可证明安全数字签名方案的密码学分析
- 格式:pdf
- 大小:300.32 KB
- 文档页数:4
V ol.16, No.10 ©2005 Journal of Software 软 件 学 报 1000-9825/2005/16(10)1743 可证明安全性理论与方法研究∗冯登国+ (信息安全国家重点实验室(中国科学院 软件研究所),北京 100080)Research on Theory and Approach of Provable SecurityFENG Deng-Guo +(State Key Laboratory of Information Security (Institute of Software, The Chinese Academy of Sciences), Beijing 100080, China) + Corresponding author: Phn: +86-10-62658643, Fax: +86-10-62520469, E-mail: fdg@, Received 2004-07-06; Accepted 2005-08-24Feng DG. Research on theory and approach of provable security. Journal of Software , 2005,16(10):1743−1756. DOI: 10.1360/jos161743Abstract : This paper presents a survey on the theory of provable security and its applications to the design and analysis of security protocols. It clarifies what the provable security is, explains some basic notions involved in the theory of provable security and illustrates the basic idea of random oracle model. It also reviews the development and advances of provably secure public-key encryption and digital signature schemes, in the random oracle model or the standard model, as well as the applications of provable security to the design and analysis of session-key distribution protocols and their advances.Key words : provable security; cryptosystem; security protocol; random oracle model; standard model摘 要: 论述了可证明安全性理论在安全方案与安全协议的设计与分析中的应用,内容主要包括:什么是可证明安全性,可证明安全性理论涉及到的一些基本概念,RO(random oracle)模型方法论的基本思想及其在公钥加密和数字签名等方案中的应用研究进展,标准模型下可证明安全性理论在公钥加密和数字签名等方案中的应用研究进展,以及可证明安全性理论在会话密钥分配协议的设计与分析中的应用研究进展.关键词: 可证明安全性;密码方案;安全协议;RO(random oracle)模型;标准模型中图法分类号: TP309 文献标识码: A目前多数安全协议的设计现状是:(1) 提出一种安全协议后,基于某种假想给出其安全性论断;如果该协议在很长时间,如10年仍不能被破译,大家就广泛接受其安全性论断;(2) 一段时间后可能发现某些安全漏洞,于是对协议再作必要的改动,然后继续使用;这一过程可能周而复始.这样的设计方法存在以下问题:(1) 新的分析技术的提出时间是不确定的,在任何时候都有可能提出新的分析技术;(2) 这种做法使我们很难确信协议的安全性,反反复复的修补更增加了人们对安全性的担心,也增加了实现代价或成本.那么有什么解决办法呢?可证明安全性理论就是针对上述问题而提出的一种解决方案(当然,并非是唯一∗ Supported by the National Grand Fundamental Research 973 Program of China under Grant No.G1999035802 (国家重点基础研究发展规划(973)); the National Natural Science Foundation of China under Grant No.60273027 (国家自然科学基金)作者简介: 冯登国(1965-),男,陕西靖边人,博士,研究员,博士生导师,主要研究领域为网络与信息安全.1744 Journal of Software软件学报 2005,16(10)的解决方案).可证明安全性是指,安全方案或协议的安全性可以被“证明”,但用“证明”一词并不十分恰当,甚至有些误导[1].一般而言,可证明安全性是指这样一种“归约”方法:首先确定安全方案或协议的安全目标.例如,加密方案的安全目标是确保信息的机密性,;然后根据敌手的能力构建一个形式的敌手模型,并且定义它对安全方案或协议的安全性“意味”着什么,对某个基于“极微本原(atomic primitives,是指安全方案或协议的最基本组成构件或模块,例如某个基础密码算法或数学难题等)”的特定方案或协议,基于以上形式化的模型去分析它,“归约”论断是基本工具;最后指出(如果能成功),挫败方案或协议的唯一方法就是破译或解决“极微本原”.换句话讲,对协议的直接分析是不必要的,因为你对协议的任何分析结果都是对极微本原的安全性的分析.可见,称“归约安全”也许比“可证明安全”更恰当.