ABC的面积为8.5.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出△A1B1C1即可;(2)过点A作AE垂直CB的延长线与点E,则线段AE即为所求;(3)利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图所示;(2)如图所示;(3)S△ABC=4×5﹣×1×4﹣×1×4﹣×3×5=8.5.故答案为:8.5.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.21.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.【考点】全等三角形的性质.【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)∵△ABC≌△DEB,∴AB=DE=7,BE=BC=4,∴AE=AB﹣BE=7﹣4=3;(2)∵△ABC≌△DEB,∴∠A=∠D=35°,∠DBE=∠C=60°,∴∠DFA=∠A+∠AEF=∠A+∠D+∠DBE=130°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等分析.22.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【专题】证明题;探究型.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.【点评】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形是仔细观察,认真推敲方可.做题时,有时需要先猜后证.。
2016年江苏省徐州市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1. −14的相反数是( ) A.4B.−4C.14D.−14 【答案】C【考点】相反数【解析】 本题需根据相反数的有关概念求出−14的相反数,即可得出答案. 【解答】解:−14的相反数是14.故选C .2. 下列运算中,正确的是( )A.x 2+x 3=x 6B.x 3+x 9=x 27C.(x 2)3=x 6D.x ÷x 2=x 3【答案】C【考点】同底数幂的除法合并同类项幂的乘方与积的乘方负整数指数幂【解析】分别利用合并同类项法则以及幂的乘方运算法则和同底数幂的除法运算法则化简求出答案.【解答】解:A 、x 2+x 3,无法计算,故此选项错误;B 、x 3+x 9,无法计算,故此选项错误;C 、(x 2)3=x 6,正确;D 、x ÷x 2=x −1,故此选项错误;故选:C .3. 下列事件中的不可能事件是( )A.通常加热到100∘C 时,水沸腾B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是360∘【答案】D【考点】随机事件【解析】不可能事件就是一定不会发生的事件,据此即可判断.【解答】解:A、是必然事件,选项错误;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是不可能事件,选项正确.故选D.4. 下列图形中,不可以作为一个正方体的展开图的是()A. B. C. D.【答案】C【考点】几何体的展开图【解析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【解答】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,5. 下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】B【考点】轴对称图形中心对称图形【解析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;6. 某人一周内爬楼的层数统计如表A.中位数是22B.平均数是26C.众数是22D.极差是15【答案】A【考点】极差算术平均数中位数众数【解析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:这个人一周内爬楼的层数按从小到大的顺序排列为21,22,22,24,26,31,36,中位数为24;平均数为(21+22+22+24+26+31+36)÷7=26;众数为22;极差为36−21=15;所以B、C、D正确,A错误.故选A.7. 函数y=√2−x中自变量x的取值范围是()A.x≤2B.x≥2C.x<2D.x≠2【答案】A【考点】函数自变量的取值范围【解析】根据二次根式要有意义可以得到函数y=√2−x中自变量x的取值范围,本题得以解决.【解答】解:∵y=√2−x,∴2−x≥0,解得x≤2,故选A.8. 如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6【答案】D【考点】正方形的性质【解析】根据题意列方程,即可得到结论.【解答】如图,∵若直线AB将它分成面积相等的两部分,∴12×(6+9+x)×9−x⋅(9−x)=12×(6+9+x)×9−6×3,解得x=3,或x=6,二、填空题:本大题共10小题,每小题3分,共30分9的平方根是________.【答案】±3【考点】平方根【解析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.