方位角的计算方法
- 格式:doc
- 大小:18.50 KB
- 文档页数:3
测量坐标方位角计算汇总在现代测量仪器和技术的支持下,测量坐标方位角变得更加准确和方便。
本文将介绍一些常用的测量坐标方位角的方法和技术,以及相关的计算方法和公式。
一、方位角的定义和表示方式方位角是指从参考方向(通常是北方向)开始,按照顺时针方向旋转到目标物体的方向所需要的角度。
在地理坐标系统中,通常使用度数来表示方位角。
例如,0度表示正北方向,90度表示正东方向,180度表示正南方向,270度表示正西方向。
方位角通常用数字表示,也可以用度分秒来表示。
度分秒是一种用时分秒来度量角度的表示方法。
例如,45度可以表示为45°,也可以表示为45°00’00’’。
二、测量坐标方位角的方法1.罗盘法:罗盘法是一种使用磁罗盘测量方位角的方法。
该方法利用地球的磁场方向作为参考,通过测量磁罗盘的指针指向来确定目标物体的方位角。
罗盘法的精度通常受到地球磁场的影响,需要进行磁偏角的校正。
2.GPS测量法:全球定位系统(GPS)是一种使用卫星信号测量位置和方向的技术。
通过接收多个卫星信号并计算其相对位置,可以确定接收器的位置和方位角。
GPS测量法具有高精度和实时性的优势,广泛应用于地理测量和导航领域。
3.光电测量法:光电测量法利用光线来测量目标物体的方位角。
该方法通过测量光线从光源到目标物体的传播方向和角度来确定方位角。
光电测量法通常需要专用的测量仪器和设备,如光电传感器和激光测距仪。
三、测量坐标方位角的计算方法和公式1.方位角的计算可以根据物体在地理坐标系统中的坐标值进行计算。
假设目标物体的坐标为(X1,Y1),参考点的坐标为(X0,Y0)。
方位角的计算公式如下:方位角 = atan2(Y1 - Y0, X1 - X0)其中,atan2函数是反正切函数,可以通过计算两点之间的纬度差和经度差得到方位角。
2.方位角的计算还可以根据目标物体在地图上的距离和方向进行计算。
假设目标物体与参考点的距离为D,目标物体相对于参考点的方向为A。
测量坐标方位角公式引言坐标方位角是地理测量中常用的一个概念,用于描述一个点相对于参考方向的角度。
测量坐标方位角是确定一个点相对于某一基准点的相对位置的重要步骤。
本文将介绍测量坐标方位角的公式和计算方法。
坐标方位角的定义坐标方位角可以理解为从参考方向逆时针旋转的角度,以度数或弧度表示。
参考方向通常以正北或正东为基准,具体取决于实际应用场景。
方位角的取值范围为0°至360°或0至2π弧度。
坐标方位角的计算要计算一个点相对于参考方向的方位角,需要知道两者之间的水平方向角和距离。
水平方向角是指从参考方向到目标点方向的角度。
公式下面是计算坐标方位角的公式:方位角 = atan2(y2 - y1, x2 - x1) * 180 / π其中,(x1, y1)是参考点的坐标,(x2, y2)是目标点的坐标,atan2是求反正切的函数,π是数学常量π。
计算步骤1.确定参考点和目标点的坐标(x1, y1)和(x2, y2);2.计算水平方向角,即参考点指向目标点的角度。
可以借助数学库或计算工具来计算反正切;3.使用公式计算坐标方位角,将水平方向角转换为度数。
示例假设有一个参考点A的坐标为(2, 3),目标点B的坐标为(5, 7)。
我们来计算点B相对于点A的坐标方位角。
1.点A的坐标为(2, 3),点B的坐标为(5, 7);2.计算水平方向角:atan2(7 - 3, 5 - 2) = atan2(4, 3)≈ 51.34°;3.使用公式计算坐标方位角:51.34°。
因此,点B相对于点A的坐标方位角约为51.34°。
结论测量坐标方位角是地理测量中的一项重要任务。
通过计算水平方向角和距离,我们可以轻松计算出点相对于参考方向的方位角。
在实际的地理测量和导航应用中,坐标方位角的计算是不可或缺的步骤,能够帮助我们准确确定物体或位置相对于参考点的方向关系。
以上是测量坐标方位角的公式和计算方法的介绍,希望对您有所帮助。
坐标方位角计算公式过程
一、坐标方位角的定义。
在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。
二、坐标方位角计算公式推导过程。
1. 已知两点坐标计算坐标方位角。
- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。
- 首先计算Δx=x2 - x1,Δy=y2 - y1。
- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。
- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。
- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。
- 当Δ x<0时,坐标方位角β=α + 180^∘。
- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。
例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。
再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。
方位角计算公式范文方位角是指从一个参考方向(通常是正北方向)起,按顺时针方向测量到其中一方向线的角度。
方位角通常用度数表示,范围从0度到360度。
下面介绍常见的方位角计算公式:1.方位角计算公式(两点坐标):假设已知起点坐标A(x1,y1)和终点坐标B(x2,y2),方位角θ的计算公式如下:θ = atan2(y2 - y1, x2 - x1)其中,atan2函数是一个双变量反正切函数,返回值为[-π, π]之间的角度值。
注意:上述公式计算得到的θ是以正北方向为参考的方位角。
如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。
2.方位角计算公式(两点经纬度):假设已知起点的经度(lon1)、纬度(lat1)和终点的经度(lon2)、纬度(lat2),方位角θ的计算公式如下:θ = atan2(sin(Δlon) * cos(lat2), cos(lat1) * sin(lat2) -sin(lat1) * cos(lat2) * cos(Δlon))其中,Δlon = lon2 - lon1是两点经度差。
