粉末冶金原理课程设计文献综述泡沫铝的研究进展制备工艺及
- 格式:doc
- 大小:36.00 KB
- 文档页数:6
粉体发泡法泡沫铝制备工艺及性能的研究王芳;王录才【期刊名称】《铸造设备与工艺》【年(卷),期】2002(000)001【摘要】本文研究一种新的泡沫铝制备方法--粉体发泡法.其工艺原理为:混合铝粉与一种发泡剂粉末(TiH2),在一定温度下轴向压缩得到具有气密结构的预制品,加热预制品使发泡剂分解释放出气体迫使预制品膨胀得到泡沫铝.混合、压制和发泡是粉体发泡法的三个重要环节.本论文详细研究了各个工艺过程,确定了其在试验条件下的最佳工艺参数值.混合速度250r/min,混合时间大于6h可以保证得到混合均匀的粉末混合物.压力130~150MPa,压制混合400℃~450℃时可以得到具有气密结构的预制品.同时调整发泡工艺中的参数发泡剂用量(1%左右)、发泡温度(600℃~7200℃)、发泡时间(3~15min)可以得到不同孔结构的泡沫铝.泡沫铝的吸能能力和其压缩性能紧密相连.在其压缩应力应变曲线上有很长的一段平台区,显示出较大的吸能能力.其吸能能力受孔隙率的影响,随孔隙率呈非单调变化,在某一孔隙率下具有最大的吸能能力.吸能效率随应变的增加先增大后减小,在应变0.1~0.3之间存在一个峰值.研究了闭孔泡沫铝的导热性能,结果表明泡沫铝的导热性能低于实体铝,其导热性能不仅与孔隙率有很大的关系,而且其它孔结构及其宏观结构的影响也是不容忽视的.【总页数】1页(P16)【作者】王芳;王录才【作者单位】太原重型机械学院,山西,太原,030024;太原重型机械学院,山西,太原,030024【正文语种】中文【中图分类】TG1【相关文献】1.混合增粘熔体发泡法制备泡沫铝及其压缩性能的研究 [J], 王定烈;杨东辉;陈建清;魏勇;李军2.熔体发泡法制备闭孔泡沫铝的热学性能 [J], 王辉;周向阳;龙波;杨娟;刘宏专3.Mg及TiH2添加量对熔体发泡法制备泡沫铝性能的影响 [J], 龚成龙;吴序鹏;钟云强;王子瑜;黄本生;4.Mg及TiH2添加量对熔体发泡法制备泡沫铝性能的影响 [J], 龚成龙;吴序鹏;钟云强;王子瑜;黄本生5.熔体发泡法制备闭孔泡沫铝的热学性能 [J], 王辉;周向阳;龙波;杨娟;刘宏专;因版权原因,仅展示原文概要,查看原文内容请购买。
泡沫铝及其制备方法泡沫铝是一种由铝金属制成的轻质多孔材料。
它的低密度、高强度和优异的导热性使其具有很大的应用潜力。
泡沫铝可以用于吸能材料、隔热材料、噪音隔离材料和过滤材料等领域。
本文将探讨泡沫铝的制备方法。
泡沫铝的制备方法主要有两种:粉末冶金法和预加工法。
粉末冶金法是制备泡沫金属的一种常见方法。
首先,将球形高纯度铝粉与空气混合在一起,形成一种类似于面团状的混合物。
然后,将混合物在特定的压力下压制成一块密度较高的烧结块。
接下来,将这块烧结块放入高温炉中,在氮气气氛中进行烧结。
在烧结的过程中,铝粉表面的氮气会沉积形成氮化铝薄膜,防止铝粉在烧结过程中熔化。
最后,将烧结块放入酸性溶液中进行腐蚀处理,使铝粉溶解,形成泡孔结构,最终得到泡沫铝。
预加工法是另一种制备泡沫铝的方法。
与粉末冶金法不同,预加工法是通过机械加工的方式来制备泡沫铝。
首先,将铝板或铝棒切割成所需尺寸。
然后,在铝板或铝棒上进行钻孔,并用锯片将孔周围的材料切割成泡孔结构。
接下来,将切割好的铝材用化学通道进行腐蚀处理,使铝材表面形成氧化膜。
最后,将腐蚀处理后的铝材经过表面处理和清洗,得到泡沫铝。
