方程解的近似计算
- 格式:doc
- 大小:697.50 KB
- 文档页数:12
picard迭代法例题Picard迭代法是一种常用的数值计算方法,用于求解函数的不动点。
其基本思想是通过构造递归序列,不断逼近函数的不动点。
下面以一个简单的例题来说明Picard迭代法的应用:考虑方程x = e^x,我们的目标是求出该方程的解。
首先,我们将方程变形为f(x) = e^x - x = 0的形式。
接下来,选择一个初始的近似解x_0,并构造递归序列x_{n+1} = f(x_n),其中n为迭代次数。
具体的迭代过程如下:- 选择一个初始值x_0- 计算x_1 = f(x_0)- 计算x_2 = f(x_1)- ...- 直到达到预设的停止条件,例如迭代次数达到一定值或者两个相邻的迭代值之间的差小于某个阈值。
通过不断迭代,序列{x_n}会逐渐逼近方程的解。
当迭代结果收敛时,可以认为最终得到的x_n就是方程的近似解。
对于上述例题,在Python中可以实现如下:```pythonimport mathdef f(x):return math.exp(x) - xdef picard_iteration(x0, max_iter=100, epsilon=1e-6): x = x0for i in range(max_iter):x_next = f(x)if abs(x_next - x) < epsilon:return x_nextx = x_nextreturn None# 设置初始值x0=1x0 = 1# 进行Picard迭代result = picard_iteration(x0)print("方程的近似解为:", result)运行上述代码,输出结果为方程的近似解。
需要注意的是,Picard迭代法并不适用于所有的方程求解问题。
在某些情况下,可能会出现迭代不收敛或者收敛速度非常慢的情况。
因此,在实际应用中,需要根据具体问题选择合适的数值计算方法。
常用的七个近似计算公式在日常生活和工作中,我们经常需要进行一些近似计算。
这些计算可以帮助我们快速估算一些数据,提高工作效率。
下面介绍七个常用的近似计算公式,希望对大家有所帮助。
一、圆周率的近似值。
圆周率是数学中一个重要的常数,通常用希腊字母π表示。
它的精确值是一个无限不循环小数,但在实际计算中,我们通常使用3.14作为圆周率的近似值。
这个近似值已经足够精确,可以满足大部分计算的需求。
二、平方根的近似值。
平方根是一个常见的数学运算,它表示一个数的平方根。
在实际计算中,我们通常使用以下近似值来计算平方根:√2≈1.41。
√3≈1.73。
√5≈2.24。
这些近似值可以帮助我们快速计算一些复杂的平方根,提高计算效率。
三、对数的近似值。
对数是另一个常见的数学运算,它表示一个数对于另一个数的幂次运算。
在实际计算中,我们通常使用以下近似值来计算对数:log2≈0.30。
log3≈0.48。
log5≈0.70。
这些近似值可以帮助我们快速计算一些复杂的对数,提高计算效率。
四、三角函数的近似值。
三角函数是数学中常见的函数,它包括正弦函数、余弦函数和正切函数等。
在实际计算中,我们通常使用以下近似值来计算三角函数:sin30°≈0.50。
cos45°≈0.71。
tan60°≈1.73。
这些近似值可以帮助我们快速计算一些复杂的三角函数,提高计算效率。
五、指数函数的近似值。
指数函数是数学中常见的函数,它表示一个数的幂次运算。
在实际计算中,我们通常使用以下近似值来计算指数函数:e≈2.72。
e^2≈7.39。
e^3≈20.08。
这些近似值可以帮助我们快速计算一些复杂的指数函数,提高计算效率。
六、二次方程的近似解。
二次方程是数学中常见的方程,它表示一个未知数的二次多项式方程。
在实际计算中,我们通常使用以下近似解来计算二次方程:对于二次方程ax^2+bx+c=0,其根的近似解可以使用以下公式计算:x≈(-b±√(b^2-4ac))/(2a)。
微分方程解析近似解的符号计算研究【摘要】:本文基于数学机械化思想,借助于符号计算软件,以非线性方程为对象,系统地研究了适用于强非线性问题的解析近似方法:Adomian分解方法(ADM)和同伦分析方法(HAM)的应用和机械化实现。
第一章是与本文相关的研究背景。
简要综述了计算机代数和孤立子理论的发展进程,针对性地介绍了近年来解析近似方法的研究成果和现状。
第二章改进了Adomian分解方法,能够获得修正Korteweg-deVries(mKdV)方程和Kadomtsev-Petviashvili(KP)方程的双孤子解。
通过引入自变量变换和行波变换,将Degasperis-Procesi(DP)方程短波模型化为常微分方程,应用Adomian分解方法求解之,获得其闭合形式的解析解,再经过反变换,能够获得其环状孤子解。
以上结果表明了Adomian分解方法在求解方程特殊孤子解方面的有效性。
对Adomian分解方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,并与Pade近似结合,能够获得几个经典的非线性微分差分方程组的孤子解,显著提高了方程解析近似解的精度。
同时,我们还讨论了Pade有理近似中出现的伪极点问题,给出了合适选择Pade 近似阶数的指导原则。
获得的解析近似解与精确解符合得很好,表明了Adomian分解方法对复杂强非线性问题的有效性。
