静止无功发生器(SVG)无功补偿
- 格式:docx
- 大小:19.42 KB
- 文档页数:9
SVG与SVC一.SVG称为静止无功发生器,又称高压动态无功补偿发生装置,或者静止同步补偿器。
是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。
静止无功发生器是将采用可关断电力电子器件(如IGBT)组成的自换相桥式电路通过电抗器或者直接并联到电网上,调试桥式电路交流侧输出电压的相位和幅值,或者直接控制其交流侧电流,使该电路吸收或者发出满足要求的无功功率,实现动态无功补偿的目的。
SVG组成:一个基本的静止无功发生器系统应该包括变流电路、信号检测电路、驱动电路、储能电容、连接电抗及数字信号处理器等组成部分。
交流侧所接的电感L和电容C的作用分别为阻止高次谐波进入电网和吸收相时产生的过电压。
无论是电压型,还是电流型的SVG其动态补偿的机理是相同的。
但考虑到实际应用的效能,大多采用电压型的电路结构。
静止无功发生器系统是应无功补偿快速、准确和减少谐波的要求而出现的,是采用变流器结构和新型电力电子器件、智能控制芯片实现的高性能无功补偿系统。
目前研究的热点主要围绕改善电路结构、改进信号测量技术、寻找更佳的控制方式及滤波等方面。
在进行具体的设计之前,有必要对静止无功发生器的基本原理加以介绍。
其中,由于无功电流检测的准确性、快速性关系到系统性能的好坏。
SVG分类:根据直流侧采用的储能元件是电容还是电感,可以将SVG分为电压型和电流型两种。
直流侧为电容元件的称为电压型SVG,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则成为电流型的SVG。
SVG的控制分类:在SVG中,外闭环调节器输出的控制信号被视为补偿器应产生的无功电流(或无功功率)的参考值。
正是在如何由无功电流(或无功功率)参考值调节SVG真正产所需的无功电流(或无功功率)这个环节上,形成了SVG多种多样的具体控制方式。
由无功电流(或无功功率)参考值调节SVG产生所需无功电流(或无功功率)的具体控制方法,可以分为间接控制和直接控制两大类。
无功补偿的多种方式及各自的优缺点有哪些无功补偿是指通过投入无功功率来改善电力系统的功率因数和电压质量。
无功补偿的多种方式根据实现的方法和装置的种类,可以分为静态无功补偿和动态无功补偿。
下面将对这两种方式及其各自的优缺点进行详细说明。
静态无功补偿常见的方式有电容补偿、电抗补偿和混合补偿等。
电容补偿主要通过并联接入电容器的方式进行,它能够提高电力系统的功率因数,提高电源的容量利用效率,减小线路功率损耗,并改善电压的稳定性。
电容补偿的优点有:1.无需响应时间,能实现快速无功补偿;2.功率因数改善明显,系统稳定性较好;3.维护成本低,装置体积小;4.可靠性高,寿命长。
但电容补偿也存在一些缺点:1.稳态补偿效果受负荷变化的影响较大;2.补偿效果受谐波干扰的限制;3.对电源电压波动敏感,需配合电压调整设备。
电抗补偿主要通过串联电抗器的方式实现,它能够提高电力系统的电压质量,改善电网稳定性,减小潮流损耗,提高电能质量。
电抗补偿的优点有:1.对电源电压波动不敏感,较适合对电力系统进行长距离补偿;2.补偿稳态性能好,可适用于任意负荷;3.能抵抗系统谐波干扰。
电抗补偿的缺点是:1.响应速度较慢,不能实现快速的动态无功补偿;2.在低频部分容易产生谐振问题;3.需要较大的设备体积和投资成本。
混合补偿通常综合了电容补偿和电抗补偿的优点,通过同时串联接入电容器和并联接入电抗器的方式进行补偿。
混合补偿的优点有:1.能够综合利用电容补偿和电抗补偿的优点,使补偿效果更好;2.适用于各种负荷类型和负荷变化的场合;3.能够抑制谐波,提高电压质量;4.稳态和动态补偿效果均较好。
混合补偿的缺点是:1.需要更大的设备容量,增加了投资成本;2.响应时间相对较长。
动态无功补偿是指通过高速的开关装置来实现无功功率的补偿。
常见的动态无功补偿装置包括静态无功发生器(SVG)、静止补偿装置(SSC)和可变补偿器(VSC)等。
动态无功补偿的优点有:1.响应速度极快,可以实现毫秒级的无功补偿;2.能够实现连续调整补偿功率,适应负荷变化;3.能够抑制谐波,提高电压质量;4.对电源电压波动不敏感。