无论是粉末冶金法还是预加工法,都有一些关键步骤和参数需要控制,以确保泡沫铝的质量和性能。
在粉末冶金法中,烧结温度、烧结时间和烧结压力是可以调节的参数。
较高的烧结温度和较长的烧结时间可以使烧结后的材料具有更高的强度。
在预加工法中,钻孔的直径和间距以及腐蚀液的成分和浓度也是非常重要的。
合理的参数选择可以实现所需的泡沫铝孔径和密度。
总之,泡沫铝是一种十分有潜力的材料,具有广泛应用的前景。
粉末冶金法和预加工法是制备泡沫铝的两种常见方法。
不同的方法有不同的优势和限制,可以根据具体需求来选择合适的方法。
在制备过程中,需要控制关键参数以获得高质量的泡沫铝材料。
随着科学技术的发展,泡沫铝的制备方法也将得到进一步的改进和创新,为其应用领域的拓展提供更多可能性。
泡沫铝及其制备方法泡沫铝是一种具有多孔结构的铝材料,广泛应用于各种领域,如能量吸收、热绝缘、声学隔离等。
本文将探讨泡沫铝的制备方法,并分析其优缺点。
泡沫铝的制备方法主要有物理法、化学法和复合法三种。
物理法是最早应用于泡沫铝制备的方法之一、它基于气体的扩散和相变原理。
首先,将气体注入到铝中,使铝形成气体蒸汽。
然后,在高温下,气体蒸汽扩散到铝表面,并形成具有多孔结构的泡沫铝。
物理法的优点是制备过程简单、成本较低,但由于其制备条件的限制,无法制备出具有均匀孔隙结构的泡沫铝。
化学法是目前应用较广泛的一种泡沫铝制备方法。
它基于金属与化学物质之间的反应原理。
化学法的步骤如下:首先,在铝中加入发泡剂和其他助剂。
发泡剂在加热过程中会产生气体,使铝形成气体蒸汽。
然后,通过控制燃烧速度和温度,使发泡剂产生的气体扩散到铝表面,并在固化过程中形成具有多孔结构的泡沫铝。
化学法的优点是可以调控泡沫铝的孔隙结构和密度,制备出具有不同性能的泡沫铝。
然而,化学法的制备过程较为复杂,需要使用特定的化学药剂,不易控制反应过程。
复合法是物理法和化学法的结合,它综合了两者的优点。
具体步骤如下:首先,通过物理方法制备出孔隙结构较大的泡沫铝原料。
然后,将泡沫铝原料与发泡剂和其他助剂混合,然后再进行烧结或涂覆,使发泡剂扩散到泡沫铝表面,并形成具有均匀孔隙结构的泡沫铝。
复合法的优点是可以通过物理方法得到较大孔隙结构的泡沫铝原料,然后通过化学方法调控其孔隙结构和密度,制备出具有特定性能的泡沫铝。
总体而言,泡沫铝的制备方法多种多样,各有优缺点。
选择适当的制备方法需要考虑制备工艺的复杂度、成本、生产效率以及所需的泡沫铝性能。
未来的研究方向可以进一步探索更简单、高效、可控的泡沫铝制备方法,并改进泡沫铝的性能和应用范围。
粉末冶金法制备泡沫铝的工艺研究及其展望摘要泡沫铝由于具有多种独特的性能,已备受研究者的关注。
制备泡沫铝的方法很多,本文主要介绍了粉末冶金法制备泡沫铝的工艺,对影响工艺的因素进行了分析,提出了粉末冶金法需要改进的方面,以推动粉末冶金法制备泡沫铝的研究和应用。
关键字泡沫铝粉末冶金法影响因素1 引言泡沫铝作为一种新型的功能材料,以其独特的性能,具有广阔的应用前景[1,2]。
泡沫铝由于轻质结构,吸声,隔音等性能,正大范围应用于汽车,航空,公路建设,建筑装饰等工业和国防科技领域[3]。
目前制备泡沫铝的方法有熔体发泡发法、渗流铸造法、液态金属凝固法、熔模铸造法、粉末冶金法、固-气共晶凝固法、添加球料法等。
其中,粉末冶金法是近年来国外研究比较集中的一种工艺[4]。
