Alpha注油器系统及管理建议
- 格式:pdf
- 大小:196.34 KB
- 文档页数:3
手,其他的一切都要靠船舶安排,对船舶的保安程序没有什么有益的意见,因此目前他们公司的业务也只限于中国国籍的船舶,我轮也是他们公司护航的第一艘集装箱船舶。
3.中国保安公司对他们几乎没有什么岸基支持,护航期间几乎没有联系,更没有象英国保安公司提供详细的信息支持。
4.中国武装护卫人员在海上武装护航的经验,也没有外国籍保安的经验丰富,有关港口需要的卫生证件没有随身携带。
而斯里兰卡保安人员相对专业多了。
5.中国武装护卫人员年龄相对都比较小,因此敬业精神相对有欠缺,和斯里兰卡保安人员相比也有差距。
6.在斯里兰卡的GALLE港,有时登轮会出现严重延误,我轮这次等待了4.5小时,因此船长在到达前一定要加强联系,以免出现登轮交接不上的情况。
①Pump Station②Alpha Lubricator ③Existing Lubricator ④T-Piece⑤ALCU(Alpha Lubricator Control Unit)⑥Non-Return Valve图1摘要:主机Alpha电子气缸注油器系统简介和维护。
关键词:Alpha注油器 故障分析 消除失效Alpha电子气缸注油器系统从上世纪末研发推广至本世纪初,已普遍应用于现代船舶柴油机上,取代了传统的机械式气缸注油器。
由于它的注油频率与主机转速是正比例关系,而柴油机的功率与转速是三次方正比例关系,从而很难按实际工况的变化比较柔和地调节注油率。
与其相比,电子气缸注油器系统的主要特点是由液压驱动和电子控制,供油数量无级调节精确方便,准确的喷油定时,恒定的注油压力,按照进入气缸的燃油中所含硫量成百分比例和机器负荷二个原则来设定最佳气缸油的精确供应量,以细小微粒状喷射,更加完美均匀布油在缸套四周,柔和的控制在确保满足基本良好气缸壁润滑需要的条件下明显减少气缸油过多消耗,降低气缸套单位时间的磨损量,能有效节约昂贵的气缸油。
在世纪交替之际建造的船舶主机上,广泛应用Alpha气缸注油器,有些船东在早期船舶主机已有机械式注油器的基础上,改加装一套Alpha电子注油器以节省气缸油消费。
系列注油器安全操作及保养规程注油器是用于给设备和机械加注润滑油或其他润滑介质的工具。
在使用注油器时,安全操作和规范的保养十分重要。
本文将为您介绍系列注油器的安全操作和保养规程,以帮助您有效地使用和维护这种工具。
Part1:注油器的安全操作在使用注油器时,请遵循以下安全操作规程:1.1 空气或气体控制确保安全地使用气体或空气控制工具。
在连接气缸和注油器时,请确保连接口无磨损或裂纹。
在使用气体或空气控制工具时,切勿过度增压或接触注油器开关,以防止危险的喷出。
1.2 润滑油种类和容量在容易造成危险的环境中使用注油器时,应选用最合适的润滑剂和容器。
在使用注油器时,请注意润滑油的种类和容量。
不要在注油器已满或过满的情况下启动设备或机械。
注油器也不能用于注入异物,如油漆或化学物质。
1.3 使用开关和传动系统使用开关和传动系统时,必须特别小心,确保其正确和适当地连接和安装。
在重型设备上使用注油器时,需要专用钳子将其牢固固定,以确保它不会发生意外溢出。
1.4 保证员工安全在使用注油器时,如果注油器或相关部分出现损坏,请立即停止使用。
操作注油器时要保证员工的安全。
注油器在操作时必须始终保持在员工的掌握之中,以确保不能有动作失误。
1.5 安全存储当注油器不在使用时,应特别注意安全存储。
注油器应通过封闭的盖子或阀门存放在干燥,密闭的储存区域。
Part2:注油器的保养规程为了确保注油器的最高效和安全运行,您需要定期保养它。
以下是注油器的保养规程:2.1 准确投入注满润滑液在每次使用注油器后,都需要给注油器加足润滑液。
不要使用含有过多灰尘或杂物的润滑油。
如果您发现注油器注入的润滑剂颜色发黑或变质,应立即停止使用并将润滑器更换。
2.2 定期更换滤芯注油器的滤芯需要定期更换,以确保它的顺畅运行。
更换时,请注意使用正确的规格和型号滤芯,以确保其与注油器兼容。
2.3 检查气缸注油器的气缸应定期检查和清洁。
如果气缸损坏或破损,应及时进行维修或更换。
这篇7000字的文章,讲透了柴油机ALPHA汽缸注油系统的前世今生......摘要:现代船用大型低速二冲程十字头式柴油机的汽缸润滑一般都是由专门的汽缸油注油装置负责的。
长期以来,船用主机的汽缸油注油系统都为机械式,其主要部件是柱塞式注油泵。
而几十年来的实际使用经验也表明,机械式注油器具有性能可靠,维护量少等许多优点,故在船用主机上占据统治地位。
但机械式注油器也存在着不少的缺点,注油精度低、注油效率差、操作性能差等,已越来越不适应当今的要求。
而随着微电子技术的发展和在船用领域的广泛应用,一种全新的汽缸油注油方式已经出现,那就是MAN B&W公司研制的新型电子注油器――ALPHA LUB RICATOR。
“某某”轮所用主机(HHM-MAN B&W 6S50MC-C)就安装了这一系统。
本文将从其结构、组成、和注油机制等方面着手,结合本人在船的实际经验,对其先进性进行讨论。
一.传统的汽缸油注油系统1.工作原理传统船用主机的汽缸润滑原理是这样的:从汽缸油日用柜来的汽缸油通过输油管送到注油器本体,注油本体在凸轮轴的驱动下以一定的规律泵油,被泵出的油则经过注油管被送到注油嘴,当管内的压力大于汽缸内的压力时,汽缸油便通过注油嘴的止回阀进入到气缸内。
汽缸油注油的最佳时刻是第一道活塞环刚刚通过注油槽的那一刻,此时汽缸油正好注入到两道活塞环之间,然后通过活塞的往复运动,被均匀的分布在汽缸壁上。
图1为传统的机械式汽缸油注油器本体的原理图。
其实质是一组柱塞泵,各缸的注油器连接到同一根轴上,由主机凸轮轴经齿轮驱动,注油器本体内也有一凸轮,用以驱动柱塞,主机运转时此凸轮随主机以一定的速度转动,带动柱塞在套筒内做往复运动。
在输入输出口的止回阀的作用下,汽缸油便以脉冲的形式被不断的泵出。
机械式注油器的注油率可以通过调节柱塞行程,即通过控制柱塞的返回距离来调节。
但改变注油率将导致注油开始时刻发生改变,如减小注油率将导致注油时刻滞后,而增大注油率则会使注油时刻提前。
第一篇:ALFA-LAVAL型S系列分油机的几点管理要点ALFA-LAVAL型S系列分油机的几点管理要点ALFA-LAVAL公司在2000年以后相继开发了S系列的离心式分油机,这种分油机改变了传统的齿轮传动机构,以皮带带动分离筒高速运转从而达到分离水和杂质的目的。
我公司最近几年在一些新接船中采用了这种新型的分油机。
在实际船舶的使用维护和管理中发现立轴和皮带轮端的轴承经常会损坏,严重的甚至导致了立轴的弯曲等,检查审视各轮的备件消耗中也发现立轴和皮带端的轴承备件使用较多。
笔者把在船上实际中作用中的一些疑问和想法,与ALFA-LAVAL公司管理人员进行了一些沟通和交流。
目前,ALFA -LAVAL公司提示:在今后,供船上的皮带轮端轴承座会使用改进型的轴承座,船上在以后接收到新备件时可进行对比。
同时他们也提出了一些实际使用和管理该种类型分油机的注意事项。
在这里写出供大家参考。
一、立轴轴承的预润滑每次在更换立轴轴承时要在两个轴承中倒入一些滑油作为预润滑(英文原文为to pour some frame oil in both bearings at the sssembly as prelubrication),原因是分油机启动运转后那些带油气的空气需花一些时间,才能到达轴承处开始对轴承进行润滑。
也就是说在更换轴承后如果没有预先加入一些滑油,那么在分油机开始运转的阶段轴承是处于缺油的状态。
因为船上配备分油机都有好几台,正常运行只是其中的一半左右,在管理中要注意,为了防止立轴轴承因为缺油导致损坏,一台分油机如果停止30日以上,则分离筒必须解体检查和清洁,要检查有无脏东西和异物灰尘等进入轴承座中和检查油泵进油孔是否清洁,尤其重要的是启动前要对立轴中间轴承轴承盖和油扇进行拆检,同时要滴入5滴滑油对它们进行润滑,所以我们建议船上人员要及时更换全胜各台分油机,停用时间不要超过一个月,如果超过了一个月,就要按照上述要求对立轴的轴承进行预润滑处理。
Alpha Lubricator System707X-40C Alpha Lubricator SystemOperation ManualMC EnginesMAN B&W Diesel A/STeglholmsgade 41DK-2450 Copenhagen SV, DenmarkPhone+45 33 85 11 00Fax+45 33 85 10 30E-mail manbw@manbw.dkAlpha Lubricator System707X-40CTOC 2 (4)Table of ContentsPage List of Abbreviations: 5 1.General Information 6 1.1Main components 6 1.2Working principle 91.3Guidance values automation 102.Operation of the System 10 2.1HMI-Panel / Operating Panel 10 2.2Control buttons and indicator lamps on pump station starter panels 11 2.3Start-up of Alpha Lubricator System (Engine not running) 11 2.4Checks during start-up of the engine 122.5Periodic checks during normal operation of the engine 133.HMI-Panel and Configuration of MCU 13 3.1Description of HMI Panel 