静止无功发生器——(SVG)原理简介静止无功发生器 (SVG) 是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。
SVG 的思想早在 20 世纪 70 年代就有人提出 ,1980 年日本研制出了 20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991 年和 1994 年日本和美国分别研制成功了80MVA 和 10OMVA 的采用 GTO 晶闸管的SVG 。
目前国际上有关 SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾 , 国内有关的研究也已见诸报道。
与传统的以 TCR 为代表的 SVC 相比 ,SVG 的调节速度更快 , 运行范围宽 , 而且在采取多重化或 PWM 技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是 ,SVG 使用的电抗器和电容元件远比 SVC 中使用的电抗器和电容要小 , 这将大大缩小装置的体积和成本。
由于 SVG 具有如此优越的性能 , 是今后动态无功补偿装置的重要发展方向。
一、SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联 ( 或直接并联 ) 在电网上 , 适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流 , 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。
在单相电路中 , 与基波无功功率有关的能量是在电源和负载之间来回往返的。
但是在平衡的三相电路中 , 不论负载的功率因数如何 , 三相瞬时功率之和是一定的 , 在任何时刻都等于三相总的有功功率。
因此总体上看,在三相电路的电源和负载之间没有无功能量的来回往返 ,无功能量是在三相之间来回往返的。
所以 , 如果能用某种方法将三相各部分总体上统一起来处理 , 则因为总体来看三相电路电源和负载间没有无功能量的传递 , 在总的负载侧就无需设置无功储能元件。
三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。
svg和svc以及apf区别SVG/SVC/APF的大致区别1.SVC也叫静止无功补偿器常见的SVC有四种形式:SR(自饱和型电抗器)、TCR(晶闸管控制电抗器)、TSC(晶闸管投切电容器)、TCT(晶闸管控制高漏抗变压器)。
目前市场上TCR市场占有率相对较高。
下面是TCR型SVC于SVG的部分对比。
SVC(TCR)的特点:1.可以进行连续感性或容性无功调节;2.能进行分相调节;3.吸收滤波能力较SVG差;4.噪声偏大;损耗相对也偏大;6.动态响应时间稍慢;7.自身有谐波分量产生;8.不可直接与超高压相连,需加装变压器;9.占地面积大,能补偿0~+1之间无功;10.受系统电压影响2.SVG也叫静止无功发生器利用大功率电力电子器件(IGBT)构成一个自换相变流器,通过电压源逆变技术提供超前和滞后的无功,实现无功补偿。
特点是:1.可以实时连续大范围无功调节;2.输出的电流于系统电压无关(不受电压波动影响);3.吸收滤波能力较强;4.噪声小;损耗小;6.响应时间小于5ms,7.产生谐波分量非常小;8.可直接与超高压相连;9.性价比高;10.占地面积仅SVG的1/2或1/3,能补偿-1~0~+1之间无功。
SVG的特性中可以看出负荷补偿方面,较传统的SVC有更大的优越性,特别是在机车、电弧炉等冲击负荷补偿方面3.APF叫有源电力滤波器利用大功率电力电子器件(IGBT),通过电压源逆变技术产生各次谐波电流,来抵消谐波。
同时能够补无功调节三相不平衡。
4.价格及行业目前的SVG的价格明显高于SVC,同容量的价格基本是倍数APF电压等级为400V/800V。
SVG电压等级为6KV/10KV/35KV无需变压器耦合。