粉末冶金发泡法是由德国Fraunhofer材料研究所发明的一种生产方法,利用此方法制备出结构均匀的泡沫材料,可以加工成近成品尺寸的零件[5],也可以制成三明治式的复合材料,中间为泡沫铝材料层,而两面为生长成一体的铝薄板。
粉末冶金法在欧洲得到了广泛的研究,目前,制备较为成功的有德国FOAMINAL、奥地利的ALULIGHT和斯洛伐克的ALU FOAM三个品牌[6]。
我国对粉末冶金法制备泡沫铝的研究还处于实验阶段,北京的有色金属研究总[7]、太原重型机械学院[8]、东南大学、东北大学[9]等单位对粉末冶金法进行了研究。
2 泡沫铝的粉末冶金法制备2.1 制备原理首先将铝粉和发泡剂(通常是TiH2)粉混合均匀,然后将其压制成致密的预制块,预制块中不能有残留的气孔和缺陷,否则会对产品质量造成很大的影响。
将预制块放入炉中加热,加热至铝熔点附近,发泡剂受热开始分解生成气体,首先形成气孔,然后长大,使预制体膨胀,形成多孔的泡沫铝。
图1为粉末冶金法制备泡沫铝的工艺流程图。
图1 粉末冶金法制备泡沫铝[10]Fig.1 Preparation of aluminum foams by powder metallurgy2.2 实验经验德国J.Banhart[11]等将商用铝粉、铝硅合金粉、锌粉、铅粉和一小部分适当的发泡剂(金属氢化物)混合,在模具中压制成致密的,无孔隙的预制块,将其加热到金属或合金的熔点附近,预制块就会膨胀成多孔的闭孔材料。
泡沫铝的应用及研究进展泡沫铝是一种由铝金属制成的多孔材料,具有轻质、高强度和良好的阻隔热性能等特点。
它的应用广泛,包括汽车、航空航天、建筑、电子等领域,并且在研究和开发方面有一系列的进展。
首先,泡沫铝在汽车领域有着广泛的应用。
泡沫铝可以用于汽车散热器和减震器等部件,其具有良好的导热性能和吸能能力,能够提高汽车的散热效果和行驶的稳定性。
此外,泡沫铝还可以用作汽车内饰材料,例如中控台等,具有较高的强度和轻质化的特点。
其次,泡沫铝在航空航天领域也有广泛的应用。
由于泡沫铝具有良好的轻质和高强度特性,能够减轻航空航天器的重量,提高其载荷能力和燃油效率。
泡沫铝可以用于制造航空航天器的结构件、隔热层、减振材料等,在提高航空航天器性能的同时降低了整体成本。
此外,泡沫铝在建筑领域也有一定的应用。
泡沫铝可以用作建筑隔热层,具有良好的阻隔热性能,能够有效减少建筑物内外温差,节能环保。
此外,泡沫铝还可以用作建筑装饰材料,例如墙板、天花板等,因为它具有轻质、易加工等特点,能够满足建筑物的外观要求。
另外,泡沫铝在电子领域也有一定的应用。
由于泡沫铝具有良好的导电性能和导热性能,能够用于制造电子器件和电子散热器,提高电子设备的性能和可靠性。
泡沫铝可以用于制造手机散热片、电脑散热器等,解决电子设备散热问题。
在研究和开发方面,目前泡沫铝的研究主要集中在材料性能的改进和制造工艺的优化上。
研究人员正在尝试通过改变泡沫铝的孔径、孔隙率和孔壁厚度等结构参数,以及掺杂适量的其他元素,提高泡沫铝的机械性能、导热性能和阻隔性能。
此外,研究人员还在探索新的制造工艺,如电解合金化方法、化学沉积法等,以提高泡沫铝的制备效率和产品质量。
总的来说,泡沫铝具有广泛的应用前景和研究潜力。
随着技术的不断革新和改进,相信泡沫铝在各个领域的应用将会更加广泛,为相关行业的发展带来更多的创新和机遇。
泡沫铝性能及制备技术泡沫铝是一种具有轻质、高强度、吸能、隔热、耐高温等特点的新型材料,广泛应用于航天、汽车、轨道交通等领域。
本文将介绍泡沫铝的性能特点以及制备技术。