第三章通过引入自变量变换和行波变换,将偏微分方程化为常微分方程,通过同伦分析方法求解之,再经过反变换,能够获得DP方程短波模型的环状孤子解和Camassa-Holm(CH)方程短波模型的尖状孤子解,结果表明了同伦分析方法在求解方程特殊孤子解方面的有效性。
对同伦分析方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,改进了同伦分析方法选择初始猜测解的方法,能够获得离散修正KdV方程的亮孤子解,获得的解析近似解与精确解符合得很好,表明了同伦分析方法对复杂强非线性问题的有效性。
4.5.2用二分法求方程的近似解一、单选题1.用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.42.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次计算,得f (0)<0,f (0.5)>0,第二次应计算f (x 1),则x 1等于( ) A .1B .-1C .0.25D .0.753.设函数3()48f x x x =+-,用二分法求方程3480x x +-=近似解的过程中,计算得到()10f <,()30f >,则方程的近似解落在区间( ) A .()1,1.5 B .()1.5,2 C .()2,2.5D .()2.5,34.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.55.一种药在病人血液中的量保持1500mg 以上才有效,而低于500mg 病人就有危险.现给某病人注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过( )小时向病人的血液补充这种药,才能保持疗效.(附:1g20.301=,1g30.4771=,答案采取四舍五入精确到0.1h ) A .2.3小时B .3.5小时C .5.6小时D .8.8小时二、多选题6.用二分法求函数()232xf x x =+-在区间[]0,2上的零点近似值取区间中点1,则( ) A .下一个存在零点的区间为()0,1B .下一个存在零点的区间为()1,2C .要达到精确度1的要求,应该接着计算12f ⎛⎫⎪⎝⎭D .要达到精确度1的要求,应该接着计算32f ⎛⎫ ⎪⎝⎭7.以下函数图象中,能用二分法求函数零点的是( )A .B .C .D .8.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下:A .1.25B .1.4375C .1.40625D .1.42199.下列函数中,有零点但不能用二分法求零点的近似值的是( )A .y =2x+1B .y =1010x x x x -+≥⎧⎨+<⎩,,,C .y =12x 2+4x +8D .y =|x |10.若函数()f x 的图像在R 上连续不断,且满足(0)0f <,(1)0f >,(2)0f >,则下列说法错误的是( ) A .()f x 在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .()f x 在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .()f x 在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .()f x 在区间(0,1)上可能有零点,在区间(1,2)上一定有零点三、填空题11.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如下表所示:12.已知函数()322f x x x =--,()()120f f ⋅<,用二分法逐次计算时,若0x 是[]1,2的中点,则()0f x =________.四、解答题13.用二分法求24x x +=在[1]2,内的近似解(精确度为0.2).参考数据:14.判断函数()321f x x =-的零点个数,并用二分法求零点的近似值.(精确度0.1)15.为确定传染病的感染者,医学上可采用“二分检测方案”.假设待检测的总人数是2m (m 为正整数).将这2m 个人的样本混合在一起做第1轮检测(检测1次),如果检测结果是阴性,可确定这些人都未感染;如果检测结果是阳性,可确定其中有感染者,则将这些人平均分成两组,每组12m -个人的样本混合在一起做第2轮检测,每组检测1次.依此类推:每轮检测后,排除结果为阴性的组,而将每个结果为阳性的组再平均分成两组,做下一轮检测,直至确定所有的感染者. 例如,当待检测的总人数为8,且标记为“x ”的人是唯一感染者时,“二分检测方案”可用下图表示.从图中可以看出,需要经过4轮共n 次检测后,才能确定标记为“x ”的人是唯一感染者.(1)写出n 的值;(2)若待检测的总人数为8,采用“二分检测方案”,经过4轮共9次检测后确定了所有的感染者,写出感染者人数的所有可能值;(3)若待检测的总人数为102,且其中不超过2人感染,写出采用“二分检测方案”所需总检测次数的最大值.参考答案1.B 【分析】利用二分法求函数零点的近似值的条件及方法分析判断即得. 【详解】依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.70.68,()0.72∈,且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7. 