核辐射测量原理复习知识要点
- 格式:doc
- 大小:3.03 MB
- 文档页数:13
核辐射物理及探测学期末考前总结复习重带电粒子与物质的相互作用1、特点重带电粒子均为带正电荷的离子;重带电粒子主要通过电离损失而损失能量;重带电粒子在介质中的运动径迹近似为直线。
2、重带电粒子在物质中的能量损失规律1) 能量损失率(Specific Energy Loss)对重带电粒子,辐射能量损失率相比小的多,因此重带电粒子的能量损失率就约等于其电离能量损失率。
电子的散射与反散射电子与靶物质原子核库仑场作用时,只改变运动方向,而不辐射能量的过程称为弹性散射。
由于电子质量小,因而散射的角度可以很大,而且会发生多次散射。
电子沿其入射方向发生大角度偏转,称为反散射。
对同种材料,电子能量越低,反散射越严重;对同样能量的电子,原子序数越高的材料,反散射越严重。
反散射的利用与避免对放射源而言,利用反散射可以提高β源的产额。
A)A) 对对探测器而言,要避免反散射造成的测量偏差。
B)B) 对γ 射线与物质的相互作用特点:γ光子通过次级效应与物质的原子或核外电子作用,光子与物质发生作用后,光子或者消失或者受到散射而损失能量,同时产生次电子; 次级效应主要的方式有三种,即光电效应、康普顿效应和电子对效应。
γ射线与物质发生不同的相互作用都具有一定的概率,用截面来表示作用概率的大小。
总截面等于各作用截面之和,即:pc ph σσσσ++=作用截面与吸收物质原子序数的关系5Z ph ∝σZ c ∝σ2Zp ∝σ总体来说,吸收物质原子序数越大,各相互作用截面越大,其中光电效应随吸收物质原子序数变化最大,康普顿散射变化最小。
光电效应康普顿散射电子对效应第七章辐射探测中的概率统计问题辐射探测器学习要点:�探测器的工作机制;�探测器的输出回路与输出信号;�探测器的主要性能指标;�探测器的典型应用。
第八章气体探测器Gas-filled Detector•电离室–工作机制:入射带电粒子(或非带电粒子的次级效应产生的带电粒子)使气体电离产成电子-离子对,电子-离子对在外加电场中漂移,感应电荷在回路中流过,从而在输出回路产生信号。
核辐射剂量检测仪原理
核辐射剂量检测仪原理是通过测量环境中的核辐射剂量来保护人员和环境免受
核辐射的影响。
它可以用于核电厂、医学设施、核实验室、辐射监测站等场所。
核辐射剂量检测仪的原理基于核辐射与物质的相互作用。
当核辐射通过物质时,它会与物质中的原子相互作用,导致原子的电离和激发。
检测仪可以测量核辐射所产生的电离或激发的粒子或能量,从而确定辐射剂量。
常见的核辐射剂量检测仪有三种类型:电离室、闪烁体和半导体探测器。
电离室是最常用的核辐射剂量检测仪。
它基于气体中的电离现象来测量核辐射
剂量。
当核辐射通过气体时,它会电离气体分子,产生带电粒子和电离的气体分子。
电离室中有两个电极,通过测量电离室中的电流来确定核辐射的剂量。
闪烁体核辐射剂量检测仪使用一种特殊的晶体来测量核辐射。
当核辐射通过闪
烁体时,它会激发晶体内的原子或分子,使其跃迁到一个高能级。
跃迁过程中,晶体会发出可见光或紫外光。
检测仪使用光电倍增管或光电二极管来测量闪烁体发出的光信号,从而确定核辐射的剂量。
半导体探测器是最先进的核辐射剂量检测仪器之一。
它使用半导体材料来测量
核辐射。
当核辐射通过半导体材料时,它会激发半导体中的电子和空穴,产生电流。
检测仪通过测量电流来确定核辐射的剂量。
核辐射剂量检测仪的原理是基于核辐射与物质的相互作用,并利用不同的检测
技术来测量核辐射剂量。
它在核能行业、医学领域和环境监测中起着至关重要的作用,保护人类和环境免受核辐射的损害。
核辐射探测的原理核辐射探测是一种用于探测和测量核辐射的技术,它在核能、医学、环境保护等领域具有重要的应用价值。
核辐射是指放射性物质在衰变过程中释放出的能量和粒子,包括α粒子、β粒子和γ射线。
核辐射探测的原理是基于核辐射与物质的相互作用。
核辐射与物质相互作用的方式有多种,其中包括电离作用、激发作用和散射作用。
