矩阵的应用
- 格式:docx
- 大小:74.05 KB
- 文档页数:7
矩阵的变换和应用矩阵是线性代数中重要的概念之一,它具有广泛的应用范围。
在数学、工程、科学等领域,矩阵用于描述和处理各种数据和问题。
本文将重点介绍矩阵的变换和应用,包括线性变换、旋转变换、缩放变换和平移变换等。
一、线性变换矩阵的线性变换是矩阵在向量空间中的应用之一。
线性变换是指将一个向量或一个向量组通过矩阵的相乘操作进行转换的过程。
在二维空间中,线性变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}a &b \\c & d\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,矩阵的第一行表示了原始向量在x轴上的线性变换,第二行表示了原始向量在y轴上的线性变换。
通过对矩阵进行相乘运算,可以得到经过线性变换后的新向量坐标。
二、旋转变换旋转变换是矩阵在几何学中的重要应用之一。
通过矩阵的乘法运算,可以将一个向量绕着原点进行旋转。
在二维空间中,旋转变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=\begin{pmatrix}\cos\theta & -\sin\theta \\\sin\theta & \cos\theta\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,θ表示旋转的角度。
通过对原始向量和旋转矩阵进行相乘运算,可以得到经过旋转变换后的新向量坐标。
三、缩放变换缩放变换是矩阵在图形学和几何学中的常见应用之一。
通过矩阵的乘法运算,可以将一个向量在x轴和y轴上进行不同比例的缩放。
在二维空间中,缩放变换可以表示为如下形式:\[\begin{pmatrix}x' \\y'\end{pmatrix}=s_x & 0 \\0 & s_y\end{pmatrix}\begin{pmatrix}x \\y\end{pmatrix}\]其中,s_x表示x轴的缩放比例,s_y表示y轴的缩放比例。
矩阵是什么科学原理的应用简介矩阵是线性代数中的重要概念之一,广泛应用于各个领域,包括数学、物理、计算机科学等。
它是由数个数学量按特定顺序排列组成的矩形数表。
矩阵在科学原理的应用中扮演重要角色,能够帮助解决许多实际问题并简化复杂的计算过程。
计算机图形学1.3D图形变换:矩阵在计算机图形学中广泛应用于三维图形变换,包括平移、缩放、旋转等操作。
通过矩阵的乘法运算,可以将图形在三维空间中进行精确的定位和变换。
2.二维图像处理:图像处理中的各种操作,如模糊、锐化、旋转、翻转等,都可以通过矩阵运算来实现。
通过将图像表示为矩阵,可以方便地对图像进行各种运算,从而实现图像的处理和增强。
3.文字识别:矩阵也广泛用于文字识别领域。
将文字图像转换为矩阵表示后,可以通过矩阵运算和模式匹配的方法对文字进行识别和分析。
物理学中的矩阵应用1.量子力学:矩阵在量子力学的描述和计算中起到了重要的作用。
量子力学中的波函数表示为列向量或行向量,而算符则表示为方阵,通过矩阵的乘法运算可以实现对波函数的演化和测量运算。
2.统计力学:矩阵在统计力学中的应用十分广泛。
例如,在统计力学中可以使用矩阵来表示系统的状态和变化,并通过矩阵的运算来计算系统的物理量。
3.电路分析:矩阵在电路分析中也扮演重要角色。
通过使用矩阵表示电路的连接和元件参数,可以方便地进行电路的分析和计算。
机器学习和数据分析1.线性回归:线性回归是机器学习和数据分析中常用的方法之一,通过矩阵运算可以实现对数据的拟合和预测。
通过最小二乘法,可以用矩阵的乘法和逆运算来求解出最优拟合的线性回归模型。
2.主成分分析:主成分分析是一种常用的数据降维方法,通过矩阵的特征值分解可以实现对数据的降维和提取主要特征。
3.图像处理:矩阵在图像处理中的应用非常广泛。
