《常微分方程》练习题参考答案
- 格式:pdf
- 大小:120.05 KB
- 文档页数:5
常微分方程模拟试题(B)参考答案 2012.7一、填空题(每小题3分,本题共30分)1.二 2. )()]()([1211x y x y x y C +- 3. ()0W t ≡或00()=0,W t t I ∈4.)(x NxNy M ϕ=∂∂-∂∂ 5.1y =± 6. n 7. 充分 8. 00(,)xx y y f x y dx =+⎰9.1,Re s a s a>- 10. ()+∞∞-, 二、计算题(每小题5分,本题共20分)11. 解: 齐次方程的通解为 xC y 3e-= (3分)令非齐次方程的特解为 xx C y 3e )(-=代入原方程,确定出 C x C x+=5e 51)( 原方程的通解为 xC y 3e-=+x2e51 (5分)12. 解: 对应的特征方程为:012=++λλ,解得i i 23,23212211--=+-=λλ (3分) 所以方程的通解为:)23sin 23cos(2121t c t c ex t +=- (5分)13.1=∂∂y M ,xN∂∂=1 , x N y M ∂∂=∂∂ 所以此方程是恰当方程. (3分)凑微分,0)(22=++-xdy ydx ydy dx x得C y xy x =-+2331 (5分) 14. 5,1,dy dt x y t dx dx -===-令则 1,(7)77dt tt dt dx dx t -=---原方程化为:变量分离 (3分)21772t x c t-=-+两边积分217(5)7.2(5)x y x c x y --+=-+-+代回变量(5分)三、计算题(每小题10分,本题共30分) 15.特征方程为 01411=--=-λλλE A ,即 0322=--λλ.特征根为 31=λ,12-=λ. (4分)31=λ对应特征向量应满足 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--0031413111b a 可确定出⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2111b a同样可算出12-=λ对应的特征向量为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡2122b a所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--t t t t C C y x 2e e 2e e 2331 (10分) . 16.解:(),dyP x y dx= (1) 这是一个变量分离方程,通解为(),P x dxy ce ⎰=这里c 是任意常数。
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
《常微分方程》题库及答案一.求解下列方程1.求方程0sin cos =+x y dxdyx之通解; 2.求方程xx y ax dy cos 1tan =+之通解; 3.解初值问题2(1)20(0)1dy x xy dx y ⎧-+=⎪⎨⎪=⎩; 4.求方程()lndy x yxy x y dx x+-=+ 之通解; 5.求方程 yx xy y dx dy 321++= 的通解; 6. 求方程 0)3()3(2323=-+-dy y x y dx xy x 的通解; 7.求由以xxx x cos ,sin 为基本解组的线性齐次方程; 8.求方程 2)(22x dx dy xdx dy y +-=的通解及奇解; 9.求方程⎰+=+xx y x dt dtt dy 02)(2))((1 的通解; 10. 求方程 0)sin ()2sin (22=-++dy y xy dx x y x 的通解; 11.求由以 x x x ln , 为基本解组的线性齐次方程; 12.求方程 2222)(12dxdy y y dx y d += 的通解. 13.求方程y y dxdyln =之通解。
14.求方程xy dxdyy x 2)(22=+之通解。
15.求方程0)(222=-+dy y x xydx 之通解。
16. 求方程y x e dxdy-=之通解。
17. 求方程0)2(=+---dy xe y dx e yy 之通解。
18. 求方程x x y y sec tan '=+之通解。
二.1.解初值问题⎪⎩⎪⎨⎧-==y x e axdyy 20)1(2.求如下微分方程组之通解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=--=z x dtdz z y x dtdyz y x dt dx2. 3.求出初值问题的逐次近似解21,0y y y :2(0)0dyx y dxy =+=⎧⎪⎨⎪⎩. 4. 求出微分方程0).().(=+dy y x N dx y x M 有形如)(22y x +=ϕυ的积分因子的充要条件。