故选:B 2.C 【分析】根据二分法的原理,直接求解即可. 【详解】第一次计算,得f (0)<0,f (0.5)>0,可知零点在()0,0.5之间, 所以第二次计算f (x 1),则x 1=00.52+=0.25. 故选:C 3.A 【分析】根据二分法求方程的近似解的过程,由条件先求得()20f >,再求32f ⎛⎫⎪⎝⎭的符号,只须找到满足()()0f a f b <即可【详解】取12x =,因为()24828260f =⨯+-=>,所以方程近似解()01,2x ∈, 取232x =,因为3273f 4870282⎛⎫=⨯+-=> ⎪⎝⎭,所以方程近似解031,2x ⎛⎫∈ ⎪⎝⎭,故选:A. 4.C 【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果. 【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数,2yx 和2log 6y x =+在()0,∞+上都是增函数,当()1,2x ∈时,2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立,又22(2.5) 2.5log 2.560f =--<,2(3)9log 360f =-->,根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C. 【点睛】 方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 5.A 【分析】药在血液中以每小时20%的比例衰减,根据指数函数模型列方程或不等式求解. 【详解】设从现在起经过x 小时向病人的血液补充这种药,才能保持疗效. 则25000.81500x ⨯=,0.80.6x =,lg 0.8lg 0.6x =,lg 0.8lg 0.6x =,6lglg 0.6lg 2lg310.3010.4771110 2.38lg 0.83lg 2130.3011lg 10x +-+-====≈-⨯-.故选:A . 6.AC 【分析】根据二分法求零点的步骤,逐一检验选项,即可得答案. 【详解】因为()0020210f =+-=-<,()222620f =+->,()112320f =+->,所以()()010f f <,所以下一个存在零点的区间为()0,1,故A 正确,B 错误; 要达到精确度1的要求,应该接着计算12f ⎛⎫⎪⎝⎭,故C 正确,D 错误.故选:AC . 7.ABC 【分析】根据利用二分法无法求不变号的零点问题确定选项. 【详解】D 选项虽然有零点,但是在零点左右两侧函数值符号都相同, 因此不能用二分法求零点,而A ,B ,C 选项符合利用二分法求函数零点的条件. 故选:ABC . 【点睛】本题考查了零点判定定理的应用和二分法求解函数的零点.属于容易题. 8.BCD 【分析】由根的存在性定理判断根的较小区间,从而求近似解. 【详解】解:由表格可得,函数32()22f x x x x =+--的两点在(1.375,1.4375)之间, 符合条件的有BCD. 故选:BCD . 9.CD 【分析】根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值. 【详解】对于选项C ,y =12x 2+4x +8=12(x +4)2≥0,故不能用二分法求零点的近似值. 对于选项D ,y =|x |≥0,故不能用二分法求零点的近似值. 易知选项A ,B 有零点,且可用二分法求零点的近似值. 故选:CD . 10.ABD 【分析】根据()f x 的图像在R 上连续不断,()00f <,()10f >,()20f >,结合零点存在定理,判断出在区间()0,1和()1,2上零点存在的情况,得到答案. 【详解】由题知()()010f f ⋅<,所以根据函数零点存在定理可得()f x 在区间()0,1上一定有零点, 又()()120f f ⋅>,无法判断()f x 在区间()1,2上是否有零点,在区间(1,2)上可能有零点. 故选:ABD . 11.1.4 【分析】根据函数零点存在定理、用二分法求方程的近似解的相关知识,代值求解即可. 【详解】由题表知()()1.375 1.43750f f ⋅<,且1.4375 1.3750.06250.1-=<, 所以方程的一个近似解可取为1.4, 故答案为:1.4. 12. 1.625-. 【分析】先求出0x 的值,再代入解析式即可求解. 【详解】因为0x 是[]1,2的中点,所以0 1.5x =,所以()()30 1.5 1.52 1.52 1.625f x f ==-⨯-=-,故答案为: 1.625-. 13.1.375 【分析】本题直接用二分法求方程的近似解即可. 【详解】解:令()24xf x x =+-,则()12140f =+-<,()222240f =+->,∵24x x +=在[1]2,内的近似解可取为1.375. 14.0.75 【分析】首先由()()010f f ⋅<结合()f x 的单调性可知()f x 有且只有一个零点()00,1x ∈,再利用取区间中点的方法利用零点存在性定理将零点所在区间逐渐减半,直到满足精确度即可. 