第四讲各种多属性决策方法
- 格式:ppt
- 大小:15.87 MB
- 文档页数:100
多属性决策的方法
多属性决策的方法有很多,以下是几种常见的方法:
1. 加权评分法(Weighted Scoring Method):根据不同属性的重要性,为每个属性赋予一个权重值,然后对每个方案进行评分计算,最后按照评分高低进行决策。
2. 层次分析法(Analytic Hierarchy Process,AHP):通过构建层次结构,将复杂的决策问题分解成多个层次,通过比较不同层次的属性之间的相对重要性,最终确定最优决策。
3. 电子表格法(Spreadsheet Method):将不同方案的各属性值记录在电子表格中,根据设定的权重进行计算得出综合评分,通过比较评分高低进行决策。
4. TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution):通过计算方案与理想解和负理想解之间的相似性,确定每个方案的综合评分,最终选择最接近理想解且最远离负理想解的方案。
5. 折衷编程法(Compromise Programming):根据决策者的偏好和目标,建立数学模型,通过最大化总效益和最小化总成本的折衷,找到最优的决策方案。
以上方法各有特点,适用于不同的决策问题和决策者的需求。
在实际应用中,可
以根据具体情况选择合适的方法进行多属性决策。
决策理论与方法之多属性决策多属性决策是决策理论与方法中的一种重要决策方法,主要用于解决具有多个评价指标的决策问题。
在实际生活和工作中,我们常常需要面对的是多因素影响下的决策问题。
多属性决策方法的应用可以帮助我们全面、客观、科学地对待问题,提高决策的准确性和决策结果的有效性。
多属性决策方法的核心思想是将决策问题中的多个属性进行定量化,并将各个属性的权重进行合理分配,最终得出综合评价结果,从而选择最优的决策方案。
在多属性决策中,常用的方法包括层次分析法、利用等价关系建立模型、TOPSIS方法等。
层次分析法是一种常用的多属性决策方法,其主要思想是将决策问题拆分成若干个子问题,并构建层次结构,通过比较不同层次的准则,得出最终的决策结果。
该方法的优点是能够考虑多个属性的重要性,并将其量化成权重,从而进行综合评估。
但是,层次分析法需要进行一系列的判断和计算,比较繁琐,容易受到主管者主观判断的影响。
利用等价关系建立模型是另一种常用的多属性决策方法,其主要思想是通过对各个属性之间的关系进行建模,从而得出最终的决策结果。
该方法的优点是能够考虑属性之间的相互影响,更加真实地反映决策问题的本质。
但是,建立等价关系模型需要对问题有一定的了解和分析能力,并且需要进行一定的计算,对于一些复杂问题来说,可能会存在一定的困难。
TOPSIS方法(Technique for Order Preference by Similarity to an Ideal Solution)是一种较为常用的多属性决策方法,其主要思想是将各个决策方案与最佳解和最差解进行比较,通过计算得出每个方案与最佳解和最差解的接近程度,并根据接近程度确定优劣排序。
TOPSIS方法具有计算简单、易于理解和应用的优点,但是在实际应用中,需要对决策问题进行一定的约束条件和假设。
综上所述,多属性决策方法是一种重要的决策理论和方法,可以帮助我们解决多因素影响下的决策问题。
多属性决策方法概要多属性决策方法是一种用于解决具有多个属性、多个可选方案的决策问题的方法。
在实际生活和工作中,我们常常面临着这样的问题,例如选择一种产品、确定一个项目的优先级或者评估不同的投资选择等。
在这些问题中,每个可选方案都有多个属性或者指标来描述其特点,而我们需要通过一定的决策方法来帮助我们做出合理的选择。
本文将介绍几种常见的多属性决策方法。
1.权重法:权重法是一种常用的多属性决策方法,它通过为每个属性指定一个权重来反映其重要性,然后根据各个属性的得分和权重的乘积来评估每个方案的综合得分。