5.APF和SVG区别APF补谐波电流,SVG补无功电流,两者主电路图设计一样,皆为主动补偿,只不过主要目标不太一样。
apf主要用于低压系统例如400/690/1140V,且主要用来滤除电路谐波顺带补无功,而SVG则主要用于中高压系统例如6/10/35KV,且主要用来补无功,具有谐波抑制和补偿作用。
H桥SVG无功补偿工作开关频率1.引言无功功率是电力系统中的一种重要的功率组成部分,对于保持系统电压稳定、减小传输损耗以及提高电力系统运行效率具有重要作用。
在无功功率补偿技术中,H桥S VG(静止无功发生器)是一种常用且有效的解决方案。
本文将详细介绍H桥S V G无功补偿工作开关频率的相关内容。
2. H桥SV G简介H桥SV G是一种基于I GB T(绝缘栅双极型晶体管)的现代无功补偿设备,通过与电网并联连接,能够主动地在电力系统中产生可控的无功电流,以实现对系统功率因数的调节。
H桥S VG由四个I GB T组成的桥臂和控制电路组成,通过控制桥臂开关状态和P WM(脉冲宽度调制)技术,使无功电流与系统电压同频、同相,从而实现无功功率的补偿。
3. H桥SV G无功补偿原理H桥SV G的无功补偿原理基于电网电压和负载电流之间的相位差,通过控制S VG的输出电流与电压之间的相位差来补偿系统中产生的无功功率。
其工作原理可简化为以下几个步骤:1.SV G感应电压:根据电网电压变化,SV G感应出相应的电压信号。
2.控制电路:控制电路对S VG输出电流进行采样和处理,生成控制信号。
3.PW M技术:PW M技术通过对控制信号进行调制,得到相应的I GB T开关信号。
4.桥臂开关控制:通过控制IG BT桥臂的开关状态,调节SV G输出电流的大小和相位。
5.无功补偿:根据电网电压和负载电流相位差的变化,实时调节SV G输出电流的相位和幅值,达到无功功率补偿的目的。
4. H桥SV G无功补偿工作开关频率H桥SV G的无功补偿工作开关频率对于无功功率补偿的效果和稳定性具有重要影响。
开关频率的选择应结合电网特性、负载变化以及特定的补偿需求来确定。
常见的H桥S V G开关频率有以下几种:1.低频开关:低频开关一般在50H z以下,适用于电力系统中工频范围内的无功补偿。
开关频率较低,具有较高的响应时间,适用于对动态响应要求不高的场合。
试简述静止无功发生器(SVG)的基本原理。
与基于晶闸管技术的SVC相比,SVG有哪些更优越的性能?静止无功发生器(Static Var Generator,SVG)是一种用于有功功率和无功功率控制的装置。
其基本原理是通过使用功率电子器件(通常为IGBT)将无功功率通过电容器和电感器装置进行控制和补偿,以实现对电网的无功功率的准确控制。
SVG的基本工作原理如下:1.检测电网的电压和电流,通过控制电子器件(IGBT)的导通和阻断,将电容器和电感器转换为容性负载或感性负载。
2.当电网需求无功功率时,SVG将电容器充电或电感器供电,产生无功功率并注入电网,以帮助电网消耗或吸收无功功率。
3.当电网有多余的无功功率时,SVG将其吸收并存储在电容器中,以减少电网的无功功率,从而维持电网的功率因数在标准范围内。
与基于晶闸管技术的静止无功补偿器(Static Var Compensator,SVC)相比,SVG具有以下更优越的性能:1.更快的响应速度:SVG使用功率电子器件(如IGBT),其开关速度非常快,可以实时响应电网瞬态变化,从而更快地进行无功功率控制和补偿。
2.更高的精确性:SVG使用数字控制技术,使其能够实现对电网功率因数的精确控制。
相比之下,基于晶闸管技术的SVC的控制精度较低。
3.更小的占地面积:SVG采用变流器和电容器构成,空间占用较小。
而基于晶闸管技术的SVC通常由较大的电抗器和电容器构成,需要更大的空间。
4.更高的效率:SVG采用功率电子器件(如IGBT)作为开关装置,具有较低的功耗和较高的转换效率。
相比之下,基于晶闸管技术的SVC由于存在一定的能量损耗,效率较低。
综上所述,静止无功发生器(SVG)相对于基于晶闸管技术的静止无功补偿器(SVC),具有更快的响应速度、更高的精确性、更小的占地面积和更高的效率。
这使得SVG在电力系统中更受青睐,并得到广泛的应用。