【详解】因为()321f x x =-,所以()010f =-<,()12110f =-=>因为()()010f f ⋅<,所以()f x 在区间()0,1内有零点,因为()321f x x =-在R 上为增函数,所以()f x 有且只有一个零点()00,1x ∈,取区间()0,1的中点10.5x =,()30.520.510.750f =⨯-=-<,所以()()0.510f f ⋅<,可得()00.5,1x ∈,取区间()0.5,1的中点20.75x =,()30.7520.7510.156250f =⨯-=-<,所以()()0.7510f f ⋅<,可得()00.75,1x ∈,取区间()0.75,1的中点30.875x =,()30.87520.87510.33980f =⨯-=>,所以()()0.750.8750f f ⋅<,可得()00.75,0.875x ∈,取区间()0.75,0.875的中点40.8125x =,()30.812520.812510.07280f =⨯-=>,所以()()0.750.81250f f ⋅<,可得()00.75,0.8125x ∈, 因为0.81250.750.06250.1-=<,所以()321f x x =-零点的近似值可取为0.75.15.(1)7n =;(2)感染者人数可能的取值为2,3,4;(3)39. 【分析】(1)由图可计算得到n的取值;(2)当经过4轮共9次检测后确定所有感染者,只需第3轮对两组都进行检查,由此所有可能的结果;(3)当所需检测次数最大时,需有2名感染者,并在第2轮检测时分居两组当中,从而将问题转化为待检测人数为92的组,每组1个感染者,共需的检测次数,由此可计算求得结果.【详解】(1)由题意知:第1轮需检测1次;第2轮需检测2次;第3轮需检测2次;第4轮需检测2次;12227∴=+++=;n(2)由(1)可知:若只有1个感染者,则只需7次检测即可;经过4轮共9次检测查出所有感染者,比只有1个感染者多2次检测,则只需第3轮时,对两组都都进行检查,即对最后4个人进行检查,可能结果如下图所示:∴感染者人数可能的取值为2,3,4.(3)若没有感染者,则只需1次检测即可;+⨯=次检测即可;若只有1个感染者,则只需121021若有2个感染者,若要检测次数最多,则第2轮检测时,2个感染者不位于同一组中;+⨯=次检测;∴此时两组共此时相当于两个待检测人数均为92的组,每组1个感染者,此时每组需要12919⨯=次检测;需21938∴若有2个感染者,且检测次数最多,共需38139+=次检测.综上所述:所需总检测次数的最大值为39.。
2.4.2 求函数零点近似解的一种计算方法—二分法整体设计教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点教学重点:用二分法求方程的近似解.教学难点:二分法.课时安排1课时教学过程导入新课思路1.(情境导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米).电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究 提出问题①解方程2x -16=0.②解方程x 2-x -2=0.③解方程x 3-2x 2-x +2=0.④解方程x 2-2x 2-3x +2=0.⑤我们知道,函数f x =lnx +2x -6在区间2,3内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间? ⑦什么叫二分法?⑧试求函数f x =lnx +2x -6在区间2,3内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.,⑩思考用二分法求函数零点近似值的特点. 讨论结果: ①x=8.②x=-1,x =2.③x=-1,x =1,x =2 ④x=-2,x =2,x =1,x =2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x =a +b 2称为区间(a ,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y =f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.⑧因为函数f(x)=lnx +2x -6,用计算器或计算机作出函数f(x)=lnx +2x -6的对应值表. x 1 2 3 4 5 6 789f(x)-4-1.306 91.098 63.386 35.609 47.791 89.945 9 12.079 4 14.197 2由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间(2,3)内有零点x 0,取区间(2,3)的中点x 1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x 0∈(2.5,3).同理,可得表(下表)与图象(如下图).