例如,在图像压缩中使用的离散余弦变换和小波变换等方法,都是基于矩阵运算的。
统计学中的矩阵应用1.方差共析:方差共析是一种常用的统计分析方法,通过矩阵的运算可以实现对数据中的方差和协方差的分析和解释。
矩阵的应用及案例矩阵是数学中的一种重要工具,它在各个领域都有广泛的应用。
本文将从不同领域的案例出发,介绍矩阵的应用。
1. 图像处理在图像处理中,矩阵被广泛应用。
例如,我们可以将一张图片表示为一个矩阵,每个像素点对应矩阵中的一个元素。
通过对矩阵进行变换,可以实现图像的旋转、缩放、平移等操作。
此外,矩阵还可以用于图像的压缩和去噪等处理。
2. 机器学习在机器学习中,矩阵也是一个重要的工具。
例如,我们可以将一组数据表示为一个矩阵,每行对应一个样本,每列对应一个特征。
通过对矩阵进行运算,可以实现分类、聚类等任务。
此外,矩阵还可以用于神经网络的训练和优化。
3. 量子计算在量子计算中,矩阵也是一个重要的工具。
例如,我们可以将一个量子态表示为一个矩阵,通过对矩阵进行运算,可以实现量子门的操作。
此外,矩阵还可以用于量子算法的设计和优化。
4. 金融风险管理在金融风险管理中,矩阵也是一个重要的工具。
例如,我们可以将一组金融数据表示为一个矩阵,每行对应一个时间点,每列对应一个资产。
通过对矩阵进行运算,可以实现风险分析和投资组合优化。
5. 信号处理在信号处理中,矩阵也是一个重要的工具。
例如,我们可以将一个信号表示为一个矩阵,通过对矩阵进行变换,可以实现信号的滤波、降噪等处理。
此外,矩阵还可以用于音频和视频的压缩和编码。
6. 网络分析在网络分析中,矩阵也是一个重要的工具。
例如,我们可以将一个网络表示为一个矩阵,每行和每列对应一个节点,矩阵中的元素表示节点之间的连接关系。
通过对矩阵进行运算,可以实现网络的聚类、社区发现等任务。
7. 人脸识别在人脸识别中,矩阵也是一个重要的工具。
例如,我们可以将一组人脸图像表示为一个矩阵,每行对应一个图像,每列对应一个像素。
通过对矩阵进行运算,可以实现人脸识别和人脸比对等任务。
8. 自然语言处理在自然语言处理中,矩阵也是一个重要的工具。
例如,我们可以将一组文本表示为一个矩阵,每行对应一个文档,每列对应一个词汇。
矩阵在生活中的应用
矩阵是数学中一个重要的概念,它在生活中有着广泛的应用。
从科学到工程,
从经济到医学,矩阵都扮演着重要的角色。
在科学领域,矩阵被广泛应用于物理学、化学等学科中。
在物理学中,矩阵被
用来描述物体的运动和变形,例如在力学中,矩阵可以表示物体受力的情况,从而帮助科学家们分析物体的运动规律。
在化学中,矩阵被用来描述化学反应的过程,从而帮助化学家们预测反应的结果。
在工程领域,矩阵被广泛应用于控制系统、通信系统等领域。
在控制系统中,
矩阵被用来描述系统的状态和控制输入之间的关系,从而帮助工程师们设计出高效的控制系统。
在通信系统中,矩阵被用来描述信号的传输和处理过程,从而帮助工程师们设计出高效的通信系统。
在经济领域,矩阵被广泛应用于金融、市场分析等领域。
在金融中,矩阵被用
来描述资产的收益和风险之间的关系,从而帮助金融分析师们进行投资决策。
在市场分析中,矩阵被用来描述市场数据之间的关系,从而帮助市场分析师们预测市场走势。
在医学领域,矩阵被广泛应用于医学影像处理、生物信息学等领域。
在医学影
像处理中,矩阵被用来描述医学影像的特征,从而帮助医生们进行疾病诊断。
在生物信息学中,矩阵被用来描述生物数据之间的关系,从而帮助生物学家们研究生物信息。
总的来说,矩阵在生活中有着广泛的应用,它不仅帮助科学家们研究自然规律,还帮助工程师们设计出高效的系统,帮助金融分析师们进行投资决策,帮助医生们诊断疾病。
可以说,矩阵已经成为了现代社会不可或缺的数学工具之一。
矩阵在经济问题中的应用
1、矩阵在经济生活中的应用