13 3.2HMI-Panel operation and configuration of MCU 14 3.2.1Navigation principle 14 3.2.2Reading of total stroke/min [rXXX] 14 3.2.3Reading of total strokes [Str.hi] and [Str.lo] 14 3.2.4Reading of active alarms [ALRXX] 15 3.2.5Reading of logged alarms [LALXX] 15 3.2.6Adjustment of cylinder oil feed rate [F.rAtE] 15 3.2.7Monthly change of operating pumps (master pump) 16 3.2.8Test sequence for inspection during standstill 17 3.2.9Menu structure 17 3.2.10HMI panel parameter reference list 21 3.3MCU setup 32 3.3.1Dip switches for MCU 32 3.3.2Upload of MCU basic program 33 3.3.3Upload MCU set-up file 34 3.3.4MCU LED information 35 3.3.5Read-out of raw parameters in HMI Panel 35Alpha Lubricator System707X-40CTOC 3 (4)Table of ContentsPage 4.Configuration of BCU 36 4.1Injection rate with BCU in control 36 4.2Detection rate (BCU take over from MCU) 36 4.3Number of cylinders for the engine 36 4.4BCU board revision 37 4.5Slow down output 37 4.6Number of lubricators 374.7Upload of BCU basic program 375.Alpha Lubricator – Alarm Handling and Trouble Shooting Guide 38 5.1Fuses 38 5.1.1MCU-Unit 38 5.1.2BCU-Unit 42 5.2External alarm signals 44 5.2.1Common alarm 44 5.2.2MCU power failure 44 5.2.3BCU power failure 45 5.2.4MCU failure 45 5.2.5BCU failure 45 5.2.6Slow-down 45 5.2.7BCU in control 45 5.3MCU – alarm handling and trouble shooting 46 5.3.1Alarms 1-24 – Feedback failure 46 5.3.2Alarm 29 – Marker signal failure from encoder 47 5.3.3Alarm 30 – BCU pickup 1 failure 48 5.3.4Alarm 31 – Trigger signal failure from encoder 49 5.3.5Alarm 33 – Engine stop signal failure 49 5.3.6Alarm 34 – LCD signal abnormal 50 5.3.7Alarm 35 – BCU active signal missing 50 5.3.8Alarm 36 – Astern signal abnormal 50 5.3.9Alarm 37 – Prelubrication signal abnormal 50 5.3.10Alarm 38 – Oil temperature high 50 5.3.11Alarm 39 – Oil pressure low 51 5.3.12Alarm 40 – Speed deviation alarm 51 5.3.13Alarm 41 – Index transmitter abnormal 51Alpha Lubricator System707X-40CTOC 4 (4)Table of ContentsPage 5.3.14Alarm 42 – Cable failure index transmitter 51 5.3.15Alarm 43 – BCU pickup 2 failure 52 5.3.16Alarm 44 – BCU in control 52 5.3.17Alarm 45 and 46 – Thermal overload electric motor 52 5.3.18Alarm 47 – MCU parameter list not loaded 52 5.3.19Alarm 48 – Angle deviation fail 53 5.3.20Alarm 49 – Stand-by pump is running 53 5.4BCU alarms 53 5.4.1Led # 1 BCU internal failure 54 5.4.2Led # 2 Engine stop signal failure 54 5.4.3Led # 3 MCU alive signal missing 54 5.4.4Led # 4 Feedback signal missing on two lubricators 54 5.4.5Led # 5 Feedback signal missing one lubricator 55 5.4.6Led # 6 BCU marker signal 1 and 2 missing 55 5.4.7Led # 7 and 8 BCU marker signal 1 or 2 missing 56 5.5Emergency running without external trigger signals 56 5.6Sequence diagram for alarm handling 58 Appendix 1Function of the LEDs in the Intermediate Box 59 Appendix 2Control Unit Cylinder Lubrication – Logic Diagram 60 Appendix 3Replacement of MCU, BCU, SBU Boards 68 Appendix 4Cylinder oil feed rate during running-in 70 Appendix 5ALCU signal description 72Alpha Lubricator System 707X05-40CList of Abbreviations:This is a list of abbreviations used in this manual.AC Alternating CurrentACC Adaptive Cylinder oil ControlALCU Alpha Lubricator Control UnitAMS Engine alarm SystemBCU Backup Control UnitDC Direct CurrentECR Engine Control RoomFBU Fuse Board UnitFPGA Fast Programmable Graphic ArrayHMI Human Machine InterfaceIC Integrated CircuitLcd Load change dependentLED Light Emitting DiodeMCU Master Control UnitMEP Mean Effective PressurePCB Printed Circuit BoardRPM Revolutions Per MinuteSBU Switch Board UnitTDC Top Dead CentreUPS Uninterruptable Power SupplyIndexCommissioningMaintenanceComponentsElectrical WiringAlpha Lubricator System707X06-40C1.General Information1.1Main componentsThe Alpha Lubricator System Layout is shown in the diagram below:Alpha Lubricator System Layout707-X 01 40C 01BAlpha Lubricator System707X07-40CPump station and starter panelsThe pump station consists of two individually op-erating pumps, heating coil, filters and a suction tank. The power supply to the pump station start-er panels is taken from two separate circuit breakers, one supplying each pump.For further information, see Maker’s pump