基于SVG技术的动态无功补偿整流方案基于SVG技术的动态无功补偿整流方案无功补偿是电力系统中重要的问题之一,对于提高电网的稳定性和可靠性至关重要。
动态无功补偿整流方案是一种基于SVG技术的解决方案,能够有效地改善电力系统的功率因数,提高电能的效率和质量。
SVG技术,即静止无功发生器技术,是一种通过电子器件实现电力系统无功补偿的技术。
它具有响应速度快、控制精度高、运行稳定等优点,成为了无功补偿领域的热门技术。
动态无功补偿整流方案利用SVG技术的优势,通过智能控制器对无功补偿器进行精确控制,实现对电网的无功补偿。
它主要由SVG装置、控制系统和监测系统三部分组成。
首先,SVG装置是该方案的核心部分,它通过电子器件实时感知电网的无功功率需求,并根据需求产生相应的无功电流来进行补偿。
与传统的无功补偿设备相比,SVG装置具有更高的响应速度和更精确的控制能力,能够更好地适应电力系统的变化。
其次,控制系统是该方案的重要组成部分,它负责对SVG装置进行精确控制和调节。
控制系统根据电网的运行状态和无功功率需求,通过智能算法计算出最佳的无功补偿方式,并将控制信号传输给SVG装置。
控制系统能够实时监测电网的无功功率,有效地控制SVG装置的工作状态,提高无功补偿的精度和效果。
最后,监测系统是该方案的监控和管理部分,它能够实时监测电网的无功功率、SVG装置的运行状态和参数等,并将监测数据传输给控制系统进行分析和处理。
监测系统能够提供电网的运行状态和无功补偿效果的实时反馈,帮助运维人员及时调整和优化无功补偿方案。
总之,基于SVG技术的动态无功补偿整流方案是一种高效、精确的无功补偿解决方案。
它通过智能控制器对SVG装置进行精确控制,能够实时感知电网的无功功率需求,并通过产生相应的无功电流进行补偿。
该方案能够提高电力系统的功率因数,提高电能的效率和质量,对于电网的稳定运行具有重要意义。
未来,随着科技的进步和应用的广泛推广,动态无功补偿整流方案有望在电力系统中发挥更大的作用。
静止无功发生器(SVG)又称静止同步补偿器(STATCOM).
主要器件:断路器、变压器、逆变器、电容器。
核心器件:IGBT 功能:维持系统电压恒定、谐波治理、抑制电压闪变。
优点:可对频率和大小都变化的谐波以及变化的无功功率进行补偿,对补偿对象的变化有极快的响应,补偿无功功率时不需要储能元件,补偿谐波时所需储能元件的容量不大,且补偿无功功率的大小可以做到连续调节;不会引起谐振短路;可以吸纳无功;精准电压控制(该装置除了可以按照功率因数或者无功功率控制之外,还可以按照电压幅值来控制,确保用户获得的电压的平稳性,降低电压纹波);受电网阻抗的影响不大,不容易和电网阻抗发生谐振;且可以跟踪电网频率的变化,故补偿性能不受电网频率变化的影响。
缺点:目前仅在大容量区域变电所使用,造价高昂。
适用场合:适用于大容量无功补偿的枢纽变电站。
SVC-MCR 主要器件:FC+MCR FC+MCR投切方式:FC固定投切,通过控制晶闸管的导通角来控制流过铁芯的磁通,磁通的强弱直接决定了铁芯的饱和程度,从而最终实现对电感值大小的控制。
无功功率:电源能量与感性负载线圈中磁场能量或容性负载电容中的电场能量之间进行着可逆的能量交换而占有的电网容量叫无功,Q 表示这种能量交换的幅度。
无功功率的表达式:Q=UIsin φ 式中无功的单位为Var (乏),线电压的单位为V (伏),视在电流I 单位为A (安)。
功率因数:在正弦电路中,功率因数是由电压和电流之间的相角差决定的,这种情况下,功率因数常用COS φ表示。
视在功率S=UI,有功功率P=UIcos φ零,我们可以以最简单的情况进行验证,我们让电阻R 无限趋近与0,则我们还可以验证,在任何三项电路中,无功功率的瞬时值总为0.1、感性无功:电流矢量滞后电压矢量90度。
如:电动机、变压器线圈、晶闸管变流设备等。
2、容性无功:电流矢量超前电压矢量90度。
如:电容器、电缆输配电线路、电力电子超前控制设备等。
3、基波无功:与电源频率相等的无功。
4、谐波无功:与电源频率不相等的无功。
无功功率的影响1.增加设备的容量。
无功功率的增加,会导致电流增大和视在功率的增加,从而使2.发电机、变压器及其它电气设备的容量和导线容量增加。
3.设备及线路损耗增加。