矩阵就是在行列式的基础上演变而来的,可活用行列式求花费总和最少等类似的问题;可借用特征值和特征向量预测若干年后的污水水平等问题;也可利用矩阵的方法求线性规划问题中的最优解,求解企业生产哪一种类型的产品,获得的利润最大。
2、在人口流动问题方面的应用
这是矩阵高次幂的应用,比如预测未来的人口数量、人口的发展趋势等。
3、矩阵在密码学中的应用
可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。
4、矩阵在文献管理中的应用
在现代搜索中往往包括几百个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。
矩阵图法的用途十分广泛,在质量管理中,常用矩阵图法解决以下问题:
1、把系列产品的硬件功能和软件功能相对应,并要从中找出研制新产品或改进老产品的切入点;
2、明确应保证的产品质量特性及其与管理机构或保证部门的关系,使质量保证体制更可靠;
3、明确产品的质量特性与试验测定项目、试验测定仪器之间的关系,力求强化质量评价体制或使之提高效率;
4、当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,希望搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。
矩阵在生活中的应用矩阵是数学中的一种重要概念,它广泛应用于各个领域。
在生活中,我们可以发现,矩阵的应用十分广泛,它涉及到了商业、科技、医学等各个领域。
下面我们来详细介绍一下矩阵在生活中的应用。
1. 电视与电影电视与电影中所使用的图像、声音等信息都需要进行数字化处理和储存。
这种处理和储存过程就需要用到矩阵。
矩阵可以将数字信号储存为矩阵格式,然后再通过图像处理和数字信号处理等方法进行编码和解码,以达到更好的储存、传输和播放效果。
2. 医学医学中的计算机断层扫描(CT)和磁共振成像(MRI)等影像技术往往需要将影像数据转化为数字信号,然后进行数学分析,以便提取出医学上有用的信息。
在这个过程中,矩阵的应用尤为重要,因为矩阵可以将影像数据储存在矩阵中,然后通过与病灶对比分析等方法帮助医生做出更准确的诊断和判断。
3. 经济经济学中的多元统计分析、数据挖掘、金融风险管理等领域都需要应用矩阵。
例如,在股市中,股票价格变动的预测需要将历史价格数据转化为矩阵,然后用线性代数和数值分析等方法进行预测。
其他类似的应用还有投资组合分析、风险评估、市场营销等。
4. 汽车工业汽车工业中,矩阵广泛应用于设计和生产过程中的数学建模、仿真分析、控制系统设计等领域。
例如,对于汽车的动力系统,需要将其各个部分建模为矩阵,以便进行仿真和控制;对于汽车的制造过程,需要使用矩阵进行数据处理和优化,以便提高制造效率和质量。
5. 网络应用在互联网应用中,矩阵的应用十分广泛。
比如,图像识别、语音识别、自然语言处理、搜索引擎等领域都需要用到矩阵。
例如,在搜索引擎中,网页排名算法(如PageRank算法)就是通过矩阵计算机理实现的。
此外,还有社交网络分析、广告推荐、金融投资等领域的应用。
综上所述,矩阵在生活中的应用之广泛,是由于它具有很强的数据处理和分析能力。
因此,无论是在科技、商业、医学还是其他领域,我们都能看到矩阵的身影。
矩阵的应用矩阵的应用范围很广,在平时生活中,如魔方的解决,可用矩阵代换。
在经济数学中的应用,利用矩阵方法计算投入产出分析中的直接消耗系数和完全消耗系数,利用矩阵方法求矛盾线性方程组的最小二乘解,利用矩阵的方法求线性规划问题中的最优解,矩阵的初等行变换在标准化经济效果中的应用,矩阵的理论与方法在农业科研中的几个应用等等。
在计算机科学技术中,很多领域都要用到线性代数的知识。
比如数字图像处理、计算机图形学、计算几何学、人工智能、网络通信、以及一般的算法设计和分析等。
在管理方面,也存在着矩阵的应用。
组织管理中矩阵式组织结构,是指企业既有纵向的职能管理部门,实行专业化分工,又拥有按产品(或项目)划分的横向管理系统,由产品经理(或项目经理)将最终成果报向上级领导,以此保持企业对外部环境的灵活适应能力和内部职责的明确界定的一种组织结构形式。