区间 中点的值 中点函数近似值(2,3) 2.5 -0.084 (2.5,3) 2.75 0.512 (2.5,2.75) 2.625 0.215 (2.5,2.625) 2.562 5 0.066 (2.5,2.562 5) 2.531 25 -0.009 (2.531 25,2.562 5)2.546 8750.029(2.531 25,2.546 875) 2.539 062 5 0.010 (2.531 25,2.539 062 5)2.535 156 250.001由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.539 062 5-2.531 25|=0.007 812 5<0.01,所以,我们可以将x =2.531 25作为函数f(x)=lnx +2x -6零点的近似值.⑨用二分法求函数零点的一般步骤如下:第一步 在D 内取一个闭区间[a 0,b 0] D ,使f(a 0)与f(b 0)异号,即f(a 0)·f(b 0)<0.零点位于区间[a 0,b 0]中.第二步 取区间[a 0,b 0]的中点(如下图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0),并判断:(1)如果f(x 0)=0,则x 0就是f(x)的零点,计算终止;(2)如果f(a 0)·f(x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; (3)如果f(a 0)·f(x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0. 第三步 取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f(x 1)和f(a 1),并判断:(1)如果f(x 1)=0,则x 1就是f(x)的零点,计算终止;(2)如果f(a 1)·f(x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; (3)如果f(a 1)·f(x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f(x)的近似零点,计算终止.这时函数y =f(x)的近似零点满足给定的精确度.⑩由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1求函数f(x)=x 3+x 2-2x -2的一个正实数零点(精确到0.1).解:由于f(1)=-2<0,f(2)=6>0,可以确定区间[1,2]作为计算的初始区间.用二法逐步计算,列表如下:端点或中点横坐标 计算端点或中点的函数值 定区间 a 0=1,b 0=2 f(1)=-2,f(2)=6 [1,2] x 0=(1+2)/2=1.5 f(x 0)=0.625>0 [1,1.5] x 1=(1+1.5)/2=1.25 f(x 1)=-0.984<0 [1.25,1.5] x 2=(1.25+1.5)/2=1.375 f(x 2)=-0.260<0 [1.375,1.5] x 3=(1.375+1.5)/2=1.437f(x 3)=0.162>0[1.375,1.437 5]1.4,因此1.4就是所求函数的一个正实数零点的近似值.函数f(x)=x3+x2-2x-2的图象如下图.实际上还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.点评:以上求函数零点的二分法,对函数图象是连续不间断的一类函数的零点都有效.如果一种计算方法对某一类问题(不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到唯一的结果,我们常把这一类问题的求解过程叫做解决这一类问题的一种算法.算法是刻板的、机械的,有时要进行大量的重复计算,算法的优点是一种通法,只要按部就班地去做,总会算出结果.算法更大的优点是,它可以让计算机来实现.例如,我们可以编写程序,快速地求出一个函数的零点.有兴趣的同学,可以在“Scilab”界面上调用二分法程序,对上例进行计算,求出精确度更高的近似值.本套书的一个重要特点是,引导同学们认识算法思想的重要性,并希望同学们在学习前人算法的基础上,去寻求解决各类问题的算法.在思路2例1求方程2x3+3x-3=0的一个实数解(精确到0.01).解:考察函数f(x)=2x3+3x-3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在区间.经试算,f(0)=-3<0,f(2)=19>0,所以函数f(x)=2x3+3x-3在[0,2]内存在零点,即方程2x3+3x-3=0在[0,2]内有解.取[0,2]的中点1,经计算,f(1)=2>0,又f(0)<0,所以方程2x3+3x-3=0在[0,1]内有解.3至此,可以看出,区间[0.742 187 5,0.744 140 625]内的所有值,若精确到0.01,都是0.74.所以0.74是方程2x3+3x-3=0精确到0.01的实数解.点评:利用二分法求方程近似解的步骤:①确定函数f(x)的零点所在区间(a,b),通常令b-a=1;②利用二分法求近似解.,发现x1∈(2,2.5)(如上图),这样可以进一步缩小,先画出函数图象的简图,如上图.=2>0,x2-2x-1=0有一解,记为x1.,因为f(2.5)=0.25>0,所以2<x<2.5.知能训练1.函数f(x)=x3-2x2-x+2的零点个数是( )A.0 B.1 C.2 D.3答案:D2.在26枚崭新的金币中,有一枚外表与真币完全相同的假币(重量轻一点),现在只有一台天平,请问:应用二分法的思想,最多称__________次就可以发现这枚假币?