实际上,可证明安全性理论是在一定的敌手模型下证明了安全方案或协议能够达到特定的安全目标,因此,定义合适的安全目标、建立适当的敌手模型是我们讨论可证明安全性的前提条件.可证明安全性理论的应用价值是显而易见的:我们可以把主要精力集中在“极微本原”的研究上,这是一种古老的、基础性的、带有艺术色彩的研究工作;另一方面,如果你相信极微本原的安全性,不必进一步分析协议即可相信其安全性.综上所述,可证明安全性理论本质上是一种公理化的研究方法,其最基础的假设或“公理”是:“好”的极微本原存在.安全方案设计难题一般分为两类:一类是极微本原不可靠造成方案不安全(如用背包问题构造加密方案);另一类是,即使极微本原可靠,安全方案本身也不安全(如DES-ECB等).后一种情况更为普遍,是可证明安全性理论的主要研究范围.必须说明的是,可证明安全性理论也存在一定的局限性:首先必须注意模型规划,即注意所建立的模型都涵盖了哪些攻击.显然,一些基于物理手段的攻击都不包含在内,但这并不意味着可证明安全性的方案就一定不能抵抗这类攻击,而是说未证明可以抵抗这类攻击;其次,即使应用具有可证明安全性的方案,也可能有多种方式破坏安全性:有时证明了安全性,但问题可能是错误的,也可能应用了错误的模型或者协议被错误操作,甚至软件本身可能有“Bugs”.另一个需要注意的问题是基础假设的选取:可证明安全性是以某一假设为基础的,因此一旦该假设靠不住,安全性证明也就没有意义了(当然,不一定意味着可构造对方案的攻击实例);选取基础假设的原则就是“越弱越好”,通常称弱假设为标准假设.基础假设的强弱是比较不同安全方案的重要尺度之一.上述定义较为抽象,下面以RSA为例加以说明.给定某个基于RSA的协议P,如果设计者或分析者给出了从RSA单向函数到P安全性的归约,那么P具有以下转换性质:对于任何声称破译P的敌手(程序)A,以A为“转换算法”的输入,必然导致一个协议Q,Q可被证明破译RSA.结论是:只要你不相信RSA是可破译的,那么上述的Q就不存在,因而P是安全的.对可证明安全性的精确形式化有多种形式,一般是在计算复杂性理论框架下加以讨论,如主要考虑“概率多项式时间(PPT)”的敌手A和转换算法,以及“可忽略”的成功概率.这是一种“渐近”观点,有着广泛的适用范围.具体内容可参见Goldreich的研究综述[2].1.1 基本概念本质上,可证明安全性理论的主要研究途径是规划安全方案或协议的形式化安全模型,不同的安全方案或协议会导致不同的安全模型,而这些安全模型大多基于一些很基本的密码学概念.因此对一些最基本的密码学概念(如加密、签名及其安全性定义等)给予精确的形式化定义是可证明安全性理论的基础组成部分,有助于消除自然语言的语义二义性.下面分别介绍数字签名方案和公钥加密方案的安全模型.定义1(数字签名方案). 一个数字签名方案由以下3种算法组成:(1) 密钥生成算法K.对于输入1k,K产生一对匹配值(k p,k s),分别称为公钥和私钥,K可以是概率算法.k称为安全参数,密钥等因素的规模都依赖于k.(2) 签名算法Σ.给定消息m和(k p,k s),Σ产生签名σ,Σ可以是概率算法.(3) 验证算法V.给定签名σ和消息m以及公钥k p,V检验σ是否是m的对应于公钥k p的合法签名,通常情况冯登国:可证明安全性理论与方法研究1745下,V 是确定性算法.对于任一数字签名方案(K ,Σ,V ),敌手A 的模型如下: A 的目标有如下3个:揭示签名者私钥(完全破译);构造成功率高的伪签名算法(通用伪造);提供一个新的消息-签名对(存在性伪造). 存在性伪造一般并不危及安全,因为输出消息很可能无意义,但这样的方案本身不能确保签名方的身份,例如不能用来确认伪随机元素(如密钥),也不能用来支持非否认.A的两类攻击:未知消息攻击和已知消息攻击.后一种情况中最强的攻击是“适应性选择消息攻击”,即A 可以向签名方询问对任何消息的签名(当然不能询问欲伪造消息的签名,这是一类自明的约定,后文不再注释),因而可能根据以前的答案适应性地修改随后的询问. 定义2(数字签名方案在适应性选择消息攻击下的安全性). 对任一数字签名方案(K ,Σ,V ),如果敌手A 的攻击成功概率]1),,(:)(),(),1(),Pr[(=←←=Σσσm k V k A m K k k Succ p p k s p A s k是可忽略的,则称该方案能够抵抗适应性选择消息攻击.这里,A 可以获得签名Oracle s k Σ(实际上是一个“黑盒”),这模拟了如上所说的“适应性选择消息询问”,而且要求(m ,σ)没有询问过.s k Σ定义3(公钥加密方案). 一个公钥加密方案由以下3种算法组成:(1) 密钥生成算法K .对于输入1k ,K 产生一对匹配值(k p ,k s ),分别称为公钥、私钥,K 是概率算法.(2) 加密算法E .给定消息m 以及公钥k p ,E 产生m 对应的密文C .E 可以是概率算法,这时记为),;,(r m k E p r 表示随机输入.(3) 解密算法D .给定密文C 及私钥k s ,D 产生C 对应的明文m ,一般是确定性算法.一般而言,加密方案的安全目标是单向性(one-wayness,简称OW)的:在不知私钥的情况下,敌手A 在概率空间M ×Ω上成功地对E 求逆的概率是可忽略的(这里,M 是消息空间,Ω是加密方案的随机掷硬币空间),亦即概率]));,(,(:)1(),Pr[(m r m k E k A K k k Succ p p k s p A =←= 是可忽略的.然而,许多应用要求具有更强的安全性.定义4(多项式安全/密文不可区分). 对任一公钥加密方案(K ,E ,D ),如果满足1]),,,(:);,(),(),,(),1(),Pr[(2102110−==←←×b c s m m A r m k E c k A s m m K k k adv b p p k s p A是可忽略的,则称该方案是多项式安全的或密文不可区分的.这里,敌手A =(A 1,A 2)是一个2阶段攻击者(都是PPT 算法),概率取于(b ,r )之上.上述定义形式化了如下性质:敌手了解明文的某些信息(可任选一对消息,其中一个被加密),但它不能从密文得到除明文长度之外的任何信息.