sta-tion manual.Lubricator unitsThe lubricator units, one for each cylinder, each comprise two lubricators for 98-70 bore engines and one lubricator for medium and small bore engines. Each lubricator unit is equipped with one accumulator with nitrogen pre-pressure of 25-30 bar on the inlet side, and one accumulator on the outlet side of each lubricator, with nitrogen pre-pressure of 1.5 bar.Each lubricator features 3, 4, 5 or 6 lubricating pistons, depending on engine type, a feedback pickup and a solenoid valve.Alpha lubricator control unit – ALCUThe three main electronic components for controlling the lubricating oil are com-prised in one steel cabinet – the so-called ALCU unit.The three units are:MCU(Master Control Unit)BCU (Backup Control Unit)SBU (Switch Board Unit)707X 03 40C 01X Z 707.40A 02One-lubricator unitX Z 707.40A 02X Z 707.40A 03Two-lubricator unitX Z 707.40A 03Alpha Lubricator System707X08-40CA terminal block interfaces all electrical connections to the engine.The 24 V DC power is supplied from two individual power sources, from different breakers in the UPS unit. Please note that some installations might be connected differently by the shipyard.Load transmitterThe load transmitter is connected to the fuel rack, thereby continuously transmitting the fuel index % to the MCU, which calculates the engine load from this information and the detected engine rpm.MCUSBUBCU707-X 01 40C 11X Z 707.40B 05Alpha Lubricator System707X09-40CTrigger system (Shaft encoder)The shaft encoder is connected to the fore end of the crankshaft, and the signals are transmitted to the computer panels via a terminal box. For en-gines on which the crankshaft fore end is not avail-able for angle encoder installation, a trigger ring and tacho pickups are installed at the turning wheel.Backup trigger systemThe backup trigger system comprises two tacho pickups in a box at the turning wheel, thereby transmitting the engine rpm to the BCU. The backup pickups are also connected to the MCU for surveillance purposes.Human Machine Interface (HMI) panelOn the HMI panel, individual cylinder lubrication adjustment is possible, various values and alarms are displayed, control buttons for thepump station are available, and manual execution of prelubrication is possible. As standard the HMI-panel is mounted in the engine control room.1.2Working principle·The pump station supplies the Alpha Lubricators with 40-50 bar oil pressure.·The MCU controls the oil injection by activating a solenoid valve situated on the relevant lubricator.X Z 707.40A 05X Z 707.40A 05X Z 707.40B 07S 903-21 06ALAMPTEST PUMP 1PUMP 2PRELUB.ESC ENTERCommon alarmFeedback failure Mark/trig failure Index failure Oil pressure low Min.MCU Auto BCUEngine speedIndexLubrication Deg.rpm %bar°C 120120BCU in Ctrl.· A feedback signal from each lubricator indicates that oil injection has taken place. This is shown by Light Emitting Diodes (LEDs) on intermediate boxes foreach cylinder.·Timing is based on two signals from the angle encoder, a TDC cyl. 1 marker and a crankshaft position trigger. The Alpha Lubricator system is normally timedto inject cyl. oil into the piston ring pack during the compression stroke.·The cylinder lubrication is based on a constant amount of oil being supplied per injection. The specific feed rate is controlled by variation of the injection fre-quency.·The injection frequency is calculated from index and speed, and is normally pro-portional to the engine MEP. However, a power Mode or RPM Mode is possible.·The basic cylinder oil feed rate at MCR (100%) is calculated as a correlation be-tween a number of injections / rpm and the stroke of the lubricators.·On the HMI panel, adjustment of lubrication feed rate for individual cylinders is possible between 60% and 200%. Default value is 100%.·During normal operation the system is controlled by the MCU. If any failures are detected in the system, a common alarm is activated in the control room. Thedetailed alarm reference is displayed on the HMI panel.·If a critical failure in the MCU is detected, the BCU automatically takes over (Note – control switch must be in “auto” position). An indication lamp “BCU incontrol” is lit on the panel that contains the HMI panel.Note that on older installations, the indication lamps can be situated elsewhere.