某市2016年中考考生约为61500人,该人数用科学记数法表示为________.【答案】6.15×104【考点】科学记数法--表示较大的数【解析】根据科学记数法的表示方法进行解答即可.【解答】解:61500=6.15×104.故答案为:6.15×104.若反比例函数的图象过点(3, −2),则其函数表达式为________.y=−6 x【考点】待定系数法求反比例函数解析式【解析】设反比例函数解析式为y=kx(k为常数,且k≠0),由点的坐标利用反比例函数图象上点的坐标特征求出k值,由此即可得出结论.【解答】解:设反比例函数解析式为y=kx(k为常数,且k≠0),∵该函数图象过点(3, −2),∴k=3×(−2)=−6.∴该反比例函数解析式为y=−6x.故答案为:y=−6x.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是________.【答案】m>1【考点】抛物线与x轴的交点【解析】由题意可得二次方程无实根,得出判别式小于0,解不等式即可得到所求范围.【解答】解:∵二次函数y=x2+2x+m的图象与x轴没有公共点,∴方程x2+2x+m=0没有实数根,∴判别式△=22−4×1×m<0,解得:m>1;故答案为:m>1.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为________.【答案】1:4【考点】相似三角形的性质与判定三角形中位线定理根据三角形的中位线得出DE=12BC,DE // BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵D、E分别为AB、AC的中点,∴DE=12BC,DE // BC,∴△ADE∽△ABC,∴S△ADES△ABC =(DEBC)2=14,故答案为:1:4.若等腰三角形的顶角为120∘,腰长为2cm,则它的底边长为________cm.【答案】2√3【考点】等腰三角形的判定与性质三角形三边关系【解析】作AD⊥BC于点D,可得BC=2BD,RT△ABD中,根据BD=AB cos∠B求得BD,即可得答案.【解答】解:如图,作AD⊥BC于点D,∵∠BAC=120∘,AB=AC,∴∠B=30∘,又∵AD⊥BC,∴BC=2BD,∵AB=2cm,∴在RT△ABD中,BD=AB cos∠B=2×√32=√3(cm),∴BC=2√3cm,故答案为:2√3.如图,⊙O是△ABC的内切圆,若∠ABC=70∘,∠ACB=40∘,则∠BOC=________∘.125【考点】三角形的内切圆与内心圆周角定理【解析】根据三角形内心的性质得到OB平分∠ABC,OC平分∠ACB,根据角平分线定义得∠OBC=12∠ABC=35∘,∠OCB=12∠ACB=20∘,然后根据三角形内角和定理计算∠BOC.【解答】解:∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=12∠ABC=35∘,∠OCB=12∠ACB=20∘,∴∠BOC=180∘−∠OBC−∠OCB=180∘−35∘−20∘=125∘.故答案为125.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为________.【答案】5【考点】圆锥的计算【解析】设圆锥的底面圆的半径为r,根据半圆的弧长等于圆锥底面周长,列出方程求解即可.【解答】解:∵半径为10的半圆的弧长为:12×2π×10=10π,∴围成的圆锥的底面圆的周长为10π,设圆锥的底面圆的半径为r,则2πr=10π,解得r=5.故答案为:5.如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.【答案】n(n+1)【考点】规律型:图形的变化类【解析】设第n个图案中正方形的总个数为a n,根据给定图案写出部分a n的值,根据数据的变化找出变换规律“a n=n(n+1)”,由此即可得出结论.【解答】解:设第n个图案中正方形的总个数为a n,观察,发现规律:a1=2,a2=2+4=6,a3=2+4+6=12,…,∴a n=2+4+...+2n=n(2n+2)2=n(n+1).故答案为:n(n+1).如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45∘,则△EDF的周长等于________.【答案】4【考点】旋转的性质全等三角形的性质勾股定理正方形的性质【解析】根据正方形的性质得AB=BC,∠BAE=∠C=90∘,根据旋转的定义,把把△ABE绕点B顺时针旋转90∘可得到△BCG,根据旋转的性质得BG=AB,CG=AE,∠GBE= 90∘,∠BAE=∠C=90∘,∠ABG=∠B=90∘,于是可判断点G在CB的延长线上,接着利用“SAS”证明△FBG≅△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90∘,∴把△ABE绕点B顺时针旋转90∘可得到△BCG,如图,∴BG=AB,CG=AE,∠GBE=90∘,∠BAE=∠C=90∘,∴点G在DC的延长线上,∵∠EBF=45∘,∴∠FBG=∠EBG−∠EBF=45∘,∴∠FBG=∠FBE,在△FBG和△EBF中,{BF=BF∠FBG=∠FBEBG=BE,∴△FBG≅△EBF(SAS),∴FG=EF,而FG=FC+CG=CF+AE,∴EF=CF+AE,∴△DEF的周长=DF+DE+CF+AE=CD+AD=2+2=4故答案为:4.