解析:将26枚金币平均分成两份,放在天平上,则假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,放在天平上,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚平均分成两份,放在天平上,则假币一定在轻的那3枚金币里面;将这3枚金币任拿出2枚放在天平上,若平衡,则剩下的那一枚就是假币,若不平衡,则轻的那一枚就是假币.综上可知,最多称4次就可以发现这枚假币.答案:43.求方程x 3-3x -1=0的一个正的近似解(精确到0.1).解:设f(x)=x 3-3x -1,设x 1为函数的零点,即方程x 3-3x -1=0的解.作出函数f(x)=x 3-3x -1的图象如下图.因为f(1)=-3<0,f(2)=1>0,所以在区间(1,2)内方程x 3-3x -1=0有一个解,记为x 1.取1与2的平均数1.5,因为f(1.5)=-2.125<0,所以1.5<x 1<2.再取2与1.5的平均数1.75,因为f(1.75)=-0.890 625<0,所以1.75<x 1<2. 如此继续下去,得f(1)<0,f(2)>0 ⇒x 1∈(1,2), f(1.5)<0,f(2)>0 ⇒x 1∈(1.5,2), f(1.75)<0,f(2)>0 ⇒x 1∈(1.75,2), f(1.875)<0,f(2)>0 ⇒x 1∈(1.875,2),f(1.875)<0,f(1.937 5)>0 ⇒x 1∈(1.875,1.937 5),因为区间[1.875,1.937 5]内的所有值,如精确到0.1都是1.9,所以1.9是方程x 3-3x -1的实数解. 拓展提升从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为多少?(此例既体现了二分法的应用价值,也有利于发展学生的应用意识) 答案:至少需要检查接点的个数为4. 课堂小结①掌握用二分法求方程的近似解,及二分法的其他应用. ②思想方法:函数方程思想、数形结合思想. 作业课本习题2—4 A 7.设计感想 “猜价格”的游戏深受人们的喜欢,它是二分法的具体应用,用它引入拉近了数学与生活的距离.二分法是科学的数学方法,它在求方程的近似解和现实生活中都有着广泛的应用.本节设计紧紧围绕这两个中心展开,充分借助现代教学手段,用多种角度处理问题,使学生充分体会数学思想方法的科学性与完美性.备课资料基本初等函数的零点个数 结合基本初等函数的图象得:①正比例函数y =kx(k≠0)仅有一个零点0; ②反比例函数y =kx (k≠0)没有零点;③一次函数y =kx +b(k≠0)仅有一个零点;④二次函数y =ax 2+bx +c(a≠0),当Δ>0时,二次函数有两个零点-b ±Δ2a ;当Δ=0时,二次函数仅有一个零点-b2a;当Δ<0时,二次函数无零点.。
2.4.2求函数零点近似解的一种计算方法——二分法教案
教学目标:
1.通过具体实例理解二分法的概念及其适用条件;
2.了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.
3.能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.重点,难点:
重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系.
难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
教学过程。
量子力学中的量子力学近似方法量子力学是描述微观世界的物理学理论,它通过数学模型来描述粒子的行为和性质。
然而,在处理复杂问题时,精确求解量子力学方程往往十分困难,因此需要使用近似方法来简化计算。
本文将介绍几种常见的量子力学近似方法。
一、时间无关微扰理论时间无关微扰理论是处理量子力学方程近似解的一种方法。
它将系统的哈密顿量(描述系统能量和相互作用的数学量)写成一个简单的部分(通常为已知的精确解)和一个微小的扰动部分的和。
然后,通过级数展开和微扰理论的方法来计算系统的性质。
这种方法适用于系统的扰动较小的情况,可以在较长时间范围内计算系统的行为。
二、变分法变分法是处理量子力学近似解的一种常用方法。
它通过猜测一个波函数形式,然后利用变分原理来确定波函数的具体形式和相应的能量本征值。
变分法的关键是找到一个合适的波函数猜测,通常可以通过物理直觉或数学技巧来选择。
这种方法适用于系统的基本状态和激发态的计算。
三、准经典近似准经典近似是处理量子力学中粒子运动问题的一种方法。
它基于经典力学的观点,将量子力学中的波函数用粒子的经典轨迹来近似描述。
在准经典近似下,波函数的振幅和相位可以看作是粒子的位置和动量的函数。
这种方法适用于粒子的运动速度远大于普朗克常数的情况。
四、WKB近似WKB(Wentzel-Kramers-Brillouin)近似是处理量子力学中波动方程的一种常用方法。
它通过对波函数进行分离变量的近似,将波函数表示为振幅和相位的乘积形式。
然后,利用波动方程的解析解和边界条件来确定波函数的形式和相应的能量本征值。
WKB近似适用于波函数变化缓慢的情况,例如势垒和势阱问题。
五、平均场理论平均场理论是处理量子力学中多体系统的一种方法。
它假设系统中粒子之间存在平均相互作用,而忽略粒子之间的具体相互作用细节。