敌手的几种攻击类型(相当于敌手拥有的Oracle 数量及性质):(1) CPA(选择明文攻击),该攻击在公钥方案中显然是平凡的;(2) PCA(明文校验攻击),敌手获得明文校验Oracle,用以回答关于任一输入对(m ,c )是否为对应明密对的 询问;(3) CCA(选择密文攻击),除了获得加密Oracle 以外,敌手还获得解密Oracle,即对于任何询问的密文(除了应答密文),Oracle 都给以相应的明文作为回答.这是最强的攻击(根据是否适应性选择密文,还可以细分为CCA1和CCA2).对应以上攻击条件的相应安全性定义,均可用类似于定义4的方法给出,区别仅在于敌手获得的Oracle 数量和性质不一样.对称密码方案的安全性可类似定义.1746 Journal of Software软件学报 2005,16(10) 2 RO模型方法论及其相关研究结果20世纪80年代初,Goldwasser,Micali和Rivest等人首先比较系统地阐述了可证明安全性这一思想,并给出了具有可证明安全性的加密和签名方案[3,4].然而,以上方案的可证明安全性是以严重牺牲效率为代价的,因此以上方案虽然在理论上具有重要意义,但不实用,这种情况严重制约了这一领域的发展.直到20世纪90年代中期出现了“面向实际的可证明安全性(practice-oriented provable-security)”的概念,特别是Bellare和Rogaway提出了著名的RO(random oracle,随机预言)模型方法论[5],才使得情况大为改观:过去仅作为纯理论研究的可证明安全性理论,迅速在实际应用领域取得了重大进展,一大批快捷有效的安全方案相继提出;同时还产生了另一个重要概念:“具体安全性(concrete security or exact security)”,其意义在于,我们不再仅仅满足于安全性的渐近度量,而是可以确切地得到较准确的安全度量.面向实际的可证明安全性理论取得了巨大的成功,已被国际学术界和产业界广为接受;但Canetti和Goldreich对此持有异议[6],并坚持仍在标准模型(standard model)中考虑安全性.Canetti和Goldreich认为:密码方案在RO模型中的安全性和通过“hash函数实现”的安全性之间无必然的因果关系;具体说来,存在这样的实际签名方案和加密方案,它们在RO模型中是安全的,但任何具体实现都是不安全的.这实际上是提出了一个反例.不过,Goldreich也认为,应该明确RO模型方法论并不能作为实际方案安全的绝对证据,但该方法论仍是有意义的,如可以作为一种基本测试——任何实际方案通过这种安全测试是必要的,RO模型方法论至少可以排除很多不安全的设计,虽然并非完备的.Canetti则进一步指出,RO模型方法论虽然存在以上缺点,但它可用于设计简单而有效的协议——可以抵抗许多未知攻击;更重要的是,其基本思想可以用来设计某些安全的理想系统.Pointcheval等人则认为[7],目前还没有人能提出令人信服的关于RO模型实际合法性的反例.文献[6]的反例仅仅是一种理论上的反例,是针对实际目的的“明显错误设计”;RO模型已经被广为接受,并被认为是度量实际安全级别的一种很好的手段;即使并未提供一个正规的安全性证明(像标准模型那样),但在其“安全性论断”(hash函数没有弱点)下,RO模型中的证明确保了整个方案的安全性.更确切些,RO模型可视为对敌手能力的某种限制——敌手的攻击是不考虑任何特殊hash函数实例的一般攻击,而且如果假定存在某些防窜扰设备(如Smart Cards),则RO模型等价于标准模型,这时只要求伪随机函数存在[2].最重要的是,仅就实现效率这一点,RO 模型中的可证明安全性的方案就远远优于那些能够提供标准安全性证明的方案,仅此一点就可以从实际应用中排除当前所有“在标准模型中具有可证明安全性”的方案.事实上,一些有代表性的、有效的标准解决方案,如文献[3,4]中的方案,过于复杂且代价昂贵,归约的复杂性使得难以确定实际安全参数,其有效性也只是相对于过去的标准方案而言.但可以肯定的是,迄今为止,RO模型方法论是可证明安全性理论最成功的实际应用,其现状是:几乎所有国际安全标准体系都要求提供至少在RO模型中可证明安全性的设计,而当前可证明安全性的方案也大都基于RO模型.2.1 RO模型介绍文献[5]中提出如下观点:假定各方共同拥有一个公开的Random Oracle,就可以在密码理论和应用之间架起一座“桥梁”.具体办法是,当设计一个协议P时,首先在RO模型(可看成是一个理想模拟环境)中证明P R的正,然后在实际方案中用“适当选择”的函数h取代该Oracle(潜在论断是理想模拟环境和现实环境在敌手看来是多项式时间计算不可区分的).一般来说,这样设计出来的协议可以和当前协议的实现效率相当.必须指出,这并非是严格意义上的可证明安全性,因为安全性证明仅在RO模型中成立,随后的“取代”过程本质上是一种推测:RO模型中的安全特性可以在标准模型中得以保持.假设我们提出一个协议问题Π(这个问题和h函数“独立”),要设计一个安全协议P解决该问题,可按如下步骤执行:(1) 建立Π在RO模型中的形式定义,RO模型中各方(包括敌手)共享随机Oracle R;(2) 在RO模型中设计一个解决问题Π的有效协议P;(3) 证明P满足Π的定义;冯登国:可证明安全性理论与方法研究1747(4) 在实际应用中用函数h 取代R . 严格说来,h 不可能真的“像”随机函数:首先,其描述较短;其次,所谓的随机Oracle 即hash 函数对每一个新的询问产生一个随机值作为回答(如果问相同的询问2次,回答仍相同),这也是和随机函数的一个微小区别.但这并未改变上述方法论的成功,因为只要求在敌手看来“像”随机函数.此外,h 函数“独立”于Π也是至关重要的(否则可能不安全,可构造反例). 一般来说,函数h 至少要满足以下基本要求:设计上足够保守,能够抵抗各种已知攻击;不会暴露某些相关数学“结构”.文献[5]指出,选择h 并不需要太麻烦,一个适当选择(但并不需过分苛求)的hash 函数就是如上h 函数的一个很好的选择.RO 方法论也易于推广到基于对称密码本原的协议/方案研究,如CBC-MAC,虽然没有hash 函数,但把一个恰当选择的分组密码(如DES)视为随机函数.2.2 归约论断和具体安全性归约论断是可证明安全性理论的最基本工具或推理方法,简单说就是把一个复杂的协议安全性问题归结为某一个或几个难题(如大数分解或求解离散对数等).