三、解答题:本大题共10小题,共86分计算:(1)(−1)2016+x0−(13)−1+√83(2)x 2−1x+1÷x2−2x+1x−x.【答案】解:(1)原式=1+1−3+2=1;(2)原式=(x+1)(x−1)x+1×x(x−1)(x−1)2=x.【考点】分式的乘除运算实数的运算零指数幂、负整数指数幂负整数指数幂【解析】(1)先计算负整数指数幂、零指数幂、化简二次根式然后计算加减法;(2)利用完全平方公式、平方差公式、化除法为乘法进行约分化简.【解答】解:(1)原式=1+1−3+2=1;(2)原式=(x+1)(x−1)x+1×x(x−1)(x−1)2=x.(1)解方程:x−3x−2+1=32−x;(2)解不等式组:{2x>1−x4x+2<x+4.【答案】解:(1)去分母,得:x−3+x−2=−3,整理,得:2x=2,∴x=1.经检验,x=1是原方程得解,∴分式方程x−3x−2+1=32−x的解为x=1.(2)解不等式2x>1−x,得:x>13;解不等式4x+2<x+4,得:x<23.∴不等式组的解集为13<x<23.【考点】解分式方程解一元一次不等式组【解析】(1)将分式方程转化成整式方程,解整式方程可得出x=1,再将x=1代入原分式方程验证x=1是否为分式方程的解;(2)解不等式组中的第一个不等式可得出x>13;解不等式组中的第二个不等式可得出x<23,将两者合并到一起即可得出结论.【解答】解:(1)去分母,得:x−3+x−2=−3,整理,得:2x=2,∴x=1.经检验,x=1是原方程得解,∴分式方程x−3x−2+1=32−x的解为x=1.(2)解不等式2x>1−x,得:x>13;解不等式4x+2<x+4,得:x<23.∴不等式组的解集为13<x<23.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为________,a=________%,b=________%,“常常”对应扇形的圆心角为________∘(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?【答案】200,12,36,108200×30%=60(名).∵3200×36%=1152(名)∴ “总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.【考点】用样本估计总体条形统计图扇形统计图总体、个体、样本、样本容量【解析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【解答】∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360∘×30%=108∘.200×30%=60(名).∵3200×36%=1152(名)∴ “总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.某乳品公司最近推出一款果味酸奶,共有红枣、木瓜两种口味,若送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率是多少?(请用“画树状图”的方法给出分析过程,并求出结果)【答案】画树状图为:共有8种等可能的结果数,其中至少有两瓶为红枣口味的结果数为4,所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.【考点】列表法与树状图法【解析】画树状图展示所有8种等可能的结果数,再找出至少有两瓶为红枣口味的结果数,然后根据概率公式求解.【解答】画树状图为:共有8种等可能的结果数,其中至少有两瓶为红枣口味的结果数为4,所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.如图,在△ABC中,∠ABC=90∘,∠BAC=60∘,△ACD是等边三角形,E是AC的中点,连接BE并延长,交DC于点F,求证:(1)△ABE≅△CFE;(2)四边形ABFD是平行四边形.【答案】证明:(1)∵△ACD是等边三角形,∴∠DCA=60∘,∵∠BAC=60∘,∴∠DCA=∠BAC,在△ABE与△CFE中,{∠DCA=∠BACAE=CE∠BEA=∠FEC,∴△ABE≅△CFE;(2)∵E是AC的中点,∴BE=EA,∵∠BAE=60∘,∴△ABE是等边三角形,∴△CEF是等边三角形,∴∠CFE=60∘,∵△ACD是等边三角形,∴∠CDA=∠DCA=60∘,∴∠CFE=∠CDA,∴BF // AD,∵∠DCA=∠BAC=60∘,∴AB // DC,∴四边形ABFD是平行四边形.【考点】等边三角形的性质平行四边形的判定【解析】(1)根据等边三角形的性质得到∠DCA=60∘等量代换得到∠DCA=∠BAC,根据全等三角形的判定定理即可得到结论;(2)根据已知条件得到△ABE是等边三角形,推出△CEF是等边三角形,证得∠CFE=∠CDA,求得BF // AD,即可得到结论;【解答】证明:(1)∵△ACD是等边三角形,∴∠DCA=60∘,∵∠BAC=60∘,∴∠DCA=∠BAC,在△ABE与△CFE中,{∠DCA=∠BACAE=CE∠BEA=∠FEC,∴△ABE≅△CFE;(2)∵E是AC的中点,∴BE=EA,∵∠BAE=60∘,∴△ABE是等边三角形,∴△CEF是等边三角形,∴∠CFE=60∘,∵△ACD是等边三角形,∴∠CDA=∠DCA=60∘,∴∠CFE=∠CDA,∴BF // AD,∵∠DCA=∠BAC=60∘,∴AB // DC,∴四边形ABFD是平行四边形.