泡沫铝的性能特点:1.轻质:泡沫铝的密度通常在0.5-1.5 g/cm³之间,比铝合金的密度低,比重约为0.3-0.7,因此具有非常轻的重量。
2.高强度:泡沫铝通过气孔结构形成网络状的连续骨架,能够提供良好的强度和刚度。
其抗压强度通常在1-14MPa之间,具有较好的载荷承载能力。
3.吸能:泡沫铝在受到冲击或挤压时,气孔会发生塌陷变形,吸收能量从而降低外界对物体的冲击力。
4.隔热:泡沫铝具有优良的隔热性能,由于其中的气孔能有效地阻碍热传导,使其成为一种理想的隔热材料。
5.耐高温:泡沫铝的熔点较高,可达660℃,在高温环境下具有较好的稳定性。
泡沫铝的制备技术:泡沫铝的制备主要有两种方法:粉末冶金法和气相法。
1.粉末冶金法:该方法通过将铝粉末与气孔形成剂混合,然后在高温下进行烧结制备。
主要包括以下几个步骤:(1)原料准备:选择纯度较高的铝粉末作为基础材料,同时添加一定比例的气孔形成剂,如焦炭粉末、氯化钠等。
(2)混合:将铝粉末和气孔形成剂进行混合,以保证气孔均匀分布。
(3)压制:将混合物进行压制,通常采用半干压制法或等静压制法。
(4)烧结:将压制得到的坯体放入高温炉内进行烧结,在恰当的温度下,气孔形成剂会挥发或燃烧生成气体,形成铝的气孔结构。
(5)后处理:对烧结得到的泡沫铝进行除鼓泡、抛光等工艺处理,使其表面光滑。
2.气相法:该方法通过热分解气相反应制备泡沫铝。
主要包括以下几个步骤:(1)原料制备:选择合适的前驱体材料,如铝烷化合物,如三乙基铝、三异丙基铝等。
(2)膨胀:将前驱体材料加热至其热分解温度,释放出金属铝和气体产物,产生气孔。
(3)固化:将释放出的金属铝和气体产物在冷却后进行固化,固化后形成气孔结构。
(4)后处理:对固化得到的泡沫铝进行除鼓泡、抛光等工艺处理。
第22卷 第3期V ol 122 N o 13材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering总第89期Jun.2004文章编号:10042793X (2004)0320452205收稿日期:2003208225;修订日期:2003211212基金项目:云南省自然科学基金重点资助项目2000E0003Z作者简介:左孝青(1964-),男,副教授.研究方向:泡沫金属.E mail :zxqdzhhm @h 泡沫金属制备技术研究进展左孝青1,孙加林2(11昆明理工大学材料与冶金工程学院,云南昆明 650093;21昆明贵金属研究所,云南昆明 650221) 【摘 要】 本文对泡沫金属制备技术研究现状进行了综述,并就其发展的前沿问题进行了讨论,指出了泡沫金属制备技术的理论研究和工业化规模生产技术的发展方向,对泡沫金属的研究和开发具有重要意义。
【关键词】 泡沫金属;制备;综述中图分类号:T B383,T B34 文献标识码:AR evie w on Foam Metal Manu facture T echniquesZU O Xiao 2qing 1,SUN Jia 2lin2(11I nstitute of Materials and Metallurgy E ngineering ,K unming U niversity of Science and T echnology ,K unming 650093,China ;21K unming Precious Metals I nstitute.K unming 650221,China)【Abstract 】 The present manu facture