1-走近绿色荧光蛋白
- 格式:pdf
- 大小:315.07 KB
- 文档页数:4
绿色荧光蛋白(Green Fluorescent Protein,GFP)是一种具有绿色荧光的蛋白质,广泛应用于生物学领域的标记和成像技术中。
绿色荧光蛋白的研究和应用已经成为生命科学领域中的热点和前沿课题。
在这篇文章中,我们将深入探讨绿色荧光蛋白的种类、结构、功能和应用。
1. 绿色荧光蛋白的种类绿色荧光蛋白是由Aequorea victoria(水母)发光器官中分离出来的一种蛋白质。
根据不同的来源和结构特点,绿色荧光蛋白可以分为多种类别,包括标准GFP、改良GFP、超变荧光蛋白和环状GFP等。
每种类型的绿色荧光蛋白都具有不同的荧光特性和适用范围。
2. 绿色荧光蛋白的结构绿色荧光蛋白的结构是其功能的基础。
它是一个由238个氨基酸组成的蛋白质,包括一个β桶结构和一个共轭双键序列。
在特定的条件下,它可以通过自发性氧化反应形成荧光色团,并发出绿色的荧光。
绿色荧光蛋白的结构和光学特性为其在生物标记和成像领域的应用奠定了基础。
3. 绿色荧光蛋白的功能作为一种生物标记物,绿色荧光蛋白的主要功能是在转基因生物中标记特定的细胞、器官或组织,以便于研究者对其进行观察和分析。
通过转基因技术,研究人员可以将绿色荧光蛋白基因导入到目标生物体中,从而实现对其活体成像和实时监测。
绿色荧光蛋白在蛋白质定位、蛋白质-蛋白质相互作用和基因表达调控等方面也发挥着重要作用。
4. 绿色荧光蛋白的应用绿色荧光蛋白的广泛应用领域包括但不限于以下几个方面:a. 细胞成像与实时监测:通过转基因技术将绿色荧光蛋白标记到感兴趣的细胞中,可以实现对其活体成像和实时监测,从而揭示生物体内细胞的运动、分化和凋亡等过程。
b. 蛋白质定位与跟踪:通过融合绿色荧光蛋白与感兴趣蛋白质,可以实现对蛋白质在生物体内的定位与跟踪,从而研究其功能和代谢途径。
c. 蛋白质-蛋白质相互作用研究:利用双融合蛋白技术或FRET技术,可以实现对蛋白质-蛋白质相互作用的实时观察和分析,为研究蛋白质分子机制提供了有力工具。
走近绿色荧光蛋白
鲁恒星;华朝阳
【期刊名称】《中学生物学》
【年(卷),期】2009(25)1
【摘要】以高中生物教材为切入点,以诺贝尔化学奖为背景,从来源、分子结构、发光机制、研究历程以及在生物技术中的应用等方面对绿色荧光蛋白进行了概述.【总页数】3页(P3-5)
【作者】鲁恒星;华朝阳
【作者单位】安徽省桐城市第十一中学,231490;安徽省桐城市教研室,231400【正文语种】中文
【中图分类】Q-49
【相关文献】
1.绿色荧光蛋白和红色荧光蛋白共转染骨髓间充质干细胞、乳鼠心肌细胞、Eahy926细胞表达特征的共聚焦分析 [J], 张颖;辛毅;汪劲松;许秀芳;罗毅;黄益民
2.Ad5-增强型绿色荧光蛋白和rAAV2-增强型绿色荧光蛋白转染脂肪间充质干细胞的对比 [J], 袁小洪;安荣泽;王兆杰;贾婀娜;齐新文;陈金平;杨晋;刘凡凡
3.橙色荧光蛋白--绿色荧光蛋白GFPxm的改造 [J], 罗文新;陈敏;程通;管宝全;李少伟;李少菁;张军;夏宁邵
4.异源基因α1,3半乳糖转移酶与增强型绿色荧光蛋白融合对荧光蛋白表达的影响[J], 唐晶;谢柏臻;李鹏飞;姚琴;赵涣阁;卓慧钦;刘祖国;赵永祥
5.对话创投资本,走近绿色创业——“绿色创投”清华大学推广会召开 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
绿⾊荧光蛋⽩绿⾊萤光蛋⽩(Green fluorescent protein;简称GFP),由下村脩等⼈于1962年在维多利亚多管发光⽔母中发现,其基因所产⽣的蛋⽩质,在蓝⾊波长范围的光线激发下,会发出绿⾊萤光,整个发光的过程中还需要冷光蛋⽩质⽔母素的帮助,冷光蛋⽩质与钙离⼦(Ca2+)可产⽣交互作⽤。
