光纤通信系统中的可调谐色散补偿技术
- 格式:pdf
- 大小:592.83 KB
- 文档页数:8
色散补偿方法一、背景介绍色散是光在介质中传播时,不同频率光的传播速度不同所引起的现象。
在光纤通信中,色散会导致光脉冲扩展,从而限制了信号传输的速率和距离。
为了克服色散对光纤通信系统性能的影响,人们提出了各种色散补偿方法。
二、色散的分类根据色散现象的产生原理,色散可以分为两种类型:色散和相位色散。
色散是由于介质导致光在传播过程中速度的频率依赖性而引起的;相位色散则是由于介质对光的频率的相位响应不同而引起的。
在光纤通信中,我们主要关注两种类型的色散:色散和相位色散。
三、色散补偿方法1. 电子色散补偿电子色散补偿是通过使用光纤通信系统中的电子器件来减小或消除色散效应。
常见的电子色散补偿方法包括预计算和数字后处理两种。
1.1 预计算预计算方法通过事先对传输系统的特性建立模型,利用数值计算方法来评估和补偿色散效应。
它需要在系统设计阶段进行复杂的计算和建模工作,预测色散对光信号的影响,并提前进行补偿。
预计算方法的优点是可以准确地估计和补偿色散效应,但需要大量的计算和建模工作,并且对系统的实时性要求较高。
1.2 数字后处理数字后处理方法是通过对接收到的光信号进行数字信号处理来补偿色散效应。
这种方法在接收端引入了一些算法和电子器件,对接收到的光信号进行补偿。
数字后处理方法的优点是不需要对系统进行复杂的计算和建模,且实时性较好。
然而,它需要更高的计算能力和复杂的信号处理算法,且对噪声和非线性效应敏感。
2. 光纤色散补偿器光纤色散补偿器是一种被动光学元件,通过引入具有逆色散特性的光纤来补偿传输过程中产生的色散效应。
光纤色散补偿器通常包括光纤光栅和光纤光波导等结构。
它能够在光信号传输过程中引入逆色散效应,可以有效地补偿色散引起的脉冲扩展问题。
光纤色散补偿器的优点是结构简单、易于集成和应用,并且具有较好的逆色散特性。
但是,光纤色散补偿器的逆色散效应对频率的补偿范围有限。
3. 相位共轭相位共轭是一种通过光学器件来反转光波的相位特性,从而消除色散效应的方法。
光纤通信系统中的色散赔偿问题综述1.Introduction光纤通信含有高速率、大容量、长距离以及抗干扰性强等特点。
但损耗和色散是长久妨碍光纤通信向前发展的重要因素。
随着着损耗问题的解决,色散成为决定光纤通信系统性能优劣的重要因素。
如何控制色散方便提高光纤通信系统的性能,成为光纤通信研究的热门课题之一。
现在对于光纤的色散已经提出了诸多赔偿办法,重要有色散赔偿光纤(DCF),啁啾光纤光栅,均匀光纤光栅,相位共轭(中点谱反转),全通滤波器、预啁啾等。
随着以上各办法缺点的暴露,学者们提出了光孤子色散赔偿技术,又相继提出了色散管理孤子,密集色散管理孤子等技术。
色散管理成为近年来光纤通信前沿研究的重要热点。
2.Concept of Dispersion由于信号在光纤中是由不同的波长成分和不同的模式成分来携带的,这些不同的波长成分和模式成分有不同的传输速率,从而引发色散。
也能够从波形在时间上展宽的角度去理解,也就是说光脉冲在通过光纤传输期间,其波形随时间发生展宽,这种现象称为光纤的色散。
3.Dispersion Causes普通把光纤中的色散分为三种类型:模式色散、模内色散和偏振色散。
a)模式色散模式色散是多模光纤才有的。
多模光纤中,即使是同一波长,模式不同传输速度也不同,它所引发的色散称为模式色散。
不同模式的光在光纤中传输时的传输常数不同,从而使传输同样长的距离后,不同模式的光波之间产生了群时延差,假设光纤能够传输多个模式,其中高次模达成输出端所需的时间较长,成果使入射到光纤的脉冲,由于不同模式达成的时间不同,或者说群时延不同,在输出端发生了脉冲展宽。
b)模内色散模内色散亦称颜色色散或多色色散。
重要是由于光源有一定带宽,信号在光纤中会有不同的波长成分,信号的不同波长分量含有不同的群速度,成果造成光脉冲的展宽。
模内色散涉及材料色散和波导色散。
c)偏振色散普通的轴对称单模光纤是违反“单模”名称的。
事实上有可能传输着两个模,即在光纤横截面上的两个正交方向(设为x 方向与y 方向)上偏振的(即在这些方向上含有场分量的)偏振模,同时由于实际的光纤中必然存在着某些轴不对称,那么,光纤会存在双折射,模传输常数β对于x,y 方向偏振模稍有不同,就会使这两个模式的传输速度不同,由此引发的色散叫偏振色散。
高速光通信系统中的色散补偿1.前言随着光传输系统中的传输速率的提高和信号传输带宽的增加,色散问题日益显著。