techniques of foamed metals are reviewed and the problems of making foamed metals arediscussed in this paper.Ideals of further research and development of theory foundation and making metal foams ,especially on a large industrial scale ,are put forward.Therefore ,this research is very significant in the production of cellular metals.【K ey w ords 】 cellular metals ;foamed metals ;manu facture ;review1 前 言泡沫金属是一种结构一功能一体化的结构和功能材料,具有低密度、高孔隙率、闭孔或开孔的结构特征,其性能表现有能量吸收、吸音、电磁屏蔽、低的热电导率、结构阻尼性能、高比刚度等,是不同结构仪器或装置的可选材料,在汽车、航空航天、建筑、包装、热交换、电池极板等领域有广泛的应用。
高孔隙率通孔泡沫铝的制备工艺及其性能研究引言通孔泡沫铝是一种具有高孔隙率、低密度、良好的吸音性能和热隔离性能的新型材料。
它的制备工艺和性能研究对于拓展其应用领域具有重要意义。
本文将介绍一种制备高孔隙率通孔泡沫铝的工艺,并对其性能进行了研究。
方法材料准备制备通孔泡沫铝所需的材料主要包括铝粉、发泡剂和增强剂。
优质的铝粉是制备高孔隙率通孔泡沫铝的关键。
发泡剂和增强剂可以根据需要进行选择。
制备工艺步骤一:铝粉预处理将铝粉进行预处理,包括除杂、洗涤和干燥等过程。
确保铝粉表面的杂质和氧化物含量尽可能低,以提高通孔泡沫铝的质量。
步骤二:混合制备浆料将预处理过的铝粉与发泡剂和增强剂进行混合,并加入适量的溶剂制成浆料。
混合的过程需要均匀、充分,以保证材料的均一性。
步骤三:发泡成型将制备好的浆料进行发泡成型。
可以使用压力成型或流场铸造等方法进行发泡。
其中,压力成型是常用的方法,可以通过调节压力和温度来控制泡沫铝的密度和孔隙率。
步骤四:烧结处理将发泡成型后的泡沫铝进行烧结处理。
烧结温度和时间需要根据材料的具体情况来确定。
烧结的目的是提高泡沫铝的结构强度和稳定性。
性能评估对制备好的高孔隙率通孔泡沫铝进行性能研究,主要包括以下几个方面:孔隙率测试使用氮气比表面积仪或压汞法等方法对通孔泡沫铝的孔隙率进行测试。
孔隙率是评价泡沫铝性能的重要指标之一。
导热性能测试通过热导率仪对通孔泡沫铝的导热性能进行测试。
导热性能是决定泡沫铝热隔离性能的关键因素。
吸音性能测试使用声学测试设备对通孔泡沫铝的吸音性能进行测试。
吸音性能是通孔泡沫铝应用于噪声控制领域的重要指标。
结果与讨论根据以上的制备工艺和性能评估方法,制备了高孔隙率通孔泡沫铝,并对其性能进行了研究。
初步结果表明,采用该制备工艺制备的通孔泡沫铝具有较高的孔隙率、优异的导热性能和吸音性能。
这为通孔泡沫铝在建筑、汽车等领域的应用提供了良好的基础。
结论本文提出了一种制备高孔隙率通孔泡沫铝的工艺,并对其性能进行了研究。
《粉末冶金原理》课程设计文献综述泡沫铝的研究进展制备工艺及趋势学生:学号:11 专业:金属材料工程班级:机材A0941 授课教师:宋杰光机械与材料工程学院二O 一一十月文献综述前言随着现代科技和材料科学的发展,新型多孔材料的应用也越来越广泛。