2008年10⽉8⽇,⽇本科学家下村脩、美国科学家马丁·查尔菲和钱永健因为发现和改造绿⾊荧光蛋⽩获得了诺贝尔化学奖。
绿⾊萤光蛋⽩现常被⽤来研究⾻架和细胞分裂、动⼒学和泡囊运输、发育⽣物学等,并可应⽤于转染细胞的确定、体内基因表达的测定、蛋⽩质分⼦的定位、细胞间分⼦交流的动态监测等。
基本信息中⽂名:绿⾊荧光蛋⽩英⽂名:green fluorescent protein别名:GFP发现者:下村修相关推荐慢病毒BSAdsDNA考马斯亮蓝CD34载体蛋⽩载体GAPDHcDNA⽂库免疫荧光PCR热休克蛋⽩鸟枪法shRNA显影液断裂基因同源重组酵母双杂交宏基因组透射电镜构造组成正在加载科学家在线形⾍体内植⼊绿⾊荧光蛋⽩质由⽔母Aequorea victoria中发现的野⽣型绿⾊荧光蛋⽩,395nm和475nm分别是最⼤和次⼤的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。
由海肾(sea pansy)所得的绿⾊荧光蛋⽩,仅有在498nm有⼀个较⾼的激发峰点。
在细胞⽣物学与分⼦⽣物学领域中,绿⾊荧光蛋⽩基因常被⽤作为⼀个报导基因(reporter gene)。
⼀些经修饰过的型式可作为⽣物探针,绿⾊荧光蛋⽩基因也可以克隆到脊椎动物(例如:兔⼦上进⾏表现,并拿来映证某种假设的实验⽅法。
蛋⽩作⽤绿⾊荧光蛋的发光机理⽐荧光素/荧光素酶要简单得多。
⼀种荧光素酶只能与相对应的⼀种荧光素合作来发光,⽽绿⾊荧光蛋⽩并不需要与其他物质合作,只需要⽤蓝光照射,就能⾃⼰发光。
在⽣物学研究中,科学家们常常利⽤这种能⾃⼰发光的荧光分⼦来作为⽣物体的标记。
绿色荧光蛋白分子标记在环境微生物学研究中的应用摘要:荧光染料在微生物学中的应用受到广泛的关注。
近年来,来源于发光性生物的荧光蛋白进一步丰富了微生物学的研究手段。
其中绿色荧光蛋白(G reen fluorescent protein ,G F P ,来源于水母) 具有独特的应用价值。
G F P 及G F P 突变体在微生物降解污染物、生物膜菌群构架、环境生态学和环境检测生物传感器等研究领域取得了很好的应用效果。
关键词:绿色荧光蛋白,环境微生物,分子标记自然界中的许多生物都具有发光的能力,如细菌、真菌、萤火虫、深海鱼类和腔肠动物等。
它们的发光能力是由一类称为“荧光蛋白”的蛋白质赋予的。
G F P 标记系统是首次发现的不需要其他辅助条件的生物发光标记系统。
G F P 的激发光谱和发射光谱在活体和离体条件下完全相同,而虫荧光酶素的发射光谱在离体和活体条件下并不相同[1]。
绿色荧光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早是由下村修等人在1962年在一种学名Aequorea victoria的水母中发现。
其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。
这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca2+)可产生交互作用[1]2008年10月8日,日本科学家下村修(伍兹霍尔海洋生物学研究所)、美国科学家马丁·查尔菲(哥伦比亚大学)和钱永健(加利福尼亚大学圣迭戈分校)因为发现和改造绿色荧光蛋白而获得了当年(2008)的诺贝尔化学奖。
天然的G F P 是一种多肽,由23 8 个氨基酸组成,分子量27 k u 。
能够将蓝光转化成绿色荧光[2-3]。
C orm ack 等用定点突变的技术将包围S er—T yr—G ly 生色团的2 0 个氨基酸进行突变,得到一系列吸收峰红移的突变体。
这些突变体相对于野生型蛋白具有更高的折叠效率,荧光强度增强3 0 ~100 倍,使G F P 的应用前景更加广阔[5]。