4.使线路及变压器的电压降增大,如果是冲击性无功功率负载,还会使电压产生剧烈波动,使供电质量严重降低。
其中Zs引起的压降为∆Ů=È-Ů=ZsÌ负载电流Ì=U(G-jB)=所以∆Ů=∆U R+j∆Ux由于实际È和Ů之间的夹角很小,我们认为j∆Ux≈0,即:∆Ů=∆U R=在一般的电网中Rs比Xs小得多,因此影响电网电压的主要是无功功率。
电力系统的无功平衡电压是衡量电能质量的重要指标。
电力系统的运行电压水平取决于无功功率的平衡。
系统中各种无功电源的无功出力应能满足系统负荷和网络损耗在额定电压下对无功功率∆UU的需求,否则电压就会偏离额定值。
电力系统无功功率平衡的基本要求:系统中的无功电源可以发出的无功功率应该大于或至少等于负荷所需的无功功率和网络中的无功损耗。
浅谈静止无功补偿装置(SVG)在风电场的应用摘要:风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,导致并网功率因数不合格、电压偏差、电压波动和闪变等问题,对于大容量风电场接入系统时还存在稳定性问题,都需要动态无功补偿系统。
另一方面,系统电压的波动也会对风机的正常运行造成影响。
本文分析了静止无功补偿装置(SVG)在风电场的应用。
关键词:静止无功补偿装置(SVG);风电场;应用电力系统为保持电压稳定而进行的电压调整过程,就是电网无功功率的补偿与再分配过程,通过无功补偿可以稳定受电端及电网的电压,提高供电质量。
以往多采用电容器组实现功率补偿,用常规接触器进行电容投切,但是投切式补偿电容的方法只能实现有极调节,并且受机械开关动作时间限制,响应速度慢,不能满足对波动较频繁的风电场无功负荷补偿要求。
一、风电场无功容量的要求风电场的无功补偿可以采用电力电子器件与储能元件构成的静止动态无功补偿装置,其显著特点是响应时间短,能快速、平滑无级地调节容性及感性无功功率,实现无功功率的实时动态补偿。
目前,风电场较常使用的静止无功补偿器主要有三种类型:晶闸管可控电抗器TCR型、磁阀式可控电抗器MCR 型和晶闸管投切电容器TSC型。
此外,静止无功功率发生器SVG或称静止型同步补偿器也得到了越来越广泛的应用。
二、静止无功补偿装置(SVG)在风电场的应用1.设备构成。
静止无功发生器(简称为SVG)是指利用自换相的电力半导体桥式变流器来进行动态无功补偿的装置,装置变流器包含直流电容和逆变桥2个部分,其中逆变桥由可关断的半导体器件绝缘栅双极型晶体管组成。
变流器电路经过电抗器并联在电网上,通过调节逆变桥中器件的开关,可以控制直流逆变为交流电压的幅值和相位,通过检测系统中所需的无功,可以快速发出幅值相等、相位相反的无功功率,实现动态无功补偿的目的。
系统主电路采用经串联电抗器直接接于母线链式串联结构,每相由若干个阀体模块组成,并采用冗余设计,满足“N-1”的运行要求,成套装置以母线无功及母线电压作为控制目标,由成套装置的控制系统综合控制以实现从感性到容性之间的连续自动可调,可动态跟踪电网电能质量变化,并根据变化情况动态调节无功输出,实现任意风段的高功率因数运行,装置无功调节时间小于10ms。
基于DSP的SVG无功补偿装置研究无功补偿技术在电力系统中扮演着重要的角色,能够提高系统的稳定性和可靠性。
现如今,随着电力系统负荷的增加和电力质量的要求越来越高,无功补偿技术也得到了广泛的关注和研究。
本文将针对基于数字信号处理(DSP)技术的静止无功发生器(SVG)无功补偿装置进行研究。
首先,文章介绍了SVG的工作原理。
SVG是一种通过电力电子器件实现的无功补偿装置,能够快速响应电力系统的无功需求。
其主要由PWM变换器、电流控制器和电压控制器组成。
通过控制PWM变换器的开关状态,实现对电力电子器件的控制,进而实现对电压和电流的调节,从而实现无功补偿。
同时,文章还介绍了SVG的主要特点,如快速响应、高精度、无电压波动等。
接着,文章详细介绍了基于DSP技术的SVG无功补偿装置的设计和实现。
DSP作为一种高性能的数字信号处理器,能够提供强大的计算和控制能力,非常适合用于无功补偿装置的控制。
文章以TMS320F2812作为控制器,采用C语言进行编程,实现了无功补偿装置的控制算法。