泡沫铝是一种在金属铝基体中分布的有无数气泡的多孔质材料,它具有密度小、比表面积大、电磁波吸收性好、能量吸收性好、换热散热能力高、吸声性和隔音性好及优良的流通和过滤分离能力、耐热耐火、无污染、低吸湿性、能回收再利用等【——】优良性能1 3 。
在1940s 后期就美国有了对泡沫金属材料的研究,自1987 年日本九州工业技术研究所发明了泡沫铝的生产技术依赖,在世界范围内开始了该领域的研究。
目前,日本与德国在研究、生产和应用泡沫铝与其他金属泡沫方面居世界领先地位。
我国对泡沫铝的研究始于1980’s 后期,已取得一系列研究成果,但无突破性进展,未形成生产力【4】。
泡沫金属材料的制备大体可分为粉末冶金法、渗流铸造法、喷射沉积法、熔体发泡法和共晶定向凝固法等5。
目前研究的重点仍集中在制备过程的控制,研究的热点是如何获得稳定高质量的泡沫结构和简化生产过程、降低生产成本;应用的领域从高科技到民用工业,十分广泛【6】。
正文一泡沫铝的性能及应用由于制备工艺的不同,从结构看泡沫铝可分为闭孔结构的泡沫铝和开孔结构的泡沫铝。
结构不同导致的性能差异,使其具有不同的用途。
在冶金、化工、航空航天、船舶、电子、汽车制造和建筑业等领域得到了和将要得到广泛应用【7】。
与传统金属铝相比,泡沫铝有如下优越性:1 、密度小泡沫铝是一种轻质功能材料。
泡沫铝密度通常为1 8 0—4 8 0 k g/r n 3 、约为铝密度的l/l 0 、钛密度的1/2 0 、钢密度的1/3 0 及木材密度的l/3 。
一般建筑材料采用密度为2 0 0 —3 0 0 k g /m的泡沫铝材,而用做消声材料时则用密度为3 2 0—4 2 0 k g/m3 的材料。
泡沫铝的密度可在很大范围内变化,目前所能获得的最大孔隙率可达9 7 %,其尺寸从几个微米到几十个毫米。
一般规律是孔隙率越大,泡沫铝的密度越小。
2、耐热性强泡沫铝具有较高的耐热性。
一般铝合金的熔解温度范围在5 6 0—7 0 0℃,但泡沫铝即使加热到1 4 0 0℃也不熔解,而且在高温下不释放有害气体。
以此,在许多场合可以取代发泡树脂或石棉类制品用做隔热与耐热材料及各种热交换器的芯件。
还可用做航天设备的核心材料、高温填料、电磁屏蔽材料、阻燃器、慢【】性约束核聚变激光实验中的超热电子抑制材料等8 。
3、通透性好具有良好通透性的贯通孔泡沫铝可作为过滤材料,从液体或气体中将固体颗粒过滤出去。
通常,通透性随孔径的增加而增加,但它也受表面粗糙度的影响,而且受闭孔数目的的影响较大。
可用于各种液体、气体的过滤器和高温除尘器中。
4 、刚性强泡沫铝不具有密实金属那样的延展性,拉仲试验无法测出拉伸率,弹性模量约为铝合金的l/50— 1/100。
泡沫铝质脆,与铝合金不同,当发生大的变形时,其蜂窝组织产生破坏,反之,如果蜂窝组织不达到破坏强度,泡沫铝是不会产生变形的。
5 、比表面积大利用泡沫铝的大比表面积,可达到高的换热性,由此它可用做制造加热器和热交换器的良好材料。
另外,也可用做需要巨大表面化学反应的载体,如作为催化剂的载体、多孔电极、充电电池的极板材料、换热器、能量吸收器和催化剂的载体等。
6 、隔声性能强泡沫铝可通过气孔壁的振动来吸收声音的能量,用来消声、去除噪声。
一般情况下,通孔泡沫铝的吸声性能更好。
孔的尺寸影响其对整个声波频率范围的吸收性能,孔越小,吸声能力越大。
通过改变泡沫铝孔的尺寸和形状可以获得好的吸声性能。