绿色荧光蛋白和荧光素发光原理1. 引言:荧光的魅力说到发光,大家脑海中是不是会闪现出五光十色的景象?比如夜空中的星星、深海中的生物,甚至是那些可爱的小虫子们。
今天,我们就来聊聊“绿色荧光蛋白”和“荧光素”的发光原理。
这俩家伙可不简单,它们在科学界可是赫赫有名!就像小朋友们喜欢的超级英雄一样,它们都有各自的“超能力”。
那么,这些荧光家伙到底是怎么让我们眼前一亮的呢?2. 绿色荧光蛋白(GFP)2.1 GFP的起源绿色荧光蛋白,简称GFP,最初是从一种海洋水母中发现的。
想象一下,这水母在海里游来游去,随时随地都能发出迷人的绿色光芒,简直就像海底的明星!后来,科学家们把这个神奇的蛋白提取出来,发现它在研究生物体时可以发挥大作用。
比如,它可以标记细胞,帮助研究人员观察细胞的活动,真是个无敌的小帮手。
2.2 GFP的发光原理那么,GFP是怎么发光的呢?这就要提到它的结构了。
GFP里有一种叫“色氨酸”的氨基酸,平时看起来毫不起眼,但它一遇到特定的光照,就开始“激动”起来。
经过一番“舞动”,它就会释放出能量,变成美丽的绿色光芒。
就好比一颗小星星在黑夜中闪烁,光彩夺目。
这种发光过程,我们称为“荧光”。
而且,GFP是相对稳定的,能在细胞中长时间发光,所以它被广泛应用于各种生物研究中。
3. 荧光素(Fluorescein)3.1 荧光素的介绍说到荧光素,大家可能觉得这个名字听起来有点陌生,但它可是在化学界里炙手可热的存在!荧光素是一种合成染料,颜色多样,最常见的当然是鲜艳的绿色。
它广泛应用于医学、环保监测,甚至是材料科学。
这玩意儿就像一位多才多艺的明星,能够在不同的场合展现自己的才华。
3.2 荧光素的发光原理荧光素的发光原理和GFP有点相似,但又各有千秋。
它的分子结构里有多个共轭双键,这些双键就像一条条“小桥”,让电子在分子间自由游走。
当荧光素被激发光照射时,这些电子就会快速跃迁,随后又很快回到原来的状态,同时释放出能量,形成荧光。
食品与药品Food and Drug2009年第11卷第05期742008年10月8日,瑞典皇家科学院决定将2008年度诺贝尔化学奖共同授予Osamu Shimomura (下村修)、Martin Chalfie (马丁·沙尔菲)和RogerY .Tsien (钱永健),以表彰他们在绿色荧光蛋白(green fluorescent protein ,GFP )发现和研究方面所做的贡献,这也使得在生物学研究领域早已普遍使用的荧光蛋白走进了普通大众的视野。
下村修的主要贡献是首次从多管发光水母中分离出GFP ,并发现其在紫外灯照射下发出绿光。
沙尔菲证明了GFP 在各种生物现象中作为发光遗传标签的价值。
钱永健阐明了GFP 的发光机制,并开发了具有其他颜色荧光的蛋白质,让研究者能够给予不同的蛋白质和细胞不同的颜色,以便在同一时间跟踪几个不同的生物过程[1,2]。
GFP 是20世纪90年代中期发展起来的一种全新的报告分子。
同以往常用的报告基因,如β-半乳糖甘酶基因(lac Z gene )、氯霉素乙酰转移酶基因(cat g e n e )、荧光素酶基因(luc g e n e )以及其他抗生素基因相比,GFP 不需要任何外源性底物和辅助因子,无毒、稳定、无污染,而且可以在紫外线或蓝光激发下直接观察。
GFP 作为一种新型标记物,目前已被广泛应用于动物学、植物学、生物学、药学等领域的研究中[3]。
1GFP 的发展历程萤火虫发出荧光,是由荧光酶催化底物分子荧光素,发生化学反应后产生荧光。
发现蛋白质自身发光无需任何底物这一现象,始于下村修和已故美绿色荧光蛋白黄思玲(山东福瑞达生物化工有限公司,山东济南250101)国科学家约翰森的研究。
1962年,下村修与约翰森在纯化水母素的研究过程中,有一天下修村下班前将水母发光蛋白的提取产物倒进水池里,出门前关灯后发现水池闪闪发光。
后来发现这种蛋白质副产物在阳光下呈绿色,钨丝下呈黄色,紫外光下呈强绿色。