具体来说,首先需要确定各个属性的权重,可以通过专家来评估或者采用层次分析法等方法。
然后,对每个属性进行评分,可以使用定性评价或者定量评价的方法。
最后,将每个属性的得分与其权重相乘,并将所有属性的加权得分相加,得到每个方案的综合得分。
根据综合得分的大小,选择综合得分最高的方案。
2.理想解法:理想解法是一种基于每个属性的最小值或最大值来确定方案的方法。
具体来说,首先需要将每个属性的值标准化,例如将其转换为[0,1]区间上的值。
然后,计算每个方案与理想解法之间的距离,可以使用欧式距离或者其他距离度量方法。
最后,根据与理想解法之间的距离的大小,选择距离最小或距离最大的方案作为最优方案。
3.TOPSIS法:TOPSIS法是一种常用的多属性决策方法,它综合考虑了每个方案与理想解法的距离以及与负理想解法的距离。
具体来说,首先需要将每个属性的值标准化,例如将其转换为[0,1]区间上的值。
然后,利用标准化后的属性值计算每个方案与理想解法之间的距离和方案与负理想解法之间的距离。
最后,根据与理想解法的距离和与负理想解法的距离的比较,计算每个方案的综合得分,并选择综合得分最高的方案作为最优方案。
4. Borda计分法:Borda计分法是一种常用的多属性决策方法,它基于每个方案在每个属性上的排名来评估方案的综合得分。
具体来说,首先对每个属性的得分进行排序,然后根据每个方案在每个属性上的排名分配得分。
多属性决策方法在多准则决策发展的早期,关于多目标、多属性、多准则问题的研究相继出现,但没有形成一个规范的定义,直到20 世纪80 年代初,学术界对此才达成了共识,并形成了规范。
准则是决策事物或对象有效性的一种度量,是评价的基础,在实际决策问题中有目标和属性两种表现形式,属性是伴随决策对象的某些特点、性能或指标,而目标则是决策者对研究对象的某种追求,要达到的最终目的,表明了决策者针对研究对象所努力的方向。
对于产业决策而言,目标(方案)和属性分别有以下几个代表相:某个时间点和某个地区“几个产业”和“几个产业的指标”;某个地区某个产业“几个时间点”和“该产业的指标”,某个时间点某个产业“几个地区”和“该产业的指标”1.某个时间点和某个地区“几个产业”和“几个产业的指标”某个地区2013年以下哪个行业的经济运行情况更好一些?2. 某个地区某个产业“几个时间点”和“该产业的指标”:3. 某个时间点某个产业“几个地区”和“该产业的指标”:对于2013年“食品制造业”来说,北京、河北、山西、浙江、新疆哪个省份的经济运行状以上几种情况中,企业数、利润总额、企业资产合计、全部从业人员平均人数代表“多属性决策”方案中的“属性”,也即对于产业多属性决策分析来说,属性都是产业指标对应的数值,也就是决策矩阵中的“i x ”;而对于方案来说,可以是行业、时间和地区中的任何一种,也就是决策矩阵中的“j x ”。
下面介绍几种具体的多属性决策方法:以下几种方法都要用到“权重设置”和“属性归一化”处理,先在此说明。
权重设置的方法有:1. 默认权重:选择“系统默认权重”,按所有属性的算术平均法计算的平均值,直接显示权重值;1i w m=,其中m 是属性的量值2. 1-9标度法设定权重:点击属性项,选择“1-9标度法设定权重”,显示属性权重设置,3. 自定义权重: “自定义权重”直接在权重栏中输入自定义权重数值。
归一化处理的方法:下列所示正向指标和反向指标的各种归一化方法: (1)正向指标:方法1:极大化法:maxiix zx=方法2:极差化法:min maxmini i x x z x x-=-方法3:归一化法:1i n iii x zx==∑方法4:标准样本变换法:iix sx z--=,s为样本标准差,s =,11ni i x x n -==∑方法5:向量归一化法:i z =方法6:监测(标杆)法:maxii x z x=,maxx为目标最大值,需要用户自己输入。