·The BCU is based on random timing and RPM Mode. The injection frequency is adjustable on the BCU and is normally, as minimum, set to the basic cylinderoil feed rate for the engine, plus 50%.1.3Guidance values automationCylinder Lub. Oil Pressure Cylinder Lub. Oil TemperatureNormal Service Value40 – 50 bar Normal Service Value30 – 60° CAlarm min.35 bar Alarm max.70° CAlarm max.60 bar2.Operation of the System2.1HMI-Panel / Operating Panel1.As standard, the HMI panel (for description, see Section 3), a three-positionmode switch, and an indicator lamp are mounted in the engine control room.However, an additional HMI panel, etc. can, as an option, be installed in oneof the pump station starter panels. In this case a local/remote switch has to beinstalled.The three-position mode switch enables selection between·Auto-mode– BCU takes over automatically, if lubrication cannot be main-tained by the MCU. If the BCU has taken over the control, this mode canonly be cleared by manually switching to MCU-mode, and back to Auto-position.·MCU-mode – Forced MCU control.·BCU-mode– Forced BCU is in control.2.An orange Indicator lamp – Indicates that BCU is in control.2.2Control buttons and indicator lamps on pump station starter panelsEach starter panel contains the following switches, buttons and lamps:1. A three-position switch controls the pump activity as follows:·REM.(Remote)– Automatic control of pumps (normal working position)·LOC.(Local)– Manual start of the pump·OFF – Manual stop of pump.2. A two-position main switch – Switches off 3 x 440 V AC power supply.3. A green indicator lamp – lights if pump is running.4. A white indicator lamp – lights if 3 x 440 V AC from fuse panels is switchedON.2.3Start-up of Alpha Lubricator System (Engine not running)1.To fill the pump station with cylinder oil, open the valves for the cylinder oilsupply line and the venting cock (if installed). Close the venting cock when cyl-inder oil flows out into the venting line.2.Switch on the main switches on the pump station starter panels.3.Switch to “Local” and manually start pump 1 and subsequently pump 2.Check that both pumps can run simultaneously.4.Check that the pressure differential indicator on the pump station filter isgreen, when one pump is operating.5.Check that the oil pressure builds up to 40-50 bar, or carry out adjustment on the pressure control valve on top of the pump station.Check that the pressure remains at an acceptable level, also with two pumps running.6.Press [ESC ] and [PRELUB ] at the same time on the HMI panel to activate the test sequence, and check that all lubri-cators are operating correctly by watch-ing the LEDs (feedback signals) on the intermediate boxes for each lubricator.Stop the test sequence by pressing [PRELUB ] again.At commissioning or after overhaul of the system, check visually from the scavenge air receiver that all non-return valves inject cylinder oil into the cylinder liners.7.Stop the pumps manually, and switch to “Remote ” on the starter panels. The Alpha Lubricator System is now ready for normal operation.8.For engineers commissioning the Alpha Lubrication System, procedures are made for Testbed Commissioning and Dock Trial Commissioning. The proce-dures are shown in the Commissioning chapter. For flushing the system, please read special instruction.2.4Checks during start-up of the engine1.Upon start of the engine's auxiliary blowers, the Alpha Lubricator System is programmed to carry out automatic prelubrication. The pump station will au-tomatically stop if the engine is not started shortly after.2.Check that a pump on the pump station automatically starts up when the en-gine is started, and that the cyl. oil pressure builds up to 40-50 bar.3.Check that all the green LEDs flash on the intermediate boxes for each lubri-cator.4.Check that no alarm is detected in the control room and on the HMI panel.X Z 707.40A 08N A 903-2.1 225 022.5Periodic checks during normal operation of the engine1.Check that all lubricating points supply oil by:a)inspecting that all LEDs for feedback indication on the intermediate