可用于建筑行业中的内外装饰件、幕墙、间壁活动门板,制造高性能【】吸声板、隔声墙、各种消声器等9 。
7、具有吸收冲击能量的能力泡沫铝不像蜂窝材料那样具有方向性,也不像高分子泡沫材料具有反弹作用,它有很好的减震性能,是制造抗冲击部件的良好材料。
可用于汽车刹车器、夹紧装置以及航空航天设备中的保护封套和缓冲器。
其阻尼性的大小与气孔孔径【10】的大小有关。
可用于升降机和传送器的安全垫、高磨床防护装置的减震吸能内衬、高精密机床的底座等。
8、良好的吸音性泡沫铝具有独特的孔隙结构必然产生优良的吸声性能,尤其在中、低频率时。
这是由于泡沫铝的孔隙的惯通性、体积膨胀性及孔壁的良好导热性,必将补偿由于声波频率降低、振动衰减及孔壁摩擦阻力减小所引起的不良吸声性,可使泡沫铝在中、低频率下取得优良的吸声效果,尤其在低于l000 Hz 左右的频率范围。
随着孔径的减小、孔隙率的增大,吸声性能有规律的提高【11、。
】【12、13】9、其他性能泡沫铝还具有气敏性、催化性、良好的保温性,同时还具有电磁屏蔽性能,对高频电磁波有良好的屏蔽作用,能够使电磁干扰降低80%以上。
5 mm 厚、孔隙率为90%的闭孔泡沫铝,在60—1000 MHz。
电磁屏蔽性能为35-75 db,可用于电磁屏蔽室罩、电子仪器外壳、无线电录音室、电磁屏蔽等场合。
由于泡沫铝具有如此众多的特性,预计其在航空航天、电讯及环境保护等新领域中必将有很好的应用前景。
二、泡沫金属的制造方法1 烧结法该方法是以金属粒子或纤维作为原料,经过成形和烧结过程制造多孔质泡沫金属的方法。
(1)粒子烧结法把适当尺寸的金属粒子进行成形和烧结的方法称为粒子烧结法。
这种方法因制作简便,原料价格便宜,故广为采用。
制造这类泡沫金属,主要使用黄铜粉或铁粉,其泡沫体的最大空隙率为50左右,常作为过滤或吸声材料使用,浸油处理后可作为含油轴承材料。
(2)纤维烧结法以纤维为原料制作的泡沫金属,过去称为毡状金属,其制造方法与粒子烧结法大体相同。
其原料可根据用途的要求,选择长纤维或短纤维。
以短纤维为原料时,采用金属型成形;以长纤维为原料时,利用特种编织机制成无纺布状,再通过烧结而成为泡沫金属。
在该方法中,作为原材料的纤维初期曾尝试采用金属切屑,其后则采用捆拉法制得的不锈钢细长纤维,最近又开发了高频振动切削短纤维。
2 电镀法该方法是在具有三维网状结构的特殊高分子材料的骨架上,电镀各种金属,再经焙烧除去内部的高分子材料,而制得泡沫金属。
这种泡沫金属被称为海绵金属,其空隙率可达到。
该方法是制造大空隙率泡沫金属的最为简单的方法。
用这种方法制得的泡沫金属富有可挠性,可进行弯曲、切断和深冲等加工。
其中,镍和镍合金系的泡沫金属,已在许多方面得到应用。
为提高其强度和耐磨性,向这类泡沫金属中压铸铝液的工作也在进行之中。
3 加压铸造法先在型内填充粒子,再采用加压铸造法把液态金属压入粒子的间隙中而制造泡沫金属的方法称为加压铸造法。
其中包括:()溶出法用水溶性粒子作为填充粒子,当加压注入到水溶性粒子间的液态金属凝固后,再用水把水溶性粒子溶出,便可得到金属泡沫体,这种方法称为溶出法。
水溶性粒子,大都为氯化钠,而液态金属,则大都为铝及其合金。
一般,这种泡沫金属的空隙率最高为65左右。
水溶性粒子被封存在内部时,即使进行切削等二次加工,切削加工表层的孔也不会破坏。
(2)多孔质粒子分散法该方法是用多孔性粒子代替水溶性粒子,填充铸型后进行加压铸造而制造泡沫金属。
金属凝固后,填充粒子也被封存在内部,故空孔为独立气孔。