小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?【答案】小丽购买自动铅笔1支,记号笔2支;共3种方案:1本软皮笔记本与7支自动铅笔;2本软皮笔记本与4支自动铅笔;3本软皮笔记本与1支自动铅笔 【考点】二元一次方程的应用二元一次方程组的应用——行程问题【解析】(1)利用总的购买数量为8,进而得出等式,再利用总金额为28元得出等式组成方程组求出答案;(2)根据题意设小丽购买软皮笔记本m 本,自动铅笔n 支,根据共花费15元得出等式92m +1.5n =15,进而得出二元一次方程的解.【解答】设小丽购买自动铅笔x 支,记号笔y 支,根据题意可得: {x +y =8−(2+2+1)1.5x +4y =28−(6+9+3.5) , 解得:{x =1y =2,答:小丽购买自动铅笔1支,记号笔2支;设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得:92m +1.5n =15,∵ m ,n 为正整数,∴ {m =1n =7 或{m =2n =4 或{m =3n =1,答:共3种方案:1本软皮笔记本与7支自动铅笔;2本软皮笔记本与4支自动铅笔;3本软皮笔记本与1支自动铅笔.如图,为了测出旗杆AB 的高度,在旗杆前的平地上选择一点C ,测得旗杆顶部A 的仰角为45∘,在C 、B 之间选择一点D (C 、D 、B 三点共线),测得旗杆顶部A 的仰角为75∘,且CD =8m(1)求点D 到CA 的距离;(2)求旗杆AB的高.(注:结果保留根号)【答案】点D到CA的距离为4√2;(2)在Rt△CDE中,∠C=45∘,∴△CDE为等腰直角三角形,∴CE=DE=4√2,∵∠ADB=75∘,∠C=45∘,∴∠EAD=∠ADB−∠C=30∘,∴在Rt△ADE中,tan∠EAD=DEAE,∴√33=4√2AE,∴AE=4√6,∴AC=AE+CE=4√6+4√2,在Rt△ABC中,sin C=ABAC,∴√22=4√6+4√2,∴AB=4+4√3,答:旗杆AB的高为(4+4√3)m.【考点】解直角三角形的应用-仰角俯角问题【解析】(1)作DE⊥AC于点E,根据sin C=DECD即可得DE;(2)由∠C=45∘可得CE,由tan∠EAD=DEAE可得AE,即可得AC的长,再在Rt△ABC中,根据sin C=ABAC即可得AB的长.【解答】解:(1)如图,作DE⊥AC于点E,再Rt△CDE中,sin C=DECD,∴√22=DE8,∴DE=4√2,答:点D到CA的距离为4√2;(2)在Rt△CDE中,∠C=45∘,∴△CDE为等腰直角三角形,∴CE=DE=4√2,∵∠ADB=75∘,∠C=45∘,∴∠EAD=∠ADB−∠C=30∘,∴在Rt△ADE中,tan∠EAD=DEAE,∴√33=4√2AE,∴AE=4√6,∴AC=AE+CE=4√6+4√2,在Rt△ABC中,sin C=ABAC,∴√22=4√6+4√2,∴AB=4+4√3,答:旗杆AB的高为(4+4√3)m.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与其价格x(元)(180≤x≤300)满足一次函数关系,部分对应值如表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入-当日支出)【答案】当房价为210元时,宾馆当日利润最大,最大利润为8450元.【考点】二次函数的应用【解析】(1)设一次函数表达式为y=kx+b(k≠0),由点的坐标(180, 100)、(260, 60)利用待定系数法即可求出该一次函数表达式;(2)设房价为x元(180≤x≤300)时,宾馆当日利润为w元,依据“宾馆当日利润=当日房费收入-当日支出”即可得出w关于x的二次函数关式,根据二次函数的性质即可解决最值问题.【解答】解:(1)设一次函数表达式为y=kx+b(k≠0),依题意得:{180k+b=100260k+b=60,解得:{k=−12b=190.∴y与x之间的函数表达式为y=−12x+190(180≤x≤300).(2)设房价为x元(180≤x≤300)时,宾馆当日利润为w元,依题意得:w=(−12x+190)(x−100)−60×[100−(−12x+190)]=−12x2+210x−13600=−12(x−210)2+8450,∴当x=210时,w取最大值,最大值为8450.答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N(1)若CM=x,则CH=________(用含x的代数式表示);(2)求折痕GH的长.【答案】−112x2+3;(2)∵四边形ABCD为正方形,∴∠B=∠C=∠D=90∘,设CM=x,由题意可得:ED=3,DM=6−x,∠EMH=∠B=90∘,故∠HMC+∠EMD=90∘,∵∠HMC+∠MHC=90∘,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴EDMC =DMCH,即3x =6−x−112x2+3,解得:x1=2,x2=6(不合题意舍去),∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN−EM=6−5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴NEDE =NGDM,∴13=NG4,解得:NG=43,由翻折变换的性质,得AG=NG=43,过点G作GP⊥BC,垂足为P,则BP=AG=43,GP=AB=6,当x=2时,CH=−112x2+3=83,∴PH=BC−HC−BP=6−83−43=2,在Rt△GPH中,GH=√GP2+PH2=√62+22=2√10.