已经铺设的常规光纤规G.652线路的零色散点位于1310nm,在1550 nm处时则具有较大的色散系数(17ps/nm/km),光脉冲信号经过长途传输后,由于光纤色散值的积累引起脉冲展宽,导致严重的码间串扰,使得接收端产生误码现象,从而使传输特性变坏。
光纤色散补偿技术的研究,对提高目前已经铺设的常规光纤通信系统的容量具有尤其重要的意义。
色散补偿器对于推动全光网络架构起着决定性作用,发展高速全光网络的一个先决条件是必须做到光层面的色散监控与管理。
色散补偿器件在高速传输系统及下一代智能光网络中有着广泛应用。
2. 技术方案简介目前商用的光学色散补偿模块,包含固定色散补偿和可调色散补偿两大类,分别是基于色散补偿光纤、啁啾光纤光栅、GT标准具这三种技术方案。
2.1 色散补偿光纤色散补偿光纤是利用基模波导来获得高的负色散值,通过改变光纤的芯径、掺杂浓度等结构参数,使零色散波长移至大于1550nm波长的位置,于是在1550nm处得到较大的负色散系数,通常在-50~-200ps/nm/km。
为了得到高的负色散值系数,必须减小光纤芯径,增加相对折射率差,而这种作法往往又会导致光纤的衰耗增加(0. 5~1dB/km)。
为了能在整个波段均匀补偿常规单模光纤的色散,又开发出一种既补偿色散又能补偿色散斜率的补偿光纤。
该光纤的特点是色散斜率之比与常规光纤相同,但符号相反,所以更适合在整个波形内的均衡补偿。
色散补偿光纤已经在全世界的高速通信系统中得到了广泛应用,许多传输系统都是通过DCF+G.652光纤实现的,具有无群时延抖动,全波段连续补偿,能够从100G Hz间隔系统平滑升级到50GHz间隔系统等优点,但存在损耗大、光脉冲延迟高、非线性效应以及模块尺寸大等缺点。
2.2 啁啾光纤光栅啁啾通常是指一种频率变化的现象。
如果光纤光栅的周期沿长度方向发生一定变化,则其频率沿长度方向也会发生一定变化,即发生了啁啾,称这种光栅为啁啾光纤光栅。
光纤的色散分类不同的光分量(不同的模式或不同的频率等)通常以不同的速度在光纤中传输,这种现象称为色散。
色散是光纤的一种重要的光学特性,色散引起光脉冲的展宽、严重限制了光纤的传输容量及带宽。
对于多模光纤,起主要作用的色散机理是模式色散或称模间色散(即不同的模以不同的速度传输引起的色散)。
对于单模光纤,起主要作用的色散机理是色度色散或称模内色散(即不同的光频率在不同的速度下传输引起的色散〕。
由于多模光纤受模间色散的限制,传输速率不能超过100Mb/s,单模光纤则比多模光纤更优越,在长途干线实际应用中用的也都是单模光纤,此处也仅考虑单模光纤的色散。
单模光纤的模内色散主要是材料色散和波导色散。
材料色散是指由于频率的变化导致介质折射率变化而造成的传输常数或群速变化的现象;波导色散是指由于频率的变化导致波导参数变化而造成的传输常徽或群速变化的现象。
模内色散主要是实际光源都是复色光源的结果。
另外在单模光纤中,实际上传输着两个相互正交的线性偏振模式,但由于光纤的非圆对称、边应力、光纤扭曲、弯曲等造成轻微的传输速度差,从而形成偏振模色散。
高速光纤通信系统需要色散补偿目前,全世界范围内,已经教设的1.3 µm零色散光纤总长度超过5000万公里,而我们知道现在光纤通信系统的工作波长为1.5µm,这样光纤就存在D≈16ps/km•nm的色散、该色散限制光通信系统的传输速度在2Gb/s以下。
即使是新教设的光纤、为了限制四波混频现象也仍需使用非零色散位移光纤。
故为了克服色散对通信距离及通信速率的限制,必须对光纤进行色散补偿。
另外,随着光纤通信和色散补偿方案的迅速发展,一些高速传输系统的传输速率已达到几十甚至几百Gb/s以上。
这时,偏振模色散的影响亦不可忽视光纤色散补偿方案目前,已有多种群速度色散补偿方案被提出,如后置色散补偿技术、前置色散补偿技术、色散补偿滤波器、高色散补偿光纤(DCF)技术和凋啾光纤光栅色散补偿技术,以及光孤子通信技术等。
光纤通信中的色散补偿技术研究随着现代通信技术的不断发展和应用,网络通信的传输速率已达到了Gbps级别,如光纤通信作为现代化通信技术的代表,也在不断地创新和进步中。
光纤通信中的一大难题就是色散补偿技术研究。
本文将从色散补偿的定义、作用及发展历程、常见的色散补偿技术以及未来展望四个方面阐述光纤通信中的色散补偿技术研究。
一、色散补偿的定义、作用及发展历程光在光纤中的传输损耗分为衰减损耗和色散损耗。
而色散是指在光纤中传输的短脉冲信号由于频率成分不同,传输速度也不同,导致在接收端时产生的信号失真,从而影响通信质量。
色散是光纤通信中最主要的非线性影响之一,对光纤的信号传输质量影响非常大。