在RO 模型中的归约论断一般表现为:首先形式化定义方案的安全性,假设PPT 敌手能够以不可忽略的概率破坏协议的安全性(如伪造签名);然后模仿者S (就是设计者或分析者)为敌手提供一个与实际环境不可区分的模拟环境(RO 模型),回答敌手的所有Oracle 询问(模拟敌手能得到的所有攻击条件);最后利用敌手的攻击结果(如一个存在性的伪造签名)设法解决基础难题.如果把RO 模型换成现实模型就得到标准安全性证明.RO 归约论断的一个显著优点是能够提供具体安全性结果.具体地说就是,试图显式地得到安全性的数量特征,这一过程称为“具体安全性处理(concrete or exact treatment of security)”,与前面提到的“渐近”观点有明显区别.其处理结果一般表述为如下形式(举例):“如果DES(本原)可以抵抗这样条件的攻击,即敌手至多获得236个明密对,那么我们的协议就可以抵抗一个能执行t 步操作的敌手发动的攻击,t 值如下…”这样,协议设计者就能够确切地知道具体获得了多少安全保证,不必再笼统地说协议是否安全.例1:文献[8]中研究了CBC MAC 的安全特征,结论是:对任意一个运行时间至多为t 、至多见过q 个正确MAC 值的敌手,成功模仿一个新消息的MAC 值的概率至多为ε+(3q 2n 2+l )/2.这里,l 是基础密码的分组长度,n 是明文消息总数,ε是检测到密码偏离随机行为的概率(在O (nql )时间内).具体安全性处理的一个重要目标就是,在把一个基础极微本原转化成相应协议时,尽可能多地保持极微本原的强度.这表现为要求“紧”的归约方法,因为一个“松”的归约意味着要求采用更长的安全参数,从而降低了 效率.2.3 基于RO 模型方法论的代表性研究结果2.3.1 公钥加密方案第1节的概念推广到RO 模型,即可得到RO 模型中的公钥加密方案的定义.公钥加密方案可以通过PPT 生成器g 来规定:以安全参数1k 为输入,输出一对概率算法(E ,D ),分别称为加、解密算法,D 保密,运行时间以g 的运行时间为界.加密:)(x E y R ←,解密:)(y D x R ←.像定义4一样,称该方案在RO 模型中是CPA 多项式安全的,如果对任意的CP-敌手(选择明文敌手)(F ,A 1),满足).(2/1]),,(:)(};1,0{);(),();1(),(;2Pr[1110n b m E A m E b E F m m g D E R R b R R k μαα+≤=←←←←←∞ 这里,R 表示一般的Oracle,是从{0,1}*到{0,1}∞的函数,2∞表示所有Oracle 的集合,“∞”并非真的无限,只是避免提问“足够长是多长”这类问题,μ(n )是可忽略函数.CCA 安全性:这里的敌手A 称为RS-敌手,即有非一致多项式算法A =(F ,A 1),各自获得一个Oracle R 及一个解密Oracle 的黑盒实现D R ;F 的任务就是提出一对明文10,m m ,A 1被随机给予其中一个的密文α,则只要不允许向解密Oracle D R 询问α(因为禁止提出与最终论断等价的询问),A 1就不可能以不可忽略优势猜中是哪一个1748Journal of Software 软件学报 2005,16(10)明文. 称g 在RO 模型中安全抗CCA 攻击,如果对任意RS-敌手(F ,A 1),满足:).(2/1]),,,(:)(};1,0{);(),();1(),(;2Pr[10,1,10n b m m E A m E b E F m m g D E R R RD R b R D R k μαα+≤=←←←←←∞ Bellare 等人在文献[5]中提出了一个在RO 模型中安全抗CCA 攻击的方案,由于归约并不紧,应用意义并不大,但其设计思想很好地体现了RO 方法论的特点.Bellare 等人把以上思想作了进一步改进,在1994年提出了著名的公钥加密填充方案OAEP [9],可证明是抗CCA2攻击安全的,目前该方案已成为新一代RSA 加密标准.其基本组成是:核心组件是一个Padding 函数,即OAEP G ,H (x ,r )=x ⊕G (r )||r ⊕H (x ⊕G (r )).这里,x 是被加密消息,r 是随机输入;加密算法为E G ,H (x )=f (OAEP G ,H (x ,r )).这里,f 是陷门置换(如RSA 函数).基本设想是构造一个具有良好随机性的“遮掩函数”隐蔽明文的统计特性.2.3.2 数字签名方案Bellare 等人在文献[5]中也给出了一种具有可证明安全性的签名方案.该签名方案要求陷门置换f 具有“均匀分布”的特点,而标准RSA 置换不具有这个性质,因此基于RSA 无法设计该类方案.文献[10]中提出了一种基于RSA 的签名方案:概率签名方案PSS,目前有望成为RSA 签名标准.PSS 引入了概率机制,有更好的安全界.该方案不仅可证明其安全性,而且相应的归约是很紧的,一个敌手伪造签名的能力和对RSA 求逆的能力相当.总之,安全性和分解整数的困难性紧密相关.稍作改进,也可以具有消息恢复性质.目前,其他可证明安全性的签名方案大都是基于识别协议的签名方案,这不是偶然的,前面我们提到Fiat 和Shamir 曾经应用RO 假设试图构造一个安全性和因子分解一样困难的签名方案[11],并证明了其与识别协议的等价性.例如,文献[12]中的主要工作是:对基于Fiat-Shamir 识别协议的签名方案[11]作了具体安全性分析,通过交换应答和承诺的顺序改进设计了一类新的Fiat-Shamir 类型签名方案(E-swap 签名方案),具有更好的具体安 全性.其他一些进展可参见文献[13−15]等.文献[15]基于计算Diffie-Hellman(CDH)假设,对一个源于Schnorr 签名的改进方案EDL 给出了归约很紧的安全性证明,使得该签名方案得到了业界的广泛重视.