【考点】翻折变换(折叠问题)正方形的性质【解析】(1)利用翻折变换的性质结合勾股定理表示出CH的长即可;(2)首先得出△EDM∽△MCH,进而求出MC的长,再利用△NEG∽△DEM,求出NG的长,再利用勾股定理得出GH的长.【解答】解:(1)∵CM=x,BC=6,∴设HC=y,则BH=HM=6−y,故y2+x2=(6−y)2,整理得:y=−112x2+3,(2)∵四边形ABCD为正方形,∴∠B=∠C=∠D=90∘,设CM=x,由题意可得:ED=3,DM=6−x,∠EMH=∠B=90∘,故∠HMC+∠EMD=90∘,∵∠HMC+∠MHC=90∘,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴EDMC =DMCH,即3x =6−x−112x2+3,解得:x1=2,x2=6(不合题意舍去),∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN−EM=6−5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴NEDE =NGDM,∴13=NG4,解得:NG=43,由翻折变换的性质,得AG=NG=43,过点G作GP⊥BC,垂足为P,则BP=AG=43,GP=AB=6,当x=2时,CH=−112x2+3=83,∴PH=BC−HC−BP=6−83−43=2,在Rt△GPH中,GH=√GP2+PH2=√62+22=2√10.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(−1, 0),B(0, −√3),C(2, 0),其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则12PB+PD的最小值为________;(3)M(x, t)为抛物线对称轴上一动点①若平面内存在点N,使得以A,B,M,N为顶点的四边形为菱形,则这样的点N共有________个;②连接MA,MB,若∠AMB不小于60∘,求t的取值范围.【答案】3√34. (3)①以A 为圆心AB 为半径画弧与对称轴有两个交点,以B 为圆心AB 为半径画弧与对称轴也有两个交点,线段AB 的垂直平分线与对称轴有一个交点,所以满足条件的点M 有5个,即满足条件的点N 也有5个,故答案为5.②如图,RT △AOB 中,∵ tan ∠ABO =OA OB =√33, ∴ ∠ABO =30∘, 作AB 的中垂线与y 轴交于点E ,连接EA ,则∠AEB =120∘,以E 为圆心,EB 为半径作圆,与抛物线对称轴交于点F 、G .则∠AFB =∠AGB =60∘,从而线段FG 上的点满足题意, ∵ EB =AB2cos 30∘=2√33, ∴ OE =OB −EB =√33, ∵ F(12, t),EF 2=EB 2,∴ (12)2+(t +√33)2=(2√33)2, 解得t =−2√3+√396或−2√3−√396, 故F(12, −2√3+√396),G(12, −2√3−√396),∴t的取值范围−2√3−√396≤t≤−2√3+√396【考点】二次函数综合题【解析】(1)利用待定系数法转化为解方程组解决问题.(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,此时12PB+PD最小.最小值就是线段DH,求出DH即可.(3)①先在对称轴上寻找满足△ABM是等腰三角形的点M,由此即可解决问题.②作AB的中垂线与y轴交于点E,连接EA,则∠AEB=120∘,以E为圆心,EB为半径作圆,与抛物线对称轴交于点F、G.则∠AFB=∠AGB=60∘,从而线段FG上的点满足题意,求出F、G的坐标即可解决问题.【解答】解:(1)由题意{a−b+c=0c=−√34a+2b+c=0解得{a=√32b=−√32c=−√3,∴抛物线解析式为y=√32x2−√32x−√3,∵y=√32x2−√32x−√3=√32(x−12)2−9√38,∴顶点坐标(12, −9√38).(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,此时12PB+PD最小.理由:∵OA=1,OB=√3,∴tan∠ABO=OAOB =√33,∴∠ABO=30∘,∴PH=12PB,∴12PB+OD=PH+PD=DH,∴此时12PB+PD最短(垂线段最短).在RT△ADH中,∵∠AHD=90∘,AD=32,∠HAD=60∘,∴sin60∘=DHAD,∴DH=3√34,∴12PB+PD的最小值为3√34.(3)①以A为圆心AB为半径画弧与对称轴有两个交点,以B为圆心AB为半径画弧与对称轴也有两个交点,线段AB的垂直平分线与对称轴有一个交点,所以满足条件的点M有5个,即满足条件的点N也有5个,。
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