boxes are flashingb)feeling the pressure shocks from injection of the lubricators on each lubricator pipe. If in doubt, dismantle the pipe at the cylinder liner to observe the oil flow.2.Inspect the local oil pressure gauge on the pump station.Normal service value = 40 – 50 bar.3.Check for oil leakages in the system.3.HMI-Panel and Configuration of MCU3.1Description of HMI PanelBar graphsThe two upper bar graphs display relative values in percent of engine speed and fuel index ( mep%), respectively. The range is from 0 to 120 percent, where 100 percent corresponds to the physical val-ues at MCR. The third upper bar graph displays oil pressure in the range of 0 to 100 bar.Fault category indicatorsFive LEDs for indication of fault category are placed below the numerical display, as follows:·Oil pressure low ·Fuel index failure ·Marker/Trigger failure ·Feedback failure·Common alarm –For explanation of the alarm code, see the alarm list in Section 5.Buttons [ ]Move up in the HMI panel menu structure. See item 3.2.9.[ ]Move down in the HMI panel menu structure. See item 3.2.9.[ESC ]Move to the left in the HMI panel menu structure. See item 3.2.9.LAMPTEST PUMP 1PUMP 2PRELUB.ESCENTER Common alarmFeedback failure Mark/trig failure Index failure Oil pressure low Min.Engine speedIndexOil pressure Deg.rpm %bar°C 120120100 bar[ENTER ]Move to the right in the HMI panel menu structure. See item 3.2.9.[LAMPTEST ] All lamps are lit in the HMI panel.[PUMP 1]Starts or stops booster pump 1.[PUMP 2]Starts or stops booster pump 2.[PRELUB ]Can only be activated when engine is stopped. Activates prelu-brication sequence.The lubricators will be activated continuously from Lubricator 1A, 1B, 2A,... 14B. The cycles will be repeated a pre-pro-grammed number of times (normally 12).[ESC ] + [PRELUB ]Starts test sequence of 1000 pre lubrications. The test se-quence is stopped by pressing [PRELUB ] again.[ESC ] + [PUMP 1]Selects default booster pump to be pump 1.[ESC ] + [PUMP 2]Selects default booster pump to be pump 2.3.2HMI-Panel operation and configuration of MCUThis section describes the menu system in the HMI-panel numerical display. Six of the most common manoeuvres are described below and the complete structure and parameters are shown in items 3.2.9 and 3.2.10.3.2.1Navigation principleHMI panel menu system is a hierarchic menu system. The following four buttons are used to navigate through the menu system.[ ]Move up in the HMI panel menu structure. See item 3.2.9.[ ]Move down in the HMI panel menu structure. See item 3.2.9.[ESC ]Move to the left in the HMI panel menu structure. See item 3.2.9.[ENTER ]Move to the right in the HMI panel menu structure. See item 3.2.9.3.2.2Reading of total stroke/min [rXXX]Press [ ] or [ ] until rXXX is shown in the display(Note that this value is an average value over 1 min.).3.2.3Reading of total strokes [Str.hi] and [Str.lo]1.Press [ ] or [ ] until diSP is shown in the display.2.Press [ENTER ] and [ ] or [ ] until Str.hi or Str.lo is shown in the dis-play.3.Press [ENTER ] to read the stroke counter.diSPStr. hi Str. loxxxxx4.Press [ESC ] to return to main menu (one press [ESC ] = one step backwards).5.The total number of strokes is a ten digit number and is obtained by combining the values of Str.hi and Str.lo as follows:The value of Str.lo represents the five rightmost figures and the value of Str.hi the five leftmost figures.Example:The total stroke amount is used to calculate the amount of cylinder lube oil used within a specified amount of time. The following formula can be used:See example on page 31 (str.hi).3.2.4Reading of active alarms [ALRXX]Press [ ] or [ ] until ALRXX is shown in the display.For explanation of the alarm code see the alarm list in Section 5.3.2.5Reading of logged alarms [LALXX]1.Press [ ] or [ ] until LALxx is shown in the display.For explanation of the alarm code see the alarm list in Section 5.2.To clear a logged alarm, press [ENTER ] when the alarm is shown in the display. To clear all logged alarms, press [ENTER ] for 5 seconds while an LALxx is shown in the display.3.2.6Adjustment of cylinder oil feed rate [F .rAtE]The feed rate is entered in the HMI panel as a percent value.