常微分⽅程习题及评分标准答案常微分⽅程分项习题⼀、选择题(每题3分)第⼀章:1.微分⽅程''20y xy y +-=的直线积分曲线为()(A )1y =和1y x =- (B )0y =和1y x =- (C )0y =和1y x =+ (D )1y =和1y x =+ 第⼆章:2.下列是⼀阶线性⽅程的是()(A )2dy x y dx =- (B )232()0d y dy xy dx dx-+= (C )22()0dy dy x xy dx dx +-= (D )cos dy y dx= 3.下列是⼆阶线性⽅程的是()(A )222d y dyxx y dx dx +=- (B )32()()0dy dy xy dx dx -+= (C )2(1)0dy x xy dx +-= (D )22cos cos d y y x dx=4.下列⽅程是3阶⽅程的为()(A )'23y x y =+ (B )3()0dy xy dx+= (C )3223()0dy d yx y dx dx+-= (D )3cos dy y dx = 5.微分⽅程43()()0dy dy dyx dx dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )46.⽅程2342()20dy d yx y dx dx+-=的阶数为()(A )1 (B )2 (C )3 (D )4 7.针对⽅程dy x ydx x y-=+,下列说法错误的是().(A )⽅程为齐次⽅程(B )通过变量变换yu x=可化为变量分离⽅程(C )⽅程有特解0y =(D )可以找到⽅程形如y kx =的特解(1y x =- 8.针对⽅程2sin (1)y x y '=-+,下列说法错误的是().(A )为⼀阶线性⽅程(B )通过变量变换1u x y =-+化为变量分离⽅程(C )⽅程有特解12y x π=++(D )⽅程的通解为tan(1)x y x C -+=+ 9.伯努利⽅程n y x Q y x P dxdy)()(+=,它有积分因⼦为()(A )(1)()n P x dx e -? (B )()nP x dx e ?(C )(1)()n P x dx xe -? (D )()nP x dx xe ?10.针对⽅程2(cos sin )dyy y x x dx+=-,下列说法错误的是().(A )⽅程为伯努利⽅程(B )通过变量变换2z y =可化为线性⽅程(C )⽅程有特解0y =(D )⽅程的通解为1sin x y Ce x=-11.⽅程2()dy yxf dx x=经过变量变换()可化为变量分离⽅程。
习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
常微分方程第四版课后练习题含答案第一章:常微分方程基本概念和初值问题1.2 课后练习题1.2.1(1)y′=2y+3,y(0)=1,求解y(t);(2)y′+ty=1,y(0)=0,求解y(t)。
解答:(1)该微分方程为一阶线性常微分方程,其通解为$$y(t)=Ce^{2t}-\\frac{3}{2}$$代入初始条件y(0)=1,可得$$C=\\frac{5}{2}$$所以$$y(t)=\\frac{5}{2}e^{2t}-\\frac{3}{2}$$(2)首先设$u(t)=e^{\\frac{t^2}{2}}y(t)$,则$u'(t)=e^{\\frac{t^2}{2}}(y'+ty)$。
代入原方程可得$$u'(t)=e^{\\frac{t^2}{2}}$$对其积分得$$u(t)=\\int e^{\\frac{t^2}{2}} dt +C=\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}+C$$其中$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-t^2} dt$称为误差函数。
进一步解得$$y(t)=e^{-\\frac{t^2}{2}}u(t)-ue^{-\\frac{t^2}{2}}=-\\frac{\\sqrt{2\\pi}}{2}erf\\frac{t}{\\sqrt{2}}e^{-\\frac{t^2}{2}}$$ 代入初始条件y(0)=0即可得到最终解答。
第二章:一阶线性微分方程2.2 课后练习题2.2.1求下列方程的通解:(1)(2x+1)y′+y=1;(2)(x−1)y′−y=2x;(3)$(2+\\cos x)y'-y=2-x\\cos x$。
解答:(1)该微分方程为一阶线性常微分方程,设方程的通解为$y=Ce^{-\\int \\frac{1}{2x+1} dx}+\\frac{1}{2x+1}$。