C丹阳市横塘初级中学2015-2016学年八年级下学期期中考试数学试卷 2016.4.20一.选择题。
(每题2分,计24分)1.下列调查中适合采用全面调查的是 ( )A .调查市场上某种白酒的塑化剂的含量B .调查鞋厂生产的鞋底能承受弯折次数C .了解火车一节车厢内感染禽流感病毒的人数D .了解某城市居民收看辽宁卫视的时间 2.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A .这1000名考生是总体的一个样本B . 近4万名考生是总体C . 每位考生的数学成绩是个体D . 1000名学生是样本容量3.下列图形中,是中心对称图形但不是轴对称图形的是( )4.使分式xx1有意义的x 的取值范围是( ) A.x >1 B. x <1 C x ≠0. D. x <1且x ≠0 5.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( ) ①平行四边形;②菱形;③等腰梯形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④ 6.下列说法正确的是 ( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相垂直的梯形是等腰梯形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形7.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请根据图中提供的信息,若全校共有990名学生,估计这所学校所有知道母亲的生日的学生人数为( )A .440 人B .495 人C .550 人D .6人8. 如图,在ABC △中,点E D F ,,分别在边AB 、BC 、CA 上,且DE CA ∥,DF BA∥.下列四个判断中,不正确...的是( ) A.四边形AEDF 是平行四边形B.如果90BAC ∠=,那么四边形AEDF 是矩形 C.如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果且 ,那么四边形 是正方形9. 平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( ) A .8和14 B .10和14 C .18和20 D .10和3410.菱形OABC 在平面直角坐标系中的位置如图所示,若OA =2,∠AOC =45°,则B 点的坐标是( )A .)2,22(+B .)2,22(-C .)2,22(+-D .)2,22(--11.如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则DH =( ) A .125cm B .245cm C .512cm D .524cm12.如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的大小为( ) A .78° B .75° C .60° D .45° 二.填空题(每题2分,计16分)13.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”50名, 小明打通了一次热线电话,那么他成为“幸运观众”的概率为 .14. 当x = 时,分式112--x x 的值是0。
2015-2016学年广东省深圳市八年级(下)期中数学试卷D立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角顶点A在y轴,画出△OAB.①点B的坐标是;②把△OAB向上平移5个单位后得到对应的△O1A1B1,画出△O1A1B1,点B1的坐标是;③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是.20.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.21.(6分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.22.(8分)某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x (人),甲旅行社收费为y 甲(元),乙旅行社收费为y 乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.(9分)如图,已知△ABC 中AB=AC=12厘米,BC=9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?2015-2016学年广东省深圳市八年级(下)期中数学试卷参考答案一、选择题(本部分共12小题,每小题3分,共36分,每小题只有一个选项正确)1.D;2.A;3.B;4.A;5.A;6.D;7.C;8.C;9.D;10.C;11.B;12.B;二、填空题(本题共4小题,每小题3分,共12分)13.4(x﹣1)2;14.12°;15.x<1;16.5×()2;5×()6;5×()2n;三、解答题(本题共7小题,共52分)17.;18.;19.(﹣4,﹣3);(﹣4,2);(3,﹣4);20.;21.;22.;23.;。