注意:上述公式计算得到的θ是以正北方向为参考的方位角。
如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。
3.方位角计算公式(方向余弦矩阵):方向余弦矩阵(Direction Cosine Matrix)是一种将方位角和俯仰角等转化为三维空间坐标旋转的方式。
方向余弦矩阵的计算公式如下:D=[ cos(θ) * cos(φ), sin(θ) * cos(φ), -sin(φ) ][ -sin(θ), cos(θ), 0 ][ cos(θ) * sin(φ), sin(θ) * sin(φ), cos(φ) ]其中,θ是方位角,φ是俯仰角。
D是一个3行3列的矩阵,表示坐标变换矩阵。
上述是常见的方位角计算公式,根据不同的应用场景和问题,可能还会有其他的计算公式。
一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
计算公式一、 方位角的计算公式1. 字母所代表的意义:x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角2. 计算公式:()()212212y y x x S -+-=1)当y 2- y 1>0,x 2- x 1>0时:1212x x y y arctg--=α2)当y 2- y 1<0,x 2- x 1>0时:1212360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1212180x x y y arctg--+︒=α 二、 平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、 平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=D :JD 偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)Y ′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)Y ″=V+Tsin(A+D)四、 平曲线上任意点的坐标计算公式1. 字母所代表的意义:P :所求点的桩号B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1C :JD 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=I=C -T :直缓桩号 J=I+L :缓圆桩号s L DRJ H -+=180π:圆缓桩号K=H+L :缓直桩号2. 计算公式: 1)当P<I 时中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)2)当I<P<J 时()s230RL I P MA O π-︒+= ()()2390R I P I P G ---=中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO()s290RL I P W π-︒=边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)3)当J<P<H 时()()R J P L M A R J P R L M A O s s πππ-+︒+=⎪⎭⎫⎝⎛-︒+︒+=909090 ()RJ P R G π-︒=90sin2中桩坐标:()O G R L M A R L L A T U X s ss m cos 30cos 90180cos 23+⎪⎭⎫⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s ss m sin 30sin 90180sin 23+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()RJ P W π-︒=90边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)4)当H<P<K 时()sRL K P MMD A O π230180-︒-︒++= ()2390R P K P K G ---= 中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO()s290RL K P W π-︒=边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)5)当P>K 时中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;假设要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。
坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。
方位角是卫星接收天线,在水平面上转0°-360°。
设定方位角时,抛物面在水平面上左右移动。
方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。
它是从点的北方向顺时针方向和目标方向之间的水平角度。
一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。
αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。
2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。
3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。
当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。
根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。
一、 方位角:以直线端点的子午线北端起算,顺时针方向量至直线的水平夹角,称为该直线的方位角。
(如图所示)
北
A
B