另外,值得特别说明的是,文献[13]对于完善RO 模型方法论具有重大贡献,即提出了以Folklore 引理为代表的一般安全论断,主要适用于许多基于识别协议的签名方案,特别是证明了迄今为止唯一一个ElGamal 变形签名方案MEG 的安全性.基本方法是,Oracle 重放(replay)攻击,即在RO 模型中实施归约化证明时,重放多项式个不同(但有一定联系)的随机Oracle(这相当于为敌手提供多个模拟环境),然后敌手若能以不可忽略概率伪造多个签名,设计者或分析者就能根据其内在关联求解基础难题(如DLP).缺点是归约还不够紧. 3 标准模型中可证明安全性理论研究的一些重要进展文献[3,4]是满足标准安全性证明的早期有代表性的方案.实际上,前面的结果已经包含了许多这方面的内容,如一些基本概念等,这里我们简要介绍一些近年来的结果.文献[16]研究了数字签名方案中的hash 函数设计应用问题,降低了对hash 函数的要求;文献[17]提出了一类基于强RSA 假设的数字签名方案.其共同之处是都不把hash 函数形式化为RO.文献[17]的安全性证明实际上是用满足强计算假设的hash 函数取代了RO.3.1 基于padding 函数的RSA 签名方案克服RSA 签名方案同态缺陷的一种通用解决方案就是先对消息应用padding 函数作用,然后对结果作解密运算(签名).文献[16]中的主要结果是:基于padding 函数、对一组消息的RSA 签名与对多个分组消息的RSA 签名的安全性等价.而且这里并不要求hash 函数为Random Oracle 或具有自由碰撞性质,只是假设存在某个安全的、用于签署固定长度消息的padding 函数μ;利用它就可以构造一个用于签署任意长度消息的安全padding 方案.但该文在一般标准安全论断研究方面并未有多少进展.冯登国:可证明安全性理论与方法研究17493.2 没有随机Oracle 的安全签名方案(Hash -and -Sign 模式) 文献[17]基于强RSA 假设(即对任意的RSA 模*,nZ s n ∈,要在多项式时间内找到一个满足r e =s mod n 的二元组(e ,r )(e >1)是不可能的),提出了一种抵抗适应性选择消息攻击的签名方案,仍属于Hash-and-Sign 结构.密钥和参数说明类似于RSA,注意公钥为*,nZ s pq n ∈=.签名算法本身很简单:e =h (R ,M ),签名σ是s 模n 的e 次根;验证算法略.在安全性论断研究方面,文献[17]不再把hash 函数视为RO,而是把hash 函数视为具有某些特定性质(如整除难处理性等)的随机函数h (R ,M ).这里,R 是随机数.特别之处在于:既充分利用RO 安全论断的优点,又用一个假想的随机性Oracle 取代RO,即假设已知h 的随机输入因素也对解决强RSA 难题毫无帮助.文献[17]希望这种“相对模型方法论”能够替代RO 方法论,但显然其假设过强(虽然文献[17]认为仍是现实的),归约也不紧,更重要的是目前看不到有推广应用的可能,文献[17]也承认这一点.3.3 Cramer -Shoup 加密方案Cramer 和Shoup [18]于1998年提出了第一个比较实际的标准模型下可证明安全的公钥加密方案,该方案的困难假设是判定性Diffie-Hellman 问题.由于其安全性归约是在标准的杂凑函数假设(抗碰撞)下得到的,并不依赖于随机预言模型,所以受到了很大的关注.设G 是有限域*p Z 的阶为q 的子群,p ,q 为素数,且q |p −1,g 1和g 2是G 中两个随机的非单位元的元素.设),(21x x x =,),(21y y y =,),(21z z z =表示在0和q −1之间的数对;),(21g g g =,),(21u u u =表示G 中的元素对;r 是1和q −1之间的随机数,记),(2121x x x g g g =,),(2121rx rx rx g g g =.假设H 是合适的抗碰撞杂凑函数.用户Alice 的私钥是3对随机产生的数x ,y ,z ,其公钥由3个群元素,x g c =,y g d =z g e =组成.加密:为了发送消息m ∈G ,Bob 选择一个随机数r ,令r g u 11=,r g u 22=,m e w r =,然后计算),,(21w u u H h =和rh r d c v =.Bob 把四元组),,,(21v w u u 作为密文发送给Alice.解密:要解密),,,(21v w u u ,Alice 首先计算),,(21w u u H h =,然后利用她的私钥计算,hy x u +这个结果应该等于v (因为rh r rhy rx hy x d c g u ==++).如果它不等于v ,Alice 就拒绝该消息;如果通过这个检验,Alice 继续进行解密:把w 除以u z ,因为r rx z e g u ==,而m e w r =,所以这就是明文m .对于Cramer-Shoup 加密方案,如果存在一个自适应选择密文攻击的敌手能够破坏定义4中给出的安全性,那么就可以构造一个算法来求解判定性Diffie-Hellman 问题.容易看出,Cramer-Shoup 加密方案实际上是ElGamal 公钥加密方案的一个变型,而后者显然是不能抵抗选择密文攻击的.与ElGamal 方案相比,Cramer-Shoup 方案的一个重要设计思想,是增加了密文的合法性检验,即在其密文中增加了冗余v ,解密者通过检查u x +hy =v 来判断密文的合法性.而正是这个密文合法性检验条件,使得解密Oracle 不能帮助敌手来发动有效的攻击,这也是目前所有的抵抗选择密文攻击的加密方案的重要设计思想之一.4 会话密钥分配(SDK )协议的可证明安全性研究通信双方在充满恶意的环境中传送数据,一般需要确保数据的机密性和可认证性.要达到此目的,必须加密和认证被传送的数据,这就需要密钥,而密钥通常需要通过会话密钥分配(SKD)协议来实现.当前最常见的是三方SKD 协议(可信方参与),因此下文的论述以此为重点.最早的、最流行的三方密钥分配系统是1978年提出的NS 系统[19],并且有许多具体候选方案.之后的数年,又有10多个SKD 协议出现.但是,似乎所有这些工作都存在这样的“怪圈”:提出一个协议;然后是不断地试图破译;不断地修补.实际上,Needham 和Schroeder 在一开始就提出了警告:这样开发的协议容易有微妙的弱点,且不易在正常操作中检测到,很有必要研究验证协议正确性的技术.作为对这种警告的证实,文献[20]指出了一种NS 协议的bug,许多相关协议都有类似的缺陷.如此漫长的攻击历史使得人们终于达成这样的共识:要解决会话密钥分配问题,仅仅由作者给出一个协议、并且作者本人找不到可行的攻击手段是远远不够的.Burrows,Abadi 和Needham [21]试图通过使用特定目的的逻辑来解决这个问题,即著名的BAN 逻辑.形式化。