–For systems with MEP regulation, 100% feed rate setting normally corresponds to the basic setting with reference to service letters and general guidelines for cylinder lubri-cation.Str. hi1 2 3 4 5Str. lo6 7 8 9 0Total number of strokes == 1 2 3 4 5 6 7 8 9 0707-X 10 40C 3235ALRXX707-10 40C 323F .rAtECyl.xx Cyl.1SEt.Alxxxxx707-10 40C 324–For systems with Alpha ACC (Adaptive Cylinder oil Control) the feed rate is set proportionally to the sulphur content in the fuel oil. The feed rate setting per-centage can be obtained from the regulation plate.1.Press [ ] or [ ] until F.rAtE is shown on the display.2.Press [ENTER ] and [CYL 1] is shown on the display.3.Press [ ] or [ ] until the cylinder to be adjusted is shown or select SEt.Al to set all the cylinders to the same value.4.Press [ENTER ] and the current feed rate is shown. Please note that if SEt.Al was selected the value shown is the last value saved in SEt.Al, and this value is not true if any cylinder has been individually adjusted since.5.Press [ ] or [ ] – The oil feed rate can be changed to the desired value be-tween 60 and 200%.6.Press [ENTER ] – The value is stored in the computer memory, and the main display will prompt with “Save ”.7.Press [ESC ] three times to return to main menu.3.2.7Monthly change of operating pumps (master pump)1.Check which pump is running (1 or 2)2.Press [ESC ] + [PUMP 1] or [PUMP 2] (pump not running).3.New master pump is now chosen and running.Alpha Lubricator SystemAdaptive Cylinder oil Control707-X 01 40C 12Sulphur Specific dosage HMI setting%g/BHPh g/kWh3.2.8T est sequence for inspection during standstill1.Press [ESC] + [PRELUB] simultaneously(the lubricators will lubricate 1000 times).2.Press [PRELUB] the test sequence will stop.3.2.9Menu structureThe following pages show how to navigate in the HMI-panel menu structure.Alpha Lubricator HMI Panel menu structure – part 1Alpha Lubricator HMI Panel – menu structure – part 2, setup menu3.2.10HMI panel parameter reference listA.inJ [°](abbr. of angle injection)The specific crank angles for oil injection for each lubricator. Normally it is thecrank angle at the point where No. 1 piston ring passes the oil quills on the upwardstroke of the piston.The number consists of an online measurement of the angle for the first flank ofthe feedback signal plus the angle corresponding to the hydraulic delay time.Only active when engine is running ahead.Normal value for cylinder one is around 270 to 310°.AbS.Lo [%] (abbr. of absolute low)Absolute minimum reduction percentage. The injection frequency can be reducedto the value of AbS.Lo in % of the basic frequency. The basic frequency is thefrequency at 100 % load, 100 % rpm, 100 % feed rate setting and is defined as1/rE.injALR XX (abbr. of alarm XX)Code number for active alarms, where the number ‘XX’ represents the alarm code.For explanation of the alarm code see the alarm list in Section 5.Ang.dE(abbr. of angle deviation)The Maximum allowable angle difference between the marker signal (TDC signal)from the encoder (or trigger ring) and the marker signal from the BCU pickups.Only valid when engine is running ahead.Normal value is 2 degrees.Co.ALr (abbr. of common alarm)Manual activation of the MCU common alarm output.ALCU/x1:1, ALCU x1:2 (MCU/J32:1, MCJ/J32:2), dry contact, normally closed.Connt(abbr. of connection test)Connection test menu. Blocked when the engine is running.Cr.Ang [°] (abbr. of crank angle)Indication of actual crank angle from the shaft encoder. Blocked when the engine is running. Only valid when continuously turned in same direction by turning gear and after having passed TDC cyl. 1. The indication is sensitive to rocking motion and should therefore only be used as an indication.diSP (abbr. of display)Display menu. Values and parameters are displayed, but cannot be changed from diSP menu.F.hi [%] (abbr. of feed rate high)Feed rate setting high limit. The maximum possible feed rate setting on the HMI panel. The value is a percentage of the basic recommended feed rate setting. Normal value is 200 %.F.Lo [%](abbr. of feed rate low)Feed rate setting low limit. The minimum possible feed rate setting on the HMI panel. The value is a percentage of the basic