因此,为了降低色散对信号的影响,提高光纤通信的传输质量,产生了色散补偿技术。
所谓色散补偿,就是为了抵消被随着光在光纤中的传输而带来的色散效应,使得信号在光纤中的传输过程中保证其波形的完整性和稳定性,从而使得与光纤通信相关的应用得到了进一步的提高。
色散补偿技术起源于20世纪70年代。
最初的色散补偿方案是采用相对简单的信号加上反向的信号渐变来补偿色散。
随着光棒、皮尔斯反射器、光纤布拉格光栅等新颖元件的发明及其不断的发展,导致色散补偿技术逐渐趋于完善。
二、常见的色散补偿技术目前,色散补偿技术主要分为被动色散补偿、主动色散补偿和混合色散补偿三种。
其中,被动色散补偿技术的原理是利用专用的光学器件把传输信号的波长进行引导,并通过一定的制造工艺,实现信号波形的优化,从而减少或抵消色散效应。
主动色散补偿技术则是利用光载荷流体进行调制,使得不同波长的光速度发生变换,从而达到调整光信号的效果。
混合色散补偿其实就是将前两种技术相结合,产生更加复杂的色散补偿方案,实现色散的更高效减少。
从具体的应用范围来看,被动色散补偿技术主要适用于高速中长距离传输。
这是由于,被动色散补偿的补偿机制固定、稳定,适用于光路在传输过程中对信号进行的完整性保护。
而主动色散补偿技术,适用于灵活的波长调制应用。
dcm色散补偿器原理
DCM(色散补偿模块)是一种用于光纤通信系统中的光学器件,
其原理是利用光纤中的色散效应来补偿光信号在传输过程中因为色
散效应而引起的频率失真。
光信号在光纤中传输时,会受到色散效
应的影响,不同频率的光信号会以不同的速度传播,导致信号失真。
DCM的原理就是通过在光信号传输路径中加入特定的光纤,利用该
光纤的色散特性来补偿信号的失真。
具体来说,DCM的工作原理可以分为两个方面来解释。
首先,
光信号在光纤中传输时会受到色散效应的影响,不同频率的光信号
会以不同的速度传播,导致信号失真。
DCM的设计就是利用特定长
度和色散特性的光纤,使得不同频率的光信号在该光纤中传播后,
能够在输出端达到同步,从而补偿光信号因色散效应而引起的频率
失真。
其次,DCM也可以通过引入特定的色散补偿器件,如色散补偿
光纤或色散补偿模块,来实现对光信号的补偿。
这些器件可以根据
光信号的频率特性和传输距离来调节光信号的相位和幅度,从而实
现对色散效应的补偿。
总的来说,DCM的原理是利用特定的光纤或器件来补偿光信号在传输过程中因为色散效应而引起的频率失真,从而保证光信号的质量和稳定性。
这种补偿原理在光纤通信系统中起着至关重要的作用,可以有效提高系统的传输性能和可靠性。
光纤通信系统中色散补偿技术————————————————————————————————作者:————————————————————————————————日期:2光纤通信系统中色散补偿技术蒋玉兰(浙江华达集团富阳,31 1400)【摘要】本文叙述了光通信系统中一个重要的参数—色散,以及G65光纤通信系统的色散补偿技术。
文章还详细说明了各种补偿技术原理,并比较其优缺点。
最后强调说明色散补偿就是用来补偿光纤线路色散和非线性失真的技术。
1概述光纤通信的发展方向是高速率、大容量。
它从PDH 8 Mb/s, 34Mb/s,140Mb/s, 565Mb/s 发展到SDH 155Mb/s,622Mb/s,2.5Gb/s,10Gb/s。
现在又进展为波分复用WDM、密集型波分复用DWDM。
同时,光纤的结构从G652、G653、G654,发展到G655,以及G652C 类。
光纤的技术指标很多,其中色散是其主要的技术指标之一。
色散就是指不同颜色(不同频率)的光在光纤中传输时,由于具有不同的传播速度而相互分离。
单模光纤主要色散是群时延色散,即波导色散和材料色散。
这些色散都会导致光脉冲展宽,导致信号传输时的畸变和接收误码率的增大。
对于新建工程新敷设高速率或WDM光缆线路,可以采用非零色散位移光纤(NZ-DCF),ITU一T将这种光纤定名为G655。
G655光纤在1 550 nm处有非零色散,但数值很小(0.1~10.0pb/nm·km)。
其色散值可以是正,也可以是负。
若采用色散管理技术,可以在很长距离上消除色散的积累。
同时,对WDM系统的四波混频现象也可压得很低,有利于抑制非线性效应的影响。
自从光纤通信商用开始,至今20余年,国内外已大量敷设了常规单模光纤(G652)的光缆,这类光缆工作在1550nm波段时,有18ps/nm·km的色散,成为影响中继距离的主要因素。
所以,对高速率长距离的系统必须要考虑色散补偿问题。