密码学中的随机预言模型与标准模型作者:王晓生李莉来源:《现代电子技术》2011年第17期摘要:随机预言模型与标准模型是密码学可证明安全理论中非常重要的两类模型。
在此对这两种模型进行了描述,并研究了运用它们证明密码方案或协议安全性时所采取的不同技术,包括随机预言模型在加密和数字签名方案中的应用研究,以及标准模型下可证明安全性理论在加密方案中的应用研究。
此外对进一步研究方向进行了展望。
关键词:可证明安全性; 随机预言模型; 标准模型; 加密方案中图分类号:TN918.1-34 文献标识码:A文章编号:1004-373X(2011)17-0098-03Random Oracle Model and Standard Model in CryptographyWANG Xiao-sheng1, LI Li2(1.Shaanxi Youth Vocatinal College, Xi’an 710068, China; 2.Primary Education College, Xi’an University of Arts and Sciense, Xi’an 710001, China)Abstract: The random oracle model and standard model are two important ones in the theory of provable security in cryptography. These two models are described and the different technique for proving cryptographic scheme and protocol security when using these models is researched. The application research on the random oracle model in encryption and digital signature schemes, and the theory of provable security under standard model in encryption scheme was carried out. The further research direction is pointed out.Keywords: provable security; random oracle model; standard model; encryption scheme0 引言随机预言模型和标准模型在密码学的可证明安全性中扮演着重要角色。
密码学笔记(5)——Rabin密码体制和语义安全性⼀、Rabin密码体制 Rabin密码体制是RSA密码体制的⼀种,假定模数n=pq不能被分解,该类体制对于选择明⽂攻击是计算安全的。
因此,Rabin密码体制提供了⼀个可证明安全的密码体制的例⼦:假定分解整数问题是整数上不可⾏的,那么Rabin密码体制是安全的。
Thm1 (Rabin密码体制)设n=pq,其中p和q是素数,且p,q \equiv 3 (mod \, 4),设P=C=Z^{\star}_{n},且定义\kappa =\{(n,p,q)\}对K=(n,p,q),定义e_{K}(x)=x^{2} (mod \, n)和d_{K}=\sqrt{y} (mod \, n)n为公钥,p和q为私钥。
注:条件p,q \equiv 3 (mod \, 4)可以省去,条件P=C=Z^n_{\star}也可以弱化为P=C=Z^n,只是在使⽤更多的限制性描述的时候,简化了许多⽅⾯的计算和密码体制分析。
注意看到这个函数y=x^{2}对于加密来说不是⼀个单射,所以解密不能以⼀种明显的⽅式完成,特别的,对于y \equiv x^{2} (mod \, n),对于某⼀个x \in Z^{\star}_{n},存在y模n的是个解,除⾮有其他的冗余信息,否则⽆法确认是那⼀个值。
从Bob的观点来看解密问题,它有⼀个密⽂y,要想得到x使得x^2 \equiv y(mod \, n)这是⼀个关于Z_{n}中未知元x的⼆次⽅程,解密需要求出模n的平⽅根,等价于求解以下两个同余⽅程。
z^{2} \equiv y (mod \, p)z^{2} \equiv y (mod \, q)虽然我们可以利⽤Euler准则来判断y是否为⼀个模p或模q的⼆次剩余。
事实上,如果加密正确的执⾏,y是⼀个模p和模q的⼆次剩余,遗憾的是它并不能帮助我们找到y。
当p \equiv 3(mod \, 4)时,有⼀个简单公式来计算模p的⼆次剩余的平⽅根,假定y是⼀个模p的⼆次剩余,且y \equiv 3 (mod \, 4)那么有\begin{align} (\pm y^{\frac {p+1}{4}})^{2} \equiv & y^{\frac{p+1}{2}} (mod \, p) \\ \equiv & y^{\frac{p-1}{2}}y (mod \, p) \\ \equiv & y(mod \, p) \\ \end{align}这⾥⼜⼀次使⽤了Euler准则,即当y是⼀个模p的⼆次剩余时,有y^{\frac{p-1}{2}} \equiv 1 (mod \, p),因此,y模p的两个平⽅根为\pm y^{\frac{p+1}{4}} (mod \, p),同样的讨论可以知道,y模q的两个平⽅根为\pm y^{\frac{p+1}{4}} (mod \, q),再利⽤中国剩余定理可以得到y模n的四个平⽅根。