多孔质的粒子,一般为中空玻璃球、泡沫岩、珍珠岩和多孔质碳粒等。
(3)中空三维骨架法把液态金属压铸到有中空骨架三维网眼结构的陶瓷中制造泡沫金属的方法,称为中空三维骨架法。
因陶瓷骨架耐热,即使铸入如铸铁这样的高熔点金属,骨架也不会消失,金属液凝固后这些骨架仍残存在金属中,故包围基体金属的陶瓷泡沫金属的内部存在孔洞。
这种泡沫金属已做成真空吸附平台用以减小冲击。
(4)发泡法通过向金属液中加入发泡剂或吹入气泡使金属发泡的方法称为发泡法。
其中包括:①粉末冶金法把金属粉末和发泡剂粉末混匀,并加热到金属熔点以上的温度,使之发泡。
这种方法既适于铝、镁等熔点低的金属,又适于像铁、铜那样熔点较高的金属。
②无重力混合法该方法是在无重力下的宇宙空间制造泡沫金属的方法。
由于无重力,故没有地球上所碰到的气泡浮力、增粘和发泡剂等难题,只要把氩气等惰性气体吹入金属液中便可,美国和日本正在从事这方面的研究。
③金属液直接混合法把发泡剂直接加入到金属液中使之发泡的方法,称为金属液直接混合法。
这种方法虽然对某些金属尚有困难,但可以说是制造泡沫金属的最基本方法〔14〕。
三、泡沫铝材的生产工艺及组织性能1、泡沫铝材的生产工艺制造泡沫铝的方法很多,但从发泡孔的形成原理上可分为三类:(1)金属氢化物发泡法泡沫铝材料在过去之所以未得到广泛而有效的应用,主要是因为其生产成本【15】高质量(孔隙率、孔的形状及各种性能等)不稳定。
用粉末冶金法制造泡沫铝材料,首先将铝粉或铝合金粉与少量的发泡剂混匀,如发泡剂为金属氢化物,用量通常不超过1 。
将混匀的混合物压制成无残余通(开)孔的密实块体。
常用的压实方法有:单轴向压制、挤压、粉末轧制。
压实后还要做进一步的加工,诸如轧制、模锻或挤压,以使其成为半成品。
然后,将此种可发泡的半成品加热到接近或高于混合物熔点的高温。
在加热过程中,发泡剂分解,释放出大量的气体(氢),迫使致密的压实材料膨胀,形成多孔隙的泡沫材料。
泡沫铝材的密度或其孔隙率可通过发泡剂添加量或其他工艺参数如加热温度、加热速度等调控。
可用加工好的毛坯制取形状复杂的泡沫铝零件,方法是:将毛坯置于钢模内,加热、发泡与膨胀成近成品尺寸的零件。
制取这种泡沫铝材的大致工艺参数为:纯铝粉或铝合金粉99,氢化钛粉1;在钢容器内20mpa 的压力下,压实成无孔隙的块体;模锻成板块;600oc、700oc 发泡后冷却。
如要制备三明治式复合材料,可在泡沫材的外表胶粘金属薄板。
若需要纯金属式的连接,则不用胶粘法,而在发泡前用轧制法将加工好的泡沫块体与外层的金属板轧压焊合,如轧制包铝材料那样。
粉末冶金法虽然工艺较复杂,但产品质量高,性能稳定,便于商业化生产,德国已用此法为汽车工业提供泡沫铝合金车身板及其零部件。
同时可用此法制备形状复杂的近成品尺寸的工件,机械加工量大为减少,制造周期缩短,工件的再现性高。
(2)上压渗流铸造法上压渗流铸造法通常是用食盐做渗流颗粒,但由于它含有结晶水,在预热过程中会因脱水而破裂,使本已选定粒度的盐粒成为大小不等的颗粒,从而使泡孔直径变化很大,孔洞不均,还给颗粒溶解带来一定的困难。
为此山东工程学院的赵增典等经过研究,筛选一种比食盐好得多的新型渗流颗粒,具有可耐10000c 的高温不变形、水溶性强、可重复使用等特点。
生产时,先将渗流颗粒装入嵌套内,稍加压实后,连同嵌套装于加热炉内,预热一定时间后取出,在外装上钢套,浇注铝熔体,然后迅速盖上加压板,同时施加气压,铝熔体在气压作用下流入颗粒间隙内,冷却后取出,泡于水中,待颗粒溶解后,就可得到所需的泡沫材料。