通过求解平均场方程,可以得到系统的平均性质,如能量、密度和磁矩等。
平均场理论适用于大量粒子组成的系统,如原子核和凝聚态物质。
《用二分法求方程的近似解》教材分析本节是人教A版《普通高中标准试验教科书·数学1(必修)》第三章“函数的应用”中第一节“函数与方程”的第二节课内容,是在学习了集合与函数概念、基本初等函数后,研究函数与方程关系的内容。
本节课的教学内容是:结合函数大致图象,能够借助计算器用二分法求出相应方程的近似解,理解二分法的思想及了解这种方法是求方程近似解的常用方法。
本节内容是新教材中新增的内容。
在初中,学生学习了简单的一元一次方程和一元二次方程等简单方程的求根问题,但是实际问题中,有具体求根公式的方程是很少的。
对于这类方程,我们只能根据根的存在性定理判断根的存在,在利用二分法可以求出方程给定精确度的近似解。
经过本节内容的学习,将使学生更加深入理解函数与方程的数学思想。
教学目标【知识与能力目标】通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,会用二分法求解具体方程的近似解,从中体会函数与方程之间的联系及其在实际问题中的应用,体会程序化解决问题的思想.【过程与方法】借助计算器求二分法求方程的近似解,让学生充分体验近似的思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做准备.【情感、态度与价值观】通过探究体验、展示、交流养成良好的学习品质,增强合作意识。
通过体会数学逼近过程,感受精确与近似的相对统一.教学重难点【教学重点】过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.【教学难点】恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.课前准备多媒体课件、教具等.教学过程一、问题引入实际问题:某个雷电交加的夜晚,医院的医生正在抢救一个危重病人,忽然电停了。
据了解原因是供电站到医院的某处线路出现了故障,维修工,如何迅速查出故障所在? (线路长10km ,每50m 一棵电线杆)如果沿着线路一小段一小段查找,困难很多。
1 方程解的近似计算 摘要 本文讨论方程解的常用近似计算方法。详细阐述了逐步搜索法,二分法,不动点迭代法,不动点迭代加速法,Aitken加速方法,牛顿法和插值法的原理,计算方法。并通过例题演示计算步骤和简单比较计算结果来评价计算方法的优劣。 关键词 非线性方程 二分法 迭代法 插值法 The calculation of the root equation
Name:Zhang Yongkun Student Number:200741420146 Instructor: Cui Fangda
Abstract This article discusses the common equation approximation method. Search method described in detail step by step, bisection, fixed point iteration, fixed point iteration acceleration method, Aitken acceleration method, Newton method and the interpolation principle, calculation method. Then calculation steps and through the example shows a simple comparison method results to assess the advantages and disadvantages.
Key words nonlinear equationdichotomy iteration interpolation
1.引言 代数方程求解问题是个古老的数学问题。我们知道当1n时为一次线性方程,可以直接求解。当2n时为二次方程,我们学习过判别法,配方法等来求解。当3n时,除了一些特殊形式可以求解,一般的代数形式我们无能为力。Gauss已经证明了5n次一般代数方程不能用代数公式求根。5n次一般代数方程和超越方程都难以求得精确解。近代在计算机的推动下,用数值方法求得满足一定精度的近似解成为可能,使方程求近似根获得巨大发展。 2.近似计算的方法 2.1 简单的方法 2.1.1 逐步搜索法 2
方程求解即求方程的零点,由零点定理可知在连续的闭区间必存在一根。不妨设f(a)<0,f(b)>0。从有根区间[a,b]的左端点0x=a出发按步长h一步步计算,每跨一步计算kxakh上的函数值kfx的符号。如果发现结果异号,则可以确定一个缩小了的有根区间1,kkxx。只要步长h取得足够小,就可以求得任意精度的近似根。这是一种简单的搜索根的方法。 例1:方程3()10fxxx,由于(0)0,(2)0,ff可知()fx在区间(0,2)
内至少有一个实根。 设从0x出发,取0.5h为步长向右进行根搜索,列表记录各函数值的符号。 x 0 0.5 1.0 1.5
()fx的符号 +
2.1.2二分法 逐步搜索法是求近似根的简单探索。缺点是步数较多,计算量大。二分法可以看成是逐步搜索方法的一种改进。有根区间,ab,取中点0/2xab。然后求0fx与fa是否同号,如果同号说明所求的根*x必在0x的右侧。这时令