国内外密码学发展现状一、近年来我国本学科的主要进展我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。
(一)最新理论与技术研究进展我国学者在密码学方面的最新研究进展主要表现在以下几个方面。
(1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。
2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。
(2)分组密码方面,我国许多学者取得了重要的研究成果。
吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE 工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。
(3)Hah函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hah函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hah函数首次给出有效碰撞攻击和原像攻击。
(4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。
(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。
该项成果获得2005年国家科技进步二等奖。
(6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。
(7)实验方面,主要有郭光灿院士领导的团队和潘建伟教授领导的团队取得了2022年是我国《商用密码管理条例》发布实施10周年。
混合离散对数及安全认证摘要:近二十年来,电子认证成为一个重要的研究领域。
其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。
对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。
虽然其具有很高的安全性,却导致高负荷运算。
最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。
本文研究混合系数的离散对数问题,也即信息不可识别性。
我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。
我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。
最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。
1.概述在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。
然而,效率一直就是一个难以实现的属性。
即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。
其原因就是零知识协议的广泛应用。
身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。
然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。
最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。
然而,其约减的代价太高,使得其不适用于现实中的问题。
几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。
说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。
具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。
WPKI技术分析及应用1. 概述WPKI(Web Public Key Infrastructure)是在Web环境中应用的公钥基础设施(Public Key Infrastructure)的缩写。
它是一种基于公钥密码学的安全解决方案,主要用于在Web环境中进行身份验证、数据加密和数字签名。
WPKI技术的核心是公钥密码学。
在WPKI中,每个参与者都有一对密钥:私钥和公钥。
私钥用于签署和解密数据,而公钥用于身份验证、数据加密和验证签名。
2. WPKI的组成部分WPKI由以下几个主要组成部分组成:2.1 公钥证书公钥证书是WPKI的核心组成部分之一。
它是由证书颁发机构(Certificate Authority,简称CA)签发的数字证书,用于验证参与者的身份。
公钥证书中包含了参与者的公钥、身份信息和数字签名等信息。
在进行身份验证时,其他参与者可以使用证书中的公钥来验证证书的真实性和完整性。
2.2 证书颁发机构(CA)证书颁发机构是WPKI的信任实体。
它负责验证参与者的身份,并为其签发数字证书。
证书颁发机构通常是可信的第三方机构,如政府机构或认证服务提供商。
证书颁发机构必须具备严格的安全措施,以保证其颁发的证书的真实性和可靠性。
2.3 证书存储库证书存储库用于存储和管理参与者的证书。
它可以是一个集中式的数据库或一个分布式的存储系统。
证书存储库提供了一种便捷的方式来查找和获取参与者的证书,从而实现身份验证和数据加密等功能。
2.4 密钥管理系统密钥管理系统用于生成、存储和管理参与者的密钥对。
它确保私钥的安全存储,并提供密钥的有效期管理和密钥的轮换等功能。
密钥管理系统还可以与证书颁发机构和证书存储库集成,实现密钥的自动注册和更新。
3. WPKI的应用场景WPKI技术可以广泛应用于Web环境中的各种安全场景。
以下是一些常见的应用场景:3.1 身份验证WPKI可以用于在Web环境中进行身份验证。