二、 方位角的计算
1、 坐标正方位角与坐标反方位角:设直线由A →B 方向的角аAB 为坐标正方位角,则相反方向的аBA 为坐标反方位角。
由于轴北方向处处平行,同一直线的坐标正、反方位角应相差180°,即а反=а正±180°(如图所示)
2
北(X)
BA
式中,:а正﹤180°时,+180°,反之-180°。
2、两直线的坐标方位角аBA、аBC与水平夹角之间的关系:
(如图所示)
北(X)
A
①当β为ABC前进方向的右角时(顺时针),则
аBC=аBA-β右
即计算式一:аBC=аAB±180°-β右
②当β为ABC前进方向的左角时(逆时针),则
β右=360°-β左
代入计算式一中,得计算式二:
аBC=аAB±180°+β左
3、理解:前一边BC的坐标方位角等于后一边AB坐标方
位角加(或减)两边所夹的左(或右)角,再±180°。
4、注意:在计算过程中,当(а后+β左或а后-β右)﹤180°
时,用+180°;反之,-180°。
计算的结果大于360°应减去360°,为负值时应加360°。
雷达方位角和俯仰角计算雷达是一种用于探测目标位置和运动的仪器,它通过测量目标的方位角和俯仰角来确定其相对于雷达站的位置。
在本文中,我将详细介绍雷达方位角和俯仰角的计算方法。
首先,方位角是雷达站与目标之间连线的水平角度,也称为方位角。
方位角通常以北方向为基准,逆时针方向增加,范围是0到360度。
方位角的计算方法如下:-假设雷达站的位置为(Ax,Ay),目标的位置为(Bx,By)。
- 首先,计算目标相对于雷达站的坐标差值:dx = Bx - Ax,dy = By - Ay。
- 然后,计算方位角:angle = atan2(dy, dx),其中atan2是一个数学函数,用于计算向量的角度。
-最后,根据实际情况,将方位角转换为0到360度的范围。
接下来,俯仰角是雷达站与目标之间连线的垂直角度,也称为仰角。
俯仰角通常以水平面为基准,向上方向增加,范围是-90到90度。
俯仰角的计算方法如下:-假设雷达站的高度为Ah,目标的高度为Bh。
- 首先,计算目标相对于雷达站的高度差值:dh = Bh - Ah。
- 然后,计算俯仰角:elevation = atan2(dh, distance),其中distance为雷达站到目标的水平距离。
-最后,根据实际情况,将俯仰角转换为-90到90度的范围。
以上是计算雷达方位角和俯仰角的基本方法。
然而,在实际应用中,可能还需要考虑其他因素,如雷达站的高度、目标的运动速度等。
此外,由于雷达测量存在一定的误差,还需要进行校正和滤波处理,以提高数据的准确性。
在雷达系统中,方位角和俯仰角的计算是非常重要的,它们是确定目标位置和运动方向的关键参数。
通过对雷达返回的信号进行处理和分析,可以根据方位角和俯仰角来确定目标的水平和垂直位置,从而实现雷达的目标探测和跟踪功能。
雷达方位角和俯仰角的计算方法是基础的数学知识,在雷达领域有着广泛的应用。
正是因为方位角和俯仰角的存在,雷达能够精确地定位目标,并提供有效的目标跟踪和监测功能。
方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角
坐标增量的计算方法:
平距×COS方位角=△X坐标增量
平距×Sin方位角=△Y坐标增量
坐标的计算方法:
已知X坐标±△X坐标增量=X坐标
已知Y坐标±△Y坐标增量=Y坐标
高差、平距的计算方法:
斜距×Sin倾角=高差
斜距×COS倾角=平距
高差÷Sin倾角=斜距
平距÷cos已知度分秒=斜距
高程的计算方法:
已知高程-仪器高+前视高±高差=该点的顶板高差
原始记录计算方法:
前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″
前视92°49′02″272°49′13″水平角= 92°49′03″
实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″
实例: 270°30′38″-270°= 00°30′38″
激光的计算方法:两点的高程相减:
比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、798
8、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)
测量:1、先测后视水平角:归零,倒镜180°不能误差15′
2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。
要求方位角-已知方位角±180°=拨角方位
画两千的图:展点用0.6正好.
倾角的计算方法:180°以下的-90°
270°-超过180°的
两点的高差除平距按tan=倾角
比如:2点1500、026-6点1484、096=15、93
2点~6点平距=127、83
15、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。
等于7°06′12″
斜距×COS倾角=平距
平距÷cos已知度分秒=斜距
比如:127、83÷cos7°06′18″=128.819
平距=斜距×cos7°06′18″=127、83
斜距×sin倾角=高差
比如:128、819×sin7°06′18″=15、93
7°10′23″-7°06′18″= 00°04′05″
斜距128.819×sin倾角00°04′05″= 高差0、153 座标增量计算距离计算方法:
△x座标增量的平方+△y座标增量的平方=再开方就是平距比如:△x座标增量158、557×158、557=25140、322
△y座标增量-负13、673×-负13、673=186、950 25140、322+186、950=25327、272
25327、272开方=159、145这就是计算出来的平距
右半边键盘只出数字:按功能键Fn再按Numlk键完事抄平:
支好架子、找平、设置到90度、找点读数
比如:读数是0、8米。
测下一个点是4、8米,就是4、8米-0、8米=4米
您的小学校名是:答案:张老师(126邮箱)
面积=半径×半径×圆周率÷2
周长=圆周率×直径÷2或是周长=2×半径×圆周率÷2
三角形面积:求面积吗(上底+下底)×高÷2
梯形面积:设上底为a,下底为b,高为h
公式:(a+b)×h÷2。