习题2.1 1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+cy=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2ydy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dxdy =yx xy y321++解:原方程为:dx dy =yy 21+31xx +yy 21+dy=31xx +dx两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0 解:原方程为:dxdy =-yx y x +-令xy =u 则dx dy =u+x dxdu 代入有:-112++uu du=x1dxln(u 2+1)x=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy .6. xdxdy -y+22y x -=0解:原方程为:dx dy =xy +x x ||-2)(1xy -则令xy =u dxdy =u+ xdxdu211u- du=sgnx x1dxarcsinxy =sgnx ln|x|+c7. tgydx-ctgxdy=0 解:原方程为:tgydy =ctgxdx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=xc cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +yexy 32+=0解:原方程为:dxdy =yey2e x 32 ex3-3e2y-=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy lnx y令xy =u ,则dxdy =u+ xdxduu+ xdxdu =ulnuln(lnu-1)=-ln|cx| 1+lnxy =cy.10.dxdy =e y x -解:原方程为:dxdy =e x e y -e y =ce x11dxdy =(x+y)2解:令x+y=u,则dxdy =dxdu -1dxdu -1=u 2211u+du=dxarctgu=x+c arctg(x+y)=x+c12.dxdy =2)(1y x +解:令x+y=u,则dxdy =dxdu -1dxdu -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dxdy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14: dxdy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+解:原方程为:dx dy=(x+4y )2+3 令x+4y=u 则dxdy=41dxdu -4141dx du -41=u 2+3dxdu =4 u 2+13u=23tg(6x+c)-1tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1) y(1+x 2y 2)dx=xdy2) y x dxdy =2222x -2 y x 2y+证明: 令xy=u,则x dxdy +y=dxdu则dxdy =x 1dxdu -2xu ,有:u x dxdu =f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dyP x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ⎰=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ⎰=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx⎰⎰=+l l ,将上述两式代入方程中,得到 ()()()()()()()()()P x dxP x dx P x dxdc x c x P x dx c x P x Q x ⎰⎰+⎰=+l l l即()()()P x dx dc x Q x dx-⎰=l 积分后得到()()()P x dxc x Q x dx c -⎰=+⎰%l 进而得到方程的通解()()(())P x dxP x dxy Q x dx c -⎰⎰=+⎰%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t xa t x a t x f t x t x t x t ηηη---'⎧++++=⎪⎨'===⎪⎩ 其中12()(),...(),()n a t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,n ηηη是已知常数。
《常微分方程》测试题 1 答案一、填空题(每空5分)12、 z=34、5、二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。
此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,,故通解为不是特征根,所以方程有形如把代回原方程于是原方程通解为4、解三、证明题(每题15分)1、证明:令的第一列为(t)= ,这时(t)==(t)故(t)是一个解。
同样如果以(t)表示第二列,我们有(t)== (t)这样(t)也是一个解。
因此是解矩阵。
又因为det=-t故是基解矩阵。
2、证明:(1),(t- t)是基解矩阵。