recommended feed rate setting. Normal value is 60 %.F.rAtE(abbr. of feed rate)Feed rate setting adjustment. The feed rate can be adjusted individually for each cylinder or for all cylinders at one time with the SEt.Al function. Please note that the value shown when entering the SEt.Al menu is the last value saved in the SEt.Al menu. Thus if the cylinders have been adjusted individually since, the value shown when entering the SEt.Al function is no longer true for all cylinders.100 % feed rate setting normally corresponds to basic setting. (Reference is made to the guidelines for cylinder lubrication)F.SCuF [%] (option) (abbr. of feed rate scuffing)Feed rate increase in case of scuffing. Input for each cylinder on the MCU board can receive signal from a cylinder liner temperature monitoring system. If begin-ning scuffing is detected, a signal can be given and extra lubrication activated. Please contact MAN B&W if this function is needed.Normal value is 200 %FE.AD(abbr. of feed rate adjustment)Feed rate regulation parameter adjustment menu.FPgA(abbr. of fast programmable graphic array)FPGA software revision number. The IC (Integrated Circuit) (u33) contains the program for the FPGA. If the FPGA code is updated, a new IC will have to be in-stalled. The current FPGA software revision is 6.gEn(abbr. of generator)Load transmitter calibration menu for generator curve running. When the engine is running 50 % load and 100 % load (with reference to testbed results), enter the menu by pressing [ENTER] and choose the correct engine load (50 % or 100 %) followed by pressing [ENTER]. The program will respond with donE.hY.dEL [ms](abbr. of hydraulic delay)Hydraulic delay (time offset value). The value is inserted to compensate for the time-delay from the first flank of the feedback signal, until the oil enters the cylinder through the cylinder liner non-return valves. The longer the hydraulic delay - the earlier the solenoid valve is activated. The Hydraulic delay is calculated in the de-sign process and is confirmed by measurements on prototype engines. A good es-timate of the value is 1 ms for each meter pipe length from the lubricator to the cylinder liner. The value cannot be adjusted individually for each cylinder, but is common for all cylinders.Normally values are from 1 to 6 ms.in.A [mA] (abbr. of index ampere)Read out of the index transmitter current. The mA signal from the index transmitter without scaling. Used for mechanical adjustment of the index transmitter during commissioning. The index transmitter is adjusted to 4.5 mA at mechanical mini-mum index and to 19.5 mA at mechanical maximum index. The adjustment is made on testbed before initial start up.in.AdJ(abbr. of index adjustment)Index transmitter adjustment/calibration menu. The adjustment is done during run-ning at testbed, at 50 % load and at 100 % load. Choose between propeller curve (ProP) or generator curve (gEn). Select the load percentage (50 % or 100 %) cor-responding to the actual load. Press [ENTER] and the system replies donE. After-wards press [ESC] 4 times until you are back in the main menu showing RPM. The system has now been calibrated. Use the vALue menu if manual correction of the parameters is necessary.in.hi [%] (abbr. of index high)Index transmitter raw calibration value. The index transmitter calibration values are given as an index low (in.Lo) value and an index high (in.hi) value. These val-ues are the theoretical index percentages when the pickup gives respectively 4 and 20mA. Estimated values are pre-programmed from MAN B&W, and the sys-tem is calibrated by means of the (ProP) or (gEn) menus on testbed. The raw val-ues should only be changed if the automatic calibration in the ProP and gEn menus, proves insufficient.The values are normally around –30 to –10 for [in.Lo] and around 125 to 140 for [in.hi].in.Lo [%](abbr. of index low)See in.hi.inJ.AL(abbr. of injection algorithm)Injection amount algorithm menu. Injection rate calculation can be chosen in pro-portion to mean efficient pressure (nneP), rpm (rPnn) or power (Po.).Normal mode is nnep proportional.inJ.oF [°] (abbr. of injection offset)Injection offset. Angle offset inserted to compensate