电离作用是指核辐射与物质中的原子或分子相互作用,将电子从原子或分子中脱离出来;激发作用是指核辐射与物质中的原子或分子相互作用,使其电子跃迁到较高的能级;散射作用是指核辐射与物质中的原子或分子相互作用,改变其传播方向。
核辐射探测的常用方法包括计数法、能谱法和图像法。
计数法是通过对核辐射进行计数来测量辐射剂量率或活度水平。
计数器是核辐射探测中常用的仪器,它可以对核辐射进行计数和测量。
能谱法是通过分析核辐射的能量分布来确定其成分和能量水平。
能谱仪是能谱分析的主要工具,它可以将核辐射的能量分布转化为能谱图,从而得到核辐射的详细信息。
图像法是通过核辐射与物质相互作用的位置分布来获取核辐射的空间分布信息。
放射性显像仪是图像法的主要工具,它可以将核辐射的位置分布转化为图像,从而实现对核辐射的图像化显示。
核辐射探测的应用非常广泛。
在核能领域,核辐射探测可以用于核电站的辐射监测和核燃料的检验;在医学领域,核辐射探测可以用于放射治疗的剂量监控和核医学诊断;在环境保护领域,核辐射探测可以用于核废料的处理和环境辐射监测。
此外,核辐射探测还可以应用于核安全、核材料检测和核辐射防护等方面。
为了确保核辐射探测的准确性和可靠性,需要进行仪器校准和质量控制。
仪器校准是通过与标准源进行比对,确定仪器的灵敏度和响应特性;质量控制是通过定期检查和维护仪器,确保其性能和工作状态处于良好的状态。
此外,还需要进行辐射防护措施,保护操作人员和周围环境不受核辐射的伤害。
核辐射探测是一种重要的技术手段,可以用于核能、医学、环境保护等领域的辐射监测和剂量测量。
第一章 辐射源 1、实验室常用辐射源有哪几类?按产生机制每一类又可细分为哪几种? 带电粒子源 快电子源: β衰变 内转换 俄歇电子 重带电粒子源: α衰变 自发裂变 非带电粒子源 电子辐射源:伴随衰变的辐射、湮没辐射、伴随核反应的射线、轫致辐射、特征X射线 中子源:自发裂变、放射性同位素(α,n)源、光致中子源、加速的带电粒子引起的反应 2、选择辐射源时,常需要考虑的几个因素是什么? 答:能量,活度,半衰期。 3、252Cf可做哪些辐射源? 答:重带点粒子源(α衰变和自发裂变均可)、中子源。
第二章 射线与物质的相互作用
电离损失:入射带电粒子与核外电子发生库仑相互作用,以使靶物质原子电离或激发的方式而损失其能量 作用机制:入射带电粒子与靶原子的核外电子间的非弹性碰撞。 辐射损失:入射带电粒子与原子核发生库仑相互作用,以辐射光子的方式损失其能量。 作用机制:入射带电粒子与靶原子核间的非弹性碰撞。 能量歧离:单能粒子穿过一定厚度的物质后,将不再是单能的,而发生了能量的离散;这种能量损失的统计分布,称为能量歧离。 引起能量歧离的本质是:能量损失的随机性。 射程:带电粒子沿入射方向所行径的最大距离。 路程:入射粒子在物质中行径的实际轨迹长度。 入射粒子的射程:入射粒子在物质中运动时,不断损失能量,待能量耗尽就停留在物质中,它沿原来入射方向所穿过的最大距离,称为入射粒子在该物质中的射程。 重带电粒子与物质相互作用的特点: 1、主要为电离能量损失 2、单位路径上有多次作用——单位路径上会产生许多离子对 3、每次碰撞损失能量少 4、运动径迹近似为直线 5、在所有材料中的射程均很短 电离损失: 辐射损失:
快电子与物质相互作用的特点: 1、电离能量损失和辐射能量损失 2、单位路径上较少相互作用——单位路径上产生较少的离子对 3、每次碰撞损失能量大 4、路径不是直线,散射大
24
2ion0
dE4πze-=NZBdxmvradiondE/dxEZdE/dx800222NZmEzdxdErad
21mSradESrad
2NZSrad 带电粒子在靶物质中的慢化: (a) 电离损失-带电粒子与靶物质原子中核外电子的非弹性碰撞过程。 (b) 辐射损失-带电粒子与靶原子核的非弹性碰撞过程。 (c) 带电粒子与靶原子核的弹性碰撞 (d) 带电粒子与核外电子弹性碰撞 即轫致辐射:带电粒子穿过物质时受物质原子核的库仑作用,其速度和运动方向发生变化,会伴随发射电磁波。 电子的散射与反散射: 电子与靶物质原子核库仑场作用时,只改变运动方向,而不辐射能量的过程称为弹性散射。由于电子质量小,因而散射的角度可以很大,而且会发生多次散射,最后偏离原来的运动方向,电子沿其入射方向发生大角度偏转,称为反散射。 反散射系数:
入射电子能量越低,反散射越严重;对同样能量的入射电子,原子序数越高的材料,反散射越严重
阻止时间: 正电子与物质的相互作用特点: 正电子与物质发生相互作用的能量损失机制和电子相同。湮没,放出光子,或者,它与一个电子结合成正电子素,然后再湮没,放出光子。 湮没辐射:正电子湮没放出光子的过程。 湮没光子:正电子湮没时放出的光子。 两个湮没光子的能量相同,各等于0.511MeV 射线与物质的相互作用特点: 光子是通过次级粒子与物质的原子核或原子核外电子作用,一旦光子与物质发生作用,光子或者消失或者受到散射而损失能量,同时产生次电子;产生次级粒子主要的方式有三种,即光电效应、康普顿效应和电子对效应。
光电效应: 射线(光子)与物质原子中束缚电子作用,把全部能量转移给某个束缚电子,使之发射出去 光电效应主要发生在原子中结合的最紧的K层电子上。 光电子能量为:
光电截面: k为k层光电截面 eiE=hv-B
kph4
5
20cmh
2
7
552042
1
13227hZZ
h
cm
thk
22
2th
0
8eσ=π
mc3
20cmh
hZZh
cm
thk1
5.155204
00
III
EMckcRkvRvRT22E
MRTa7102.1
5Zph 光电效应: 电子对效应: 康普顿散射:
低能、高Z,光电效应占优势; 中能、低Z,康普顿散射占优势; 高能、高Z,电子对效应占优势。
康普顿效应 :射线(光子)与核外电子的非弹性碰撞过程。在作用过程中,入射光子的一
部分能量转移给电子,使它脱离原子成为反冲电子,而光子受到散射,其运动方向和能量都发生变化,称为散射光子。
反冲电子与散射光子的能量与散射角及入射光子能量之间的关系: 光子的能量: 光子的动量: 电子的动能:
电子的动量: 相对论关系: 散射光子能量: 反冲电子能量:
反冲角: (1) 任何一种单能射线产生的反冲电子的动能都是连续分布的。且存在最大反冲电子动
能。 (2) 在最大反冲电子动能处,反冲电子数目最多,在能量较小处,存在一个坪。
电子对效应:是当入射射线(光子)能量较高(>1.022MeV)时,当它从原子核旁经过时,在
核力的作用下,入射光子转化为一个正电子和一个电子的过程。 电子对效应除涉及入射光子与电子对以外,必须有第三者——原子核的参与,否则不能同时满足能量和动量守恒。电子对效应要求入射光子的能量必须大于1.022MeV。 正负电子的总动能为: 电子对效应的截面 稍大于 时:
时: 射线没有射程的概念。窄束 射线强度衰减服从指数衰减规律,只有吸收系数及相应的半吸收厚度的概念。
5phZ
ph
hv
hvE
γP=hv/c
20220201cmcmcmEEe
0e2
mvP=mv=
1-βcv/
e222240E=Pc+mcγγγ
20
EE=E1+(1-cosθ)mc)cos1()cos1(202Ecm
EEe
20
12Ectgtgmc
202cmhvEEee
EZp2
hv2
02cm
202cmhv
EZpln2
Zc
2pZ 质量厚度:
第三章 概率统计问题 二项式分布 数学期望
方差
泊松分布 数学期望 方差 高斯分布 概率密度函数为:
数学期望 方差 串级随机变量 串级随机变量的主要特点: (A) 期望值:
(B) 方差: (C) 相对方差: 一个核在0~t 时间内发生衰变的概率为:
长寿命核素在核衰变过程中核衰变数的方差与其平均值相等 误差传递公式:
分析一些常见情况:
tt
mmmteItI
0)(
693.0
2/1t
0000NNnmEnPnNp
0
0
2N
2Nn=0
σ=Dξ=n-EξPn
pEpqN1
0
mnenmnP
!
mnPnE
0
mnPEnD
2
0
222exp21mx
xf
mdxxfxxE
22dxxfxExxD
21122DEDED
21EEE
21222
21
1EED
teNNp1
0
22222221221nxnxxyxyxyxy
21xxy)(2221xxy)/()(212/12221xxvxxy