101,axbb否则*x必在0x的左侧。这时令110,aabx。不管出现哪种情况,
新的有根区间11,ab的长度仅为,ab的一半。同理对新有根区间11,ab再压缩。如此反复即可得出一系列有根区间1122,,,......,......kkabababab 因此,kkab的长度/2kkkbaba当k时趋于零。说明这些区间最终收缩到一点*x。这点显然就是所求的根。 例1:求()tan0fxxx的最小正根。
解:可知方程()tan0fxxx的最小正根应在3,22内。由于(4)2.8420,(4.6)4.26...0,ff因此4,4.6是()0fx的有根区间。计算 3
结果如下表。 k ka kb kx ()fx的符号
0 4.0 4.6 4.3 + 1 4.3 4.6 4.45 + 2 4.45 4.6 4.525 - 3 4.45 4.525 4.4875 + 4 4.4875 4.525 4.50625 - 5 4.4875 4.50625 4.496875 - 6 4.4875 4.496875 4.4921875 + 7 4.4921875 4.496875 4.49453125 - 8 4.4921875 4.49453125 4.493359375 + 9 4.493359375 4.49453125 4.493445313 - 此时 *3910111021024xx. 二分法的优点是算法简单,容易操作,是电子计算机上一种常用的算法,但它不能用于复根和偶数重根。 2.2 迭代法 迭代法也称辗转法,是一种用变量的旧值递推新值逐步逼近的方法。迭代法特点是算法简单,容易操作。用计算机程序容易实现,也是计算机上一种常用的算法。 2.2.1不动点迭代法 设方程0fx有根,将方程化为等价方程xx。如果给出根的某个猜
测值x。将0x代入方程得1x0()x如此反复迭代,如果迭代确定的数列{}kx有极限*limkxxx则称迭代过程收敛。*x就是所要求的根。然而迭代过程并不总是收敛。它需求满足一定的限制条件[1]。 1.对于任意的,xab,有()axb. 2.存在正数1L,使对于任意的x,,xab均满足Lipschitz条件 4
()()xxLxx.
例1:求方程32()4100fxxx在01.5x附近的根*x。 解: 方程可以化成不同的等价方程,例如可以改写成 第一种形式:
1321102xxx. 第二种形式: 12104xxx. 第三种形式: 322410()38xxxxxxx. 见下表: k 第一种形式 第二种形式 第三种形式
0 1.5 1.5 1.5 1 1.28695377 1.34839973 1.3733333 2 1.40254080 1.36737637 1.36526201 3 1.34545838 1.36495700 1.36523001 4 1.37517025 1.36526475 8 1.36591673 1.36523002 9 1.36487822 1.36523001 23 1.36522998 25 1.36523001 由此可见各种迭代公式的收敛速度是不同。
2.2.2迭代公式加工法[2] 对于收敛的迭代过程有快有慢,只要迭代足够多次就可以使结果达到任意的精度。但有的迭代过程收敛缓慢,需要迭代加速处理。设0x使根*x的某个预测值,用迭代公式校正一次得10()xx,而由微分中值定理**10()(),xxxx 5
其中介于*x与0x之间。 假定x改变不大,可设为L,所以 **10(),xxLxx
得 *10
111LxxxLL
.
上式右端求得的结果2101101111LLxxxxxxLLL是比1x更好的近似值。 用kx和kx分别表示第k步的校正值和改进值。则加速迭代计算方案如下: 校正 1kkxx 改进 1111kkkkLxxxxL 然而上述加速方案有个缺点,由于含有导数x有关信息L,实际使用不便。 例1:求解方程()0xfxxe. 解: 由于在00.5x附近,()0.6xe故计算公式的具体形式为
11110.6()1.6.xkkkkkkxexxxx
下表列出计算结果: k kx
kx
0 0.5 1 0.60653 0.56658 2 0.56746 0.56713 3 0.56715 0.56714
2.2.3Aitken加速方法 设已知*x的某个猜测值为0x,将校正值10()xx再校正一次,又得 6
21xx,由于**21xxLxx将它与*10111LxxxLL联立,消去未知
的L有 *100*201
xxxxxxxx
得: 22
21*
021
2
01201222xxxxxxxxxxxxx
这样构造的迭代公式不再含有导数的信息,但需要用两次迭代值加工, 校正 *1kkxx 再校正 *11kkxx
改进 2*1111*112kkkkkkkxxxxxxx 例1:对于32()4100fxxx的迭代形式1210()4xxx产生的迭代序列进行Aitken加速,效果很明显。 k kx
1 1.365265223 2 1.36523058 3 1.365230023
2.2.4基于反函数泰勒展开的迭代法[3] 下面给出基于反函数泰勒展开构造的迭代方法,使其具有任意的整数收敛
阶。于是可以得出 1iiifxxxf 设yfx有反函数xgy。则在0fx根*x的领域内gy关于点iiyfx的泰勒展式为:
2120!2!jmmjmiiiijyyyyxgygygyjm