(2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)《常微分方程》测试题2 答案一、填空题:(每小题3分,10×3=30分)1. 2. 3 3.4. 充分条件5. 平面6. 无7. 1 8. 9.10. 解组线性无关二. 求下列微分方程的通解:(每小题8分,8×5=40分)1、解:将方程变形为………(2分)令,于是得……(2分)时,,积分得从而…(2分)另外,即也是原方程的解………(2分)2、解:由于……………………(3分)方程为恰当方程,分项组合可得…………(2分)故原方程的通解为……(3分)3、解:齐线性方程的特征方程为特征根…(2分)对于方程,因为不是特征根,故有特解…(3分)代入非齐次方程,可得.所以原方程的解为…(3分)4、解:线性方程的特征方程,故特征根…………………(2分)对于,因为是一重特征根,故有特解,代入,可得……(2分)对于,因为不是特征根,故有特解,代入原方程,可得…(2分)所以原方程的解为…(2分)5、解:当时,方程两边乘以,则方程变为…(2分),即于是有,即……(3分)故原方程的通解为另外也是原方程的解. …(3分)三、解:, ,解的存在区间为…(3分)即令……(4分)又误差估计为:(3分)四、解:方程组的特征方程为特征根为,(2分)对应的特征向量应满足可解得类似对应的特征向量分量为…(3分)原方程组的的基解矩阵为…………………(2分)………(3分)五、证明题:(10分)证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为…………………(3分)由已知条件,得…………………(2分)故这两个解是线性相关的.由线性相关定义,存在不全为零的常数,使得,由于,可知.否则,若,则有,而,则,这与,线性相关矛盾.(3分)故(2分)《常微分方程》测试题3答案1.辨别题(1)一阶,非线性(2)一阶,非线性(3)四阶,线性(4)三阶,非线性(5)二阶,非线性(6)一阶,非线性2.填空题(1).(2).(3).(4).3.单选题(1).B (2).C (3).A (4).B (5). A (6). B 7. A 4. 计算题(1).解当时,分离变量得等式两端积分得即通解为(2).解齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+(3).解由于,所以原方程是全微分方程.取,原方程的通积分为即(4). 令,则,代入原方程,得,当时,分离变量,再积分,得,即:5. 计算题令,则原方程的参数形式为由基本关系式,有积分得得原方程参数形式通解为5.计算题解方程的特征根为,齐次方程的通解为因为不是特征根。
常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤N|x1-x2|,其中0<N<1,证明方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-tf(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
常微分方程
P142-练习11.解微分方程xy y y x 2=′+′.(答案:C x x y +−=)arctan (2)
解:可分离变量为
dx =,两边积分=,解得C x x y +−=)arctan (2.
(其中()2222=2=2-arctan 11t t tdt dt t t C C
t t ⋅++++∫2.解微分方程0)sin 2()cos (2=−+−dy x xy dx x y y .
解:2
()cos ,()2sin P x y y x Q x xy x =−=−,由于()()2cos P x Q x y x y x
∂∂=−=∂∂在全平面上恒成立,故微分方程为全微分方程.原方程整理得22cos sin 0y dx xydy y xdx xdy +−−=,
即22()(sin +sin )0y dx xdy yd x xdy +−=,
即222()(sin )0(sin )0sin d xy d y x d xy y x xy y x C −=⇒−=⇒−=.故方程的通解为
2sin xy y x C
−=P144-练习2
1.微分方程02=+′+′′y y y 的通解为________=y .
解:02=+′+′′y y y 的特征方程为2
1,22101,
r r r ++=⇒=−故微分方程02=+′+′′y y y 的通解为12()
x y e C C x −=+2.微分方程0y y y y ′′′′′′−+−=的通解为_______=y .
解:0y y y y ′′′′′′−+−=的特征方程为32
12,3101,r r r r r i −+−=⇒==±,
故微分方程0y y y y ′′′′′′−+−=的通解为
123cos sin x y C e C x C x =++.
P146-练习3
1.微分方程x xe y y y −=+′+′′2的一个特解____________*=y .
解:20y y y ′′′++=的特征方程为2
1,22101
r r r ++=⇒=−由于1λ=−是特征重根,故可设原方程的一个特解为*2()x y x ax b e −=+,代入原方程解得1,06a b ==,故特解为*316
x y x e −=.2.用待定系数法确定sin y y x x ′′−=+的特解形式为____________*=y .