矩阵管理,对组织资源相关方面的一种平衡,通常是围绕产品线或者业务线的组织资源以及按职能或地区划分的组织资源二者之间的一种平衡。
矩阵管理模式通过横向及纵向的管理方式,通过跨职能部门的设立,强化彼此间信息的流通,更加灵活、有效地协调各项不同业务的发展。
在质量管理中的矩阵图法,就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。
在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。
矩阵图法的用途十分广泛.常用矩阵图法解决以下问题:①把系列产品的硬件功能和软件功能相对应,并要从中找出研制新产品或改进老产品的切入点;②明确应保证的产品质量特性及其与管理机构或保证部门的关系,使质量保证体制更可靠;③明确产品的质量特性与试验测定项目、试验测定仪器之间的关系,力求强化质量评价体制或使之提高效率;④当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,希望搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除;⑤在进行多变量分析、研究从何处入手以及以什么方式收集数据。
矩阵在生活中的应用
矩阵是数学中一个非常重要的概念,它在生活中有着广泛的应用。
从科学技术
到日常生活,矩阵都扮演着重要的角色。
在科学技术领域,矩阵被广泛应用于数据处理和分析。
例如,在计算机图形学中,矩阵被用来表示和处理图像数据,实现图像的变换、旋转和缩放等操作。
在人工智能和机器学习领域,矩阵被用来表示和处理大规模的数据集,进行数据的分析和模式识别。
此外,矩阵还被广泛应用于工程领域,如电路分析、信号处理和控制系统设计等方面。
在日常生活中,矩阵也有着许多实际的应用。
比如,我们经常在超市购物时会
遇到矩阵的应用。
超市的库存管理系统通常会使用矩阵来表示不同商品的库存量和销售情况,以便进行及时的补货和管理。
此外,矩阵还被用来表示家庭成员之间的关系、社交网络中的人际关系等,帮助我们更好地理解和分析人际关系。
总之,矩阵在生活中有着广泛的应用,它不仅在科学技术领域发挥着重要作用,也在日常生活中为我们提供了许多便利。
因此,了解和掌握矩阵的相关知识,对我们来说是非常重要的。
希望大家能够更加关注和重视矩阵在生活中的应用,从而更好地应用它们来解决实际问题,提高生活质量。
三维模型中矩阵应用
三维模型中的矩阵应用非常广泛,它们在图形学、计算机动画、游戏开发和计算机辅助设计等领域发挥着重要作用。
下面我将从几
个方面来介绍三维模型中矩阵的应用。
1. 变换,矩阵在三维模型中常用于表示平移、旋转、缩放等变换。
通过矩阵乘法,可以将一个点或者一个向量进行各种变换。
例如,对于一个三维点(x, y, z),通过矩阵乘法可以将其进行平移、
旋转或缩放操作,从而实现模型的变换和动画效果。
2. 投影,在三维图形学中,投影是将三维空间中的点或者物体
投影到二维平面上的过程。
矩阵在投影过程中起着重要作用,例如
透视投影和正交投影都可以通过矩阵运算来实现。
3. 骨骼动画,在计算机动画中,骨骼动画是一种常用的技术,
它可以使模型实现逼真的动作。
在骨骼动画中,每个骨骼都可以通
过矩阵来表示其变换关系,通过矩阵运算可以实现骨骼的变换和动
画效果。
4. 光照和阴影,在渲染三维模型时,光照和阴影效果的实现需
要对模型表面的法向量进行变换和计算。
这涉及到矩阵的转置和逆运算,通过这些运算可以得到表面法向量的正确变换和光照计算,从而实现逼真的渲染效果。
总的来说,矩阵在三维模型中扮演着至关重要的角色,它们是实现模型变换、动画效果、渲染效果等的基础。
通过对矩阵的合理运用,可以实现更加复杂和逼真的三维模型效果。
矩阵在经济生活中的应用