武大附中2015~2016学年度下学期八年级3月月考数学试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DCCDACCCAB10.提示:S △P AD +S △P AC +S △PCD =S △P AB +S △PCD =S ABCD ∴S △P AC =S △P AB -S △P AD =5-2=3二、填空题(共6小题,每小题3分,共18分) 11.两个面积相等的三角形是全等三角形 12.113.a -- 14.515.516.32+14.提示:有两种展开图如图1,最短路径是29如图2,最短路径是516.提示:分别以BP 、BA 为边作等边△BPE 、△ABF∴BP =PE∵△ABP ≌△FBE (SAS ) ∴P A =EF连接FC 即为最小值过点F 作FG ⊥CG 交CB 的延长线于G ∵∠FBC =∠ABC +∠ABF =60°+90°=150° ∴∠FBG =30° ∵BF =BA =1 ∴FG =21,BG =23,GC =123+ ∴FC =32+三、解答题(共8题,共72分) 17.解:(1) 34;(2) 3418.解:原式=xx 11+-=3 19.解:过点C 作CD ⊥AB 于DBC =2 20.解:(1) 5,90°(2) D (0,4)、(4,2)、(-4,4) 21.解:略22.解:(1) △ABC 为等腰三角形∴BC =AB =20∴过点C 作CD ⊥AB 于D ∴CD =310(2) ∵310<18 ∴有进入危险区的可能如图,在AB 上截取CM =CN =18 ∴DM =DN =62 ∴15623064==t (小时) 23.解:略24.解:(1) C 点的坐标为(-4,4) (2) 模型:对角互补四边形过点N 作ND ⊥MN 交MO 的延长线于D∵∠NCM +∠NOM =180°,∠NOD +∠NOM =180° ∴∠NCM =∠NOD可证:△NCM ≌△NOD (ASA ) ∴MC =OD ,MN =ND ∴△MND 为等腰直角三角形 ∴2==+MNMDMN MC MO(3) 过点N 作NM ⊥NG 交CO 的延长线于M ,连接CM ∴△NMG 为等腰直角三角形根据共顶点等腰三角形的旋转模型,得 △CNM ≌△ONG (SAS )∴OG =CM ,∠CMN =∠NGO =45° ∴∠CMG =45°+45°=90° 在Rt △CMG 中,CM 2+MG 2=CG 2 ∴GO 2+2GN 2=GC 2。
1 徐州市2015-2016学年八年级下期中数学试卷含答案解析 一、选择题(本大题有8题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题栏内) 1.下列事件中,属于必然事件的是( ) A.抛出的篮球会下落 B.打开电视,正在播《最强大脑》 C.任意买一张电影票,座位号是2的倍数 D.你最喜欢的篮球队将夺得CBA冠军 2.下列图形中,是中心对称图形的是( )
A. B. C. D. 3.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是( ) A.100° B.60° C.80° D.160° 4.掷一枚均匀的骰子,前5次朝上的点数恰好是1﹣5,则第6次朝上的点数( ) A.一定是6 B.一定不是6 C.是6的可能性大于是1﹣5中的任意一个数的可能性 D.是6的可能性等于是1﹣5中的任意一个数的可能性 5.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形 6.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )
A.(3,1) B.(3,﹣1) C.(1,﹣3) D.(1,3) 7.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧
交于点D,分别连接AB、AD、CD,则四边形ABCD一定是( )
A.平行四边形 B.矩形 C.菱形 D.梯形 8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的
路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( ) 2
A. B. C. D. 二、填空题(本大题有8小题,每小题3分,共24分) 9.如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= .
10.在一次有24000名学生参加的数学质量抽测的成绩中,随机抽取1000名考生的数学成绩进行分析,在该
抽样中,样本是指 . 11.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积是 . 12.如图,将BM′绕点O按逆时针方向旋转45°后得到△A′OB′,若△AOB=15°,则∠AOB′的度数是 .
13.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为 .
14.如图,在四边形ABCD中,E,F,G,H分别是BC,AC,AD,BD的中点,要使四边形EFGH是菱形,
四边形ABCD的边AB、CD应满足的条件是 . 3
15.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
16.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连
接EF,则EF的最小值为 cm.