解:0y y ′′−=的特征方程为212101,1r r r −=⇒==−,
由于0λ=不是方程y y x ′′−=的特征根,故可设方程y y x ′′−=的特解为
*1y ax b =+,
由于i λ=±不是方程sin y y x ′′−=特征根,故可设方程sin y y x ′′−=的特解为
*2sin cos y c x d x =+,
则原方程的一个特解形式为
***12sin cos y y y ax b c x d x =+=+++.
P147-练习4
1.设()12cos sin x y e C x C x =+为某二阶常系数齐次线性方程的通解,则该方程为.
【解题思路】本题已知方程的通解,反求微分方程.一般根据通解性质得出特征方程的根,从而得出特征方程,由此可得微分方程.
解:1,21r i =±是二阶常系数齐次线性方程的特征方程的特征根,
即有22(1)1220220r r r y y y ¢¢¢-=-Þ-+=Þ-+=为所求二阶常系数齐次线性方程.P148-练习5
1.解微分方程222)()(2y x x y y +=+′.(答案:C
x y x +−
=+122)解:令2222x y u x yy u ′′+=⇒+=,代入原方程得2211u u du dx x C u u ′=⇒=⇒−=+∫∫,则1,u x C
=−+即方程的通解为221
x y x C
+=−+2.解微分方程x
y y x y y 2
tan 212+=′.解:令2
22y u y xu yy u xu x
′′=⇒=⇒=+,代入原方程得cos 1tan ln sin ln ln ln sin u xu u du dx u x C Cx u x
′=⇒=⇒=+=∫∫,则2
sin sin y u Cx Cx x
=⇒=,方程的通解为2
sin y Cx x
=.P149-练习6
1.解微分方程12=+′+′′y y x y x .
解:换元t e x =,则x t ln =,
x dx dt 1=,因为dt
dy x dx dt dt dy dx dy 1==,所以)(111((222dt
dy dx d x dt dy x dt dy x dx d dx dy dx d dx y d +−===(111222222dt
dy dt y d x dx dt dt y d x dt dy x −=⋅+−=,即有dt dy dx dy x =,dt
dy dt y d dx y d x −=22222.代入原方程可化为:221d y y dt
+=,通解为
12sin cos 1y C t C t =++.
即
12sin ln cos ln 1
y C x C x =++
P151-练习7
1.解微分方程023=′+′+′′y y y x .(答案:211
12C x C C y +−±
=)解:令y p ′=,则y p ′′′=,
原方程可化为320xp p p ′++=,为一阶可分离变量方程.分离变量得211(1)2dp dx p p x =−+,两边积分211(1)2dp dx p p x
=−+∫∫,解方程得
211ln ln(1)ln ln 22
p p x C −+=−+,
化简得p =,其中121C C =.
即21
y y C ′=⇒=.其中12,C C 为任意常数.P155-练习8
1.设函数)(x f 有连续的导函数,2)0(=f ,又对半平面0>x 内任意简单闭曲线L ,均成立0])([)(24
22=−+∫L dy x x f dx x xyf ,试求)(x f .解:由已知条件知
P Q y x
∂∂=∂∂,其中224()=2(),()=()P x xyf x Q x f x x −即2232()()24xf x f x x x ′=⋅−,即()()2f x f x x ′−=,
通解为
()2(1)x f x Ce x =−+.
再由(0)2f =得4C =,
故()42(1)x f x e x =−+.
2.设函数)(r f u =,2
2ln y x r +=满足方程3222222)(1y x y u x u +=∂∂+∂∂,求)(r f .解:22(),u x f r x x y ∂′=⋅∂+,
2222
222222()()()u x y x f r f r x x y x y ⎛⎞∂−′′′=⋅+⋅⎜⎟∂++⎝⎠同理2222
222222()()()u y x y f r f r y x y x y ⎛⎞∂−′′′=⋅+⋅⎜⎟∂++⎝⎠
.代入
3
222222)(1y x y u x u +=∂∂+∂∂中整理得:()r f r e −′′=≜,即()r f r e −′′=解得21)(C r C e r f r ++=−。