多属性决策分析方法概述多属性决策分析是一种用于解决决策问题的方法,能够同时考虑多个属性或指标,帮助决策者找到最优的方案或做出合理的决策。
在实际应用中,多属性决策分析被广泛应用于各种领域,如企业管理、金融投资、市场营销、工程项目等。
基于价值函数的方法首先要确定决策问题的目标和属性或指标,然后通过构造或归纳得到价值函数,根据价值函数计算出方案的效用值,最后对方案进行排序或筛选。
常见的基于价值函数的方法有加权得分法、受益成本分析法、利益相关者分析法等。
加权得分法是一种简单而直观的方法,它将每个属性或指标的重要性用权重表示,通过计算每个方案在每个属性或指标上的得分乘以权重,得到方案的总得分,然后根据总得分进行排序或筛选。
受益成本分析法是一种经济学上常用的方法,它通过对每个方案的效益与成本进行比较,计算出效益成本比或效益净现值,来评估方案的投资价值和可行性。
利益相关者分析法是一种针对决策问题中的利益相关者的需求进行评估和分析的方法,它通过对每个方案在每个利益相关者需求上的满足程度进行评估,计算出方案的综合满意度,来评估方案的可行性和可接受性。
基于对比矩阵的方法是一种将多属性决策问题转化为矩阵运算和数值计算的方法,通过构建对比矩阵和权重向量,来计算出方案的优劣程度。
常见的基于对比矩阵的方法有层次分析法、模糊综合评判法、灰色关联分析法等。
层次分析法是一种常用的多属性决策分析方法,它通过构建层次结构和对比矩阵,对每个属性或指标进行两两比较,得到权重向量,然后根据权重向量计算出方案的综合得分,最后对方案进行排序或筛选。
模糊综合评判法是一种将模糊数学理论应用于多属性决策分析的方法,它通过构建模糊评价矩阵和模糊综合评判矩阵,计算出方案的模糊综合得分,最后对方案进行排序或筛选。
灰色关联分析法是一种将灰色关联度理论应用于多属性决策分析的方法,它通过构建灰色关联矩阵和关联度向量,计算出每个方案与最优方案之间的关联度,最后对方案进行排序或筛选。
多属性决策若干方法研究多属性决策是指在决策过程中,考虑到多个决策因素之间的相互影响,对多个因素同时进行评估和分析,以确定最优的决策方案。
在实际生活和工作中,决策者需要准确地把握决策因素的影响,以确保做出正确的决策。
多属性决策方法主要可分为主观和客观两种。
主观评价法主观评价法也称主观赋权法,是将决策因素按照决策者主观意愿进行加权评价的方法。
该方法在实际投入运用较为简单方便,但是存在客观不足的问题。
一般情况下,主观评价法也可以进一步分为:代表性样本法、专家法、模糊综合评价法等。
1.代表性样本法代表性样本法是指利用代表性的事例来说明决策问题,以此支持决策者对事实进行判断。
决策者将各因素按照各自的权重累加得到总分,然后根据得分高低来做出决策。
由于代表性样本法较为直观,不需掌握过多的数学理论知识,且具有较好的操作性,因此受到了广泛的应用。
2.专家法专家法是指在决策日常中,利用专家经验和知识判断各种因素权重,并据此作出决策的方法。
专家法对决策者的专业知识和经验要求较高,但在涉及专业领域时十分有效。
因此在很多领域及行业内得到大量使用。
3.模糊综合评价法模糊综合评价法通过整合好的指标,将分析结果进行模糊化处理,再通过一下先验知识,所采用的数学模型,来进行综合评价。
模糊综合评价法中,涉及到模糊数学的知识,对使用者专业知识要求较高,并需系统地准确分析各种因素。
模糊综合评价法广泛应用于生产、管理、环保等领域。
客观评价法客观评价法也称客观赋权法,是通过数据处理和统计分析的方法,从多个因素中找出对决策结果影响最大的因素,并为各因素分配权重,以此作为决策的依据。
客观评价法可以有适宜型排序法(TOPSIS), 层次分析法(AHP),灰色关联分析法(DEA & GRA),学习算法机器学习,规划算法等。
1.TOPSIS法适宜型排序法(TOPSIS)是一种常用于多属性决策的排名法。
它将各属性分别归一化,计算出属性值的权重和敏感度,之后对所有方案得到由敏感度与权重加权后计算的得分,依据得分为方案排名。