参与者可以通过使用其私钥进行数字签名来证明其真实身份。
可证明安全k—out—of—n不经意传输方案的安全分析与改进作者:李璐瑶戴明青龙来源:《计算机应用》2014年第05期摘要:不经意传输是密码学研究的一个重要内容。
对一种可证明安全的k-out-of-n不经意传输方案安全性进行了分析。
该方案的构造方法很新颖,具有很高的计算效率和传输效率。
但是分析发现其存在一个明显漏洞,可以使得接收者能够获得发送者发送的全部信息,从而违背了不经意传输的安全性要求。
详细分析后,通过引入一个随机数对该方案进行了改进,改进后的方案消除了原方案存在的漏洞,并且传输开销和计算开销与原方案相同,方案安全性同样是建立在判断性DiffieHellman (DDH)问题为困难问题的假设之上。
关键词:不经意传输;可证明安全;密码分析;判断性DiffieHellman假设;安全计算中图分类号:TP319文献标志码:A0引言不经意传输(Oblivious Transfer, OT)是密码学研究的一个重要领域,是其他很多密码协议设计的基础。
不经意传输在实践中具有广泛应用,包括网上商品交易、合同签名、隐私信息恢复、不经意多项式估值、隐私保留的审计等[1-4]。
不经意传输这一术语首次由Rabin提出[5]。
文献[5]提出的OT协议是一种双方参与协议,协议实现的是发送者发送一个bit消息给接收者,接收者接收该消息的概率为1/2。
协议要求发送者不能获得接收者是否成功接收到该消息的任何信息。
其后研究人员在文献[1]的基础上提出了很多不同类型的OT协议,包括:1)1outof2 OT (OT12)协议[6]。
该协议实现的是发送者同时发送两个消息给接收者,接收者可以随意选择得到其中一个消息,协议要求接收者不能获得另一个消息的任何信息,同时发送者不能获得接收者选择的任何信息。
2)1outofn OT (OT1n)协议[7-8]。
该协议是OT12的简单推广,实现的是发送者同时发送n个消息给接收者,接收者随意选择得到其中一个消息,协议要求接收者不能获得其余消息的任何信息,同时发送者不能获得接收者选择的任何信息。
安全多方计算技术在密码学中的应用密码学作为一门研究信息安全的学科,一直以来都备受关注。
随着信息技术的不断发展,传统的密码学方法逐渐暴露出一些安全性的问题。
为了应对这些挑战,安全多方计算技术进入了密码学领域,并取得了显著的成果。
本文将从安全多方计算技术的基本原理、密码学中的应用以及未来的发展趋势等方面进行探讨。
一、安全多方计算技术的基本原理安全多方计算技术是指在多方参与计算的情况下,确保计算结果的安全性和隐私性的一种方法。
它能够在不暴露各方私密输入的情况下,实现计算结果的正确性。
其基本原理包括安全协议、秘密共享以及零知识证明等。
首先,安全协议是实现安全多方计算的基础。
各方在进行计算前,通过建立安全协议来确定计算过程和涉及到的操作。
这些安全协议可以确保计算过程的正确性和隐私性。
其次,秘密共享是安全多方计算的关键技术之一。
通过将参与计算的私密输入进行分割和分发给各方,可以确保参与方之间的私密输入不被泄露。
各方只有在进行计算时才能恢复出完整的输入信息,并参与到计算中。
最后,零知识证明可以在安全多方计算过程中证明某个事实的真实性,而无需泄露与之相关的任何私密输入。
这样可以保证计算过程的安全性和隐私性,同时提供不可抵赖性的证明。
二、安全多方计算在密码学中的应用1. 秘密共享在数字签名算法中,秘密共享技术可以用于生成签名密钥,保护私钥的安全性。
多方共享私钥后,只有在所有参与方齐心协力的情况下,才能恢复出完整的私钥,并进行签名操作。
这样一来,即便有一方的私钥被泄露,也无法独自进行签名,提高了签名算法的安全性。
2. 安全多方计算在密码协议中的应用安全多方计算技术可以用于密码协议中的安全关键操作,例如密钥交换、访问控制等。
通过多方共同参与计算,在不泄露私密输入的情况下,生成协议中所需的临时密钥或验证信息。
3. 安全多方计算在云安全中的应用云计算作为一种高效的数据存储和计算方式,对数据的安全性提出了更高的要求。
将安全多方计算技术应用于云安全中,可以实现在云环境中进行隐私保护、数据共享等操作,保障用户数据的安全。
格上基于身份的群签名方案摘 要:群签名作为一种特殊的数字签名,能够允许群体中的任何一个群成员代表群体进行签名,而且签名满足匿名性。
一旦发生争议,群管理员就可以通过打开算法,识别出签名者身份。
由于群签名的匿名性和可追踪性,使其在公共资源管理、命令签发、选举、新闻发布、电子商务等方面有着广泛的应用背景。
而基于格的密码系统是被公认的可以抵抗量子攻击的密码系统,而且格密码还具备算法的结构简单、运算快捷、格上困难问题在最坏和一般情形下的困难性等价等这些优点。
因此,构造格上的群签名方案是群签名研究的一个热点问题。
关键字:群签名 格 基于身份签名1、 格理论基础知识首先,我们会介绍一个较新的数学概念—格,这一概念是在18世纪末由数学家拉格朗日和高斯等人提出的。
格是n 维空间里一类有着周期性结构的离散点的集合。
近年来,随着基于格上困难问题的密码方案的提出,格理论的研究空前活跃。
1.1格的基本概念定义 1.1(格) 设12n b ,b ,...,b 是n R 上一组线性无关的向量,则1(){|Z}ni i i i L s b s =Λ==∈∑12n b ,b ,...b 称为n R 上的格Λ,向量组12n b ,b ,...,b 构成格Λ上的一组基。
则有,定义()=12n B b ,b ,...,b 是一个m n ⨯矩阵,由B 生成的格即为n ()(){|Z }L L Λ===∈12n B b ,b ,...,b Bx x ,那么格Λ的秩为n ,维数为m ,如果n m =则格Λ为满秩格。
一个格可以有不同的基,例如,由基T (1,0)和T (0,1)生成的格即为2Z ,这个格包含所有的整数点。
然而这组基并不是唯一的一组基,基T (1,1)和T (2,1)也可以生2Z ,2Z 的另一组基可以为T (2005,1)和T (2006,1)。
但是T (1,1)和T (2,0)不是2Z 的一组基,这组基生成的是坐标之和为偶数的所有整数点的格。