班级:电子商务151 姓名:xx 学号:2015xxxxxx
总述:随着社会的不断发展,科技的不断进步,大学经济数学在各个方面的应用越来越广。
而经济数学中的线性代数之矩阵,同样也同样有着广泛的应用。
比如矩阵在生产成本、人口流动、加密解密等方面的应用。
一、首先,我来阐述下矩阵的基本概念。
1、由m ⨯n 个数a ij (i =1, 2,⋅⋅⋅,m ;j =1, 2,⋅⋅⋅,n )按一定秩序排列成的一个m 行n 列的矩形表, 称为一个m 行n 列的矩阵, 简称m ⨯n 记
其中,矩阵还可以分为,对角矩阵、单位矩阵、数量矩阵三角形矩阵、同型矩阵等等。
2、矩阵的乘法、矩阵转置、逆矩阵、行列式等知识的应用
二、现在来谈谈它在生活中的应用
1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以
111212122212n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭
达到最好的经济收益。
但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。
在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。
例1、某企业生产4种产品, 各种产品的季度产值(单位: 万元)如下表所示:
这个排成4行4列的矩形产值阵列
结论:具体描述了这家企业各种产品各季度的产值, 同时也揭示了产值的季增长率及年产量等情况。
使得生产数据更加简单明了,便于数据的分析和企业未来发展规划的布局与展开。
例2、生产m 种产品需用n 种材料, 如果以a ij 表示生产第i 种产品(i =1, 2,⋅⋅⋅,m )耗用第j 种材料( j =1, 2,⋅⋅⋅,n )的定额, 则消耗定额可以用一个矩形表表示, 如下表所示
80587578987085849075909088708280⎛⎫ ⎪ ⎪ ⎪⎝⎭
这个由m 行n 列构成的矩形消耗定额阵列
结论:描述了生产过程中产出的产品与投入材料的数量关系。
这矩阵是企业管理者对生产过程进行监控,然后合理地对生产过程进行调整,实现企业平稳正常地生产,达到企业的生产目标。
(两例来自老师您的课件,谢谢老师)
2.人口流动问题
例3、假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在若干年内保持不变,而社会调查表明:
(1) 在这40万就业人员中,目前约有25万人从事农业,
10万人从事工业,5万人经商;
(2) 在务农人员中,每年约有10%改为务工,10%改为经商;
(3) 在务工人员中,每年约有10%改为务农,20%改为经商;
111212122212n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭
(4) 在经商人员中,每年约有10%改为务农,20%改为务工。
解 若用三维向量(x i ,y i ,z i )T 表示第i 年后从事这三种职业的人员总数,则已知(x 0,y 0,z 0)T =(25,10,5)T 。
而欲求(x 1,y 1,z 1)T ,(x 2,y 2,z 2)T 并考察在n →∞时(x n ,y n ,z n )T 的发展趋势。
依题意,一年后,从事农、工、商的人员总数应为
即:
以(x 0,y 0,z 0)T =(25,10,5)T 代入上式,即得:
即一年业人员的人数分别为21.5万10.5万、8万人。
以及 即两年后从事各业人员的人数分别为19.05万、11.1万、9.85万人。
进而推得:
⎪⎩⎪⎨⎧++=++=++=0001000100017.02.01.02.07.01.01.01.08.0z y x Z z y x Y z y x X ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0000001117.02.01.02.07.01.01.01.08.0z y x A z y x Z Y X ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛85.105.21111Z Y X ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛85.91.1105.190002111222z y x A z y x A Z Y X ⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---000111z y x A z y x A Z Y X n n n n n n n
即n 年之后从事各业人员的人数完全由 决定。
在这个问题的求解过程中,我们应用到矩阵的乘法、转置等,将一个实际问题数学化,进而解决了实际生活中的人口流动问题。
这个问题看似复杂,但通过对矩阵的正确应用,我们成功的将其解决。
不得不说,矩阵是我们解决实际问题的重要工具。
3、应用矩阵编制Hill 密码
密码学在经济和军事方面都起着极其重要的作用。
在密码学中将信息代码称为密码,没有转换成密码的文字信息称为明文,把密码表示的信息称为密文。
从明文转换为密文的过程叫加密,反之则为解密。
现在密码学涉及很多高深的数学知识。
1929年,希尔(Hill )通过矩阵理论对传输信息进行加密处理,提出了在密码学史上有重要地位的希尔加密算法。
下面我们介绍一下这种算法的基本思想。
假设我们要发出“attack ”这个消息。
首先把每个字母a ,b ,c ,d ……x ,y ,z 映射到数1,2,3,4……24,25,26。
例如1表示a ,3表示c ,20表示t ,11表示k ,另外用0表示空格,用27表示句号等。
于是可以用以下数集来表示消息“attack ”:
把这个消息按列写成矩阵的形式:
n A {}11,3,1,20,20,1⎪⎪⎪⎭
⎫ ⎝⎛=112032011M
第一步:“加密”工作。
现在任选一个三阶的可逆矩阵,例如:
于是可以把将要发出的消息或者矩阵经过乘以A 变成“密码”(B )后发出。
第二步:“解密”。
解密是加密的逆过程,这里要用到矩阵A 的逆矩
阵A -1 这个可逆矩阵称为解密的钥匙,或称为“密匙”。
当然矩阵A
是通信双方都知道的。
即用
从密码中解出明码:
通过反查字母与数字的映射,即可得到消息“attack ”。
⎪⎪⎪⎭
⎫ ⎝⎛=210211321A B AM =⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=2560266140101112032011210211321⎪⎪⎪⎭⎫ ⎝⎛----=-1111221101A M B A =⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=-11203201125602661401011111221101
在实际应用中,可以选择不同的可逆矩阵,不同的映射关系,也可以把字母对应的数字进行不同的排列得到不同的矩阵,这样就有多种加密和解密的方式,从而保证了传递信息的秘密性。
上述例子是矩阵乘法与逆矩阵的应用,将高等代数与密码学紧密结合起来。
运用数学知识破译密码,进而运用到军事等方面。
可见矩阵的作用是何其强大。
(例3和加密解密来自百度文库资料)
三、总结
通过这些实例,我知道了,矩阵来源于生活,还得应用于生活。
矩阵不单纯是一数学理论,离我们不远,在社会生活中会时常涉及这些知识。
所以,我们学习数学不仅仅是为了期末考试,和为了今后的个人发展。
既然学了矩阵,那就必须得了解它在我们生活中应用,并且把它应用于生活,使自己的生活更美好。
同时,我们可以通过结合实际,把“高高在上”的数学应用于我们平常的生活中,这样可以加深我们对于数学知识的理解与巩固,培养自己的学习兴趣。