for small deviations between the injection angle determined in the design process and the actual crank angle for injection. The actual crank angle for injection is normally when the first piston ring passes the oil quill during the upward stroke of the piston. inJ.oF can be ad-justed within +/– 5 °.The value cannot be adjusted individually for each cylinder, but is common for all cylinders.Normal value is 0.LALXX (abbr. of logged alarm XX)Logged alarms where the number ‘XX’ represents the alarm code. When an alarm is activated, it will appear as both ALRXX and LALXX. The LALXX will remain after the alarm is gone. For explanation of the alarm code see the alarm list in Sec-tion 5.To clear a logged alarm press [ENTER] while the alarm code is displayed. To clear all logged alarms press [ENTER] for 5 seconds while one of the alarm codes is dis-played.Lcd X(abbr. of load change dependent X)Load change dependent extra lubrication status. X indicates the status. When LCD is active, i.e. when a load change situation occurs, the status changes from 0 (=off) to 1 (=on). The normal hold time is 30 min.Lcd(abbr. of load change dependent)Load change dependent extra lubrication parameter adjustment menu. Six param-eters, P1 to P6, can be adjusted. For further explanation see P1 to P6.MEP[%](abbr. of mean efficient pressure)Mean effective pressure percentage (equal to torque percentage and index per-centage). Scaled read out of the index transmitter input. The value is used for the amount regulation. When generator curve running the value is equal to the load percentage. When ideal propeller curve running normal values are: 25 % load =。
自动润滑注油器及其系统控制回路的应用摘要:注油泵在运转过程中,容易受到从柱塞与盘根之间渗漏的污水影响,造成密封函、柱塞、泵头等部件发生腐蚀,柱塞表面点蚀加速盘根磨损,漏失量加大对环境造成污染,各部件严重腐蚀甚至造成报废,影响注油泵的正常运行,研发的自动节能润滑器解决了污水渗漏造成各部件的腐蚀损坏、更换盘根频繁、劳动强度大的诸多缺点。
本文主要介绍了自动节能润滑器的结构原理及该工具的现场应用效果。
关键词:注油泵;柱塞;盘根;润滑器1前言企业在设备的点检、润滑等管理上要依靠现代化的监测技术,使两者密切配合,保养好企业的多种生产经营设备,提高设备使用的可靠性和经济性。
在维修设备的过程中,由于涉及面比较广泛,如涉及到维修人员、设备性能、维修的要求、维修的环境等存在着不同,所以在维修的整个过程中就更加显示出点检和润滑工作的重要性。
只要点检润滑工作人员工作做到位,则能起着事半功倍的效果,既可提高设备的工作效率,同时也可提高设备的使用寿命。
有利于企业的可持续发展。
2做好设备润滑工作的意义及内涵设备润滑有助于提高设备运行效率和生产效率,它是设备专业管理的一个重要组成部分。
所以企业要健全设备润滑管理制度,由专人加以管理和监督,确保企业设备润滑管理工作的正常运行,使企业设备润滑管理工作处于可控制状态。
2.1提高经济效益各种生产证明,在企业生产过程中,只要采用科学管理的方法,既可以大大降低企业的生产成本,同时又可以促进企业获取更高的经营利润。
企业管理人员和一线生产员工对设备润滑意识虽然有所提高,但是在实际操作过程中,设备的润滑工作并不规范,润滑设备的空间还有待提高,这是因为没有得到重视所致。
只有合理进行润滑处理,企业生产经营过程中才可以取得较大的产出比。
例如,某公司的一些机床经过长时间使用之后,由于没有进行定期保养和清洗,在机床设备上进行污染检测时,发现了很多超标的污染物,所以要责成机床的操作者在规定时间内恢复油品清洁度,给机床的零部件添加润滑油之后,设备的故障就会减少很多,运行的稳定性增强,则生产经营的经济效益就会大大提高。
ALFA-LAVAL型S系列分油机的几点管理要点第一篇:ALFA-LAVAL型S系列分油机的几点管理要点ALFA-LAVAL型S系列分油机的几点管理要点ALFA-LAVAL公司在2000年以后相继开发了S系列的离心式分油机,这种分油机改变了传统的齿轮传动机构,以皮带带动分离筒高速运转从而达到分离水和杂质的目的。
我公司最近几年在一些新接船中采用了这种新型的分油机。
在实际船舶的使用维护和管理中发现立轴和皮带轮端的轴承经常会损坏,严重的甚至导致了立轴的弯曲等,检查审视各轮的备件消耗中也发现立轴和皮带端的轴承备件使用较多。
笔者把在船上实际中作用中的一些疑问和想法,与ALFA-LAVAL公司管理人员进行了一些沟通和交流。
目前,ALFA-LAVAL公司提示:在今后,供船上的皮带轮端轴承座会使用改进型的轴承座,船上在以后接收到新备件时可进行对比。
同时他们也提出了一些实际使用和管理该种类型分油机的注意事项。
在这里写出供大家参考。
一、立轴轴承的预润滑每次在更换立轴轴承时要在两个轴承中倒入一些滑油作为预润滑(英文原文为to pour some frame oil in both bearings at the sssembly as prelubrication),原因是分油机启动运转后那些带油气的空气需花一些时间,才能到达轴承处开始对轴承进行润滑。
也就是说在更换轴承后如果没有预先加入一些滑油,那么在分油机开始运转的阶段轴承是处于缺油的状态。
因为船上配备分油机都有好几台,正常运行只是其中的一半左右,在管理中要注意,为了防止立轴轴承因为缺油导致损坏,一台分油机如果停止30日以上,则分离筒必须解体检查和清洁,要检查有无脏东西和异物灰尘等进入轴承座中和检查油泵进油孔是否清洁,尤其重要的是启动前要对立轴中间轴承轴承盖和油扇进行拆检,同时要滴入5滴滑油对它们进行润滑,所以我们建议船上人员要及时更换全胜各台分油机,停用时间不要超过一个月,如果超过了一个月,就要按照上述要求对立轴的轴承进行预润滑处理。
气缸油消耗实测值与理论值差别太大-Alpha电子注油器这病得治!某集装箱船主机,型号MANB&W12K98MC-C,额定转速104 r/min,额定功率68520KW,日本三井公司制造,气缸油采用Alpha电子注油器系统。
该轮出厂营运即发现,气缸油耗量计算值低于实测值,差值有时达15%。
检査气缸内发现气缸油量稍偏多,检査气缸油系统未见外漏,拆检和测量注油器及其附带的蓄压器都正常,确认不是注油器零、部件损坏和油压波动造成的。
故障持续两年多,且另四条姐妹船也有同样情况,为便于统计气缸油实际耗量,公司甚至给五条姐妺船的气缸油日用柜进、回油管分别装备了流量计。
实测值经数月的小时耗量、日耗量、累计耗量统计比较,后来又有流量计计数,不会有错。
肯定是本身计算值错误,又一直不知错在哪里。
后又经过一个多月反复分析气缸油日耗量的计算、反复检查注油器及其系统、反复试验等,才发现注油泵出口阀(单向阀)设定压力过低,部分气缸油在注油泵加压前已漏人气缸(本文简称为“内漏”),而这部分油不在耗油量理论计算范围内。
现简介注油器系统,从分析耗油量计算入手,探讨“内漏”及其产生原因、影响因素和处理方法。
每个气缸配有两只气缸油电子注油器(下简称注油器,见图1)。
每只注油器有五支注油柱塞泵,一只驱动活塞,一只电磁阀,五个注油管及其注油枪,还有供、回油系统(下简称供油系统)。
(1)注油柱塞泵(图1仅显示一只,在右上部)・功能是从吸油腔(压力1.5bar,由气缸油回油管路上的单向背压阀和蓄压器保持)吸人气缸油,加压后经出口单向阀(开启压力2bar)去主机气缸上的注油枪(开启压力1.8bar左右)。
由驱动活塞上方的弹簧底盘带动。
泵油行程起点是柱塞上行至封住泵油腔吸油口,终点是柱塞上行最高点,始、终点间距离就是柱塞的有效行程。
柱塞上行最高点指驱动活塞导杆碰到调节螺丝底部,改变套装在调节螺丝上的定距垫可改变驱动活塞行程亦即改变柱塞行程。