三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、证明过程或演算步骤) 17.某市教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了某校八年级学
生一学期参加综合实践活动的天数,绘制成部分统计图如
下. 请根据图中信息,解答下列问题: (1)扇形统计图中α的值为 ,“活动时间为4天”的扇形所对圆心角为 ,八年级学生为 人; (2)补全条形统计图; (3)若该市共有6000名学生,请你估计其中“活动时间不少于4天”的学生大约有多少名? 18.已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE. 4
19.为了了解500名初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳
次数的测试,将所得数据进行处理,可得频率分布表: 组别 分组 频数 频率 1 89.5~99.5 4 0.04 2 99.5~109.5 3 0.03 3 109.5~119.5 46 0.46 4 119.5~129.5 B c 5 129.5~139.5 6 0.06 6 139.5~149.5 2 0.02 合计 a 1.00 (1)这个问题中,总体是 ;样本容量a= ; (2)第四小组的频数b= ,频率c= ; (3)若次数在110次(含110次)以上为达标,试估计该校初三毕业生一分钟跳绳的达标率是多少? 20.如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC. (1)求证:四边形BFCE是平行四边形; (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.
21.如图,在边长为1个单位长度的小正方形组成的格点图中,点A、B、C都是格点. (1)点A坐标为 ;点B坐标为 ;点C坐标为 ; (2)画出△ABC关于原点对称的△A1B1C1; (3)已知M(1,4),在x轴上找一点P,使|PM﹣PB|的值最大(写出过程,保留作图痕迹),并写出点P的坐标 .
22.已知△ABC中,点O是边AC上的一个动点,过O做直线MN∥BC,设MN交∠BCA的平分线于点E,
交∠BCA的外角平分线于点F.
(1)求证:OE=OF. (2)试确定点O在边AC上的位置,使四边形AECF是矩形,并加以证明. (3)在(2)的条件下,且△ABC满足 时,矩形AECF是正方形. 5
23.如图,在矩形纸片ABCD中,AB=3,BC=9.将矩形纸片折叠,使点B和点D重合. (1)求ED的长; (2)求折痕EF的长.
24.如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A. (1)点A的坐标是 ;点B的坐标是 ;点C的坐标是 ; (2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式; (3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由. 6
2015-2016学年江苏省徐州市八年级(下)期中数学试卷
参考答案与试题解析 一、选择题(本大题有8题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题栏内) 1.下列事件中,属于必然事件的是( ) A.抛出的篮球会下落 B.打开电视,正在播《最强大脑》 C.任意买一张电影票,座位号是2的倍数 D.你最喜欢的篮球队将夺得CBA冠军 【考点】随机事件. 【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可. 【解答】解:抛出的篮球会下落是必然事件,A正确; 打开电视,正在播《最强大脑》是随机事件,B错误; 任意买一张电影票,座位号是2的倍数是随机事件,C错误; 你最喜欢的篮球队将夺得CBA冠军是随机事件,D错误, 故选:A.
2.下列图形中,是中心对称图形的是( ) A. B. C. D. 【考点】中心对称图形. 【分析】根据中心对称的定义,结合所给图形即可作出判断. 【解答】解:A、是中心对称图形,故本选项正确; B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、不是中心对称图形,故本选项错误; 故选:A.
3.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是( ) A.100° B.60° C.80° D.160° 【考点】平行四边形的性质. 【分析】由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠B=200°,即可求得∠A的度数,继而求得答案. 【解答】解:∵四边形ABCD是平行四边形, ∴∠A=∠C,AD∥BC, ∵∠A+∠C=240°, ∴∠A=120°, ∴∠B=180°﹣∠A=60°. 故选B. 7
4.掷一枚均匀的骰子,前5次朝上的点数恰好是1﹣5,则第6次朝上的点数( ) A.一定是6 B.一定不是6 C.是6的可能性大于是1﹣5中的任意一个数的可能性 D.是6的可能性等于是1﹣5中的任意一个数的可能性 【考点】可能性的大小. 【分析】要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个[0,1]之间的分数.要求可能性的大小,只需求出各自所占的比例大小即可. 【解答】解:第6次朝上的点数可能是6,A、B均不正确; 出现的可能性相同,因为一枚均匀的骰子上有“1”至“6”,所以出现的点数为1至6的机会相同. 故选D.
5.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形 【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定. 【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形. 【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确; B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,
∴四边形ABCD是菱形,故B选项正确; C、有一个角是直角的平行四边形是矩形,故C选项正确; D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误; 综上所述,符合题意是D选项; 故选:D.
6.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )
A.(3,1) B.(3,﹣1) C.(1,﹣3) D.(1,3)