通过对电力系统的无功需求进行实时监测和分析,基于DSP的SVG无功补偿装置能够快速响应系统需求,并实时调节电流和电压,实现无功补偿。
最后,文章对基于DSP的SVG无功补偿装置进行了实验验证。
通过搭建实验系统,模拟电力系统的运行情况,对基于DSP 的SVG进行了性能测试。
实验结果表明,基于DSP的SVG无功补偿装置能够快速响应系统需求,有效地补偿无功功率,提高系统的功率因数和电压稳定性。
综上所述,基于DSP的SVG无功补偿装置具有快速响应、高精度和无电压波动等特点,能够有效改善电力系统的无功功率问题。
未来,我们可以进一步研究基于DSP的SVG的优化设计和控制算法,提高其性能和稳定性,为电力系统的无功补偿提供更好的解决方案。
无功补偿SVG、SVC、MCR、TCR、TSC区别TSC TCR型SVC MCR型SVC SVG吸收无功分级连续连续连续响应时间20ms 20ms100ms 10ms运行范围容性感性到容性感性到容性感性到容性谐波受系统谐波影响大,自身不产生谐波受系统谐波影响大,自身产生大量谐波受系统谐波影响大,自身产生较大量谐波受系统谐波影响小,可抑制系统谐波受系统阻抗影响大大大无损耗小大较大小分相调节能力有限可以不可可以噪声较小较小小体积(同等容量)大大较大小TSC:晶闸管投切电容器,采用无源器件(电容器)进行无功补偿,分级补偿,不能实现连续可调。
TCR:晶闸管控制电抗器。
MCR:磁控电抗器,与TCR类似,需要和电容柜配合实现动态无功补偿,可实现连续可调。
SVC:静止无功补偿装置,采用无源器件进行无功补偿的技术总称,包括:TSC、TCR等,“静止”是与同步调相机对应,一般来说将使用晶闸管进行控制的补偿装置成为“SVC"。
SVG:静止无功发生器,采用电能变换技术实现的无功补偿。
SVG与其它的最大区别在于能主动发出无功电流,补偿负载无功电流。
而其它均为无源方式,依靠无源器件自身属性进行无功补偿。
静止无功补偿器(SVC) 与静止无功发生器(SVG)有什么异同?静止无功补偿器(SVC)该装置产生无功和滤除谐波是靠其电容和电抗本身的性质产生的。
静止无功发生器(SVG)该装置产生无功和滤除谐波是靠其内部电子开关频繁动作产生无功电流和与谐波电流相反的电流。
相关知识静止无功补偿器又称SVC,传统无功补偿用断路器或接触器投切电容,SCV用可控硅等电子开关,没有机械运动部分,所以较静态无功补偿装置。
通常的SVC组成部分为1.固定电容器和固定电抗器组成的一个无功补偿加滤波支路该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性无功,将电网补偿到容性状态。
2.固定电抗器3.可控硅电子开关可控硅用来调节电抗器导通角,改变感性无功输出来抵消补偿滤波支路容性无功,并保持在感性较高功率因数。
无功补偿装置 (SVG)在变电站中的应用摘要:SVG是柔性交流输电技术(Flexible ACT ran sm ission System,简称FACTS)的主要装置之一,它代表着现阶段电力系统无功补偿技术新的发展方向。
动态补偿装置能够快速连续地提供容性和感性无功功率,实现适当的电压和无功功率控制,保障电力系统稳定、高效、优质地运行。
通过介绍SVG的基本电气原理、运行情况等来阐述SVG在变电站中的应用情况,并根据在实际变电站中应用前后的相关运行数据来说明该装置在变电站中的应用前景。
关键词:动态;变电站;无功;应用1变电站无功补偿技术应用在做电网网架规划时,如何设定线路回路数量,如何分配变电的容量大小以及导线的连接方式和截面大小,这些都是要依照不同水平年不同负荷点的有功负荷大小与其可靠性要求来确定的。
可是,即便如此也不一定能满足不同用户端的电流压力在国家和区域的规定范围内,这是因为在电力系统真正运行的时候,其电流负荷不固定,而功率因数也不固定,通过线路的无功功率与有功功率就会和规划数值明显不同,而当电力系统在网架规划的时候是依照电流的最大负荷,这就会引起某些负荷点的电压,出现过低或者过高(称为“越限”)的现象。
而无功补偿,就是能让越限的电压再次恢复常态,而采取的一种有效措施。
无功补偿的原理就是通过吸收或提供适当变化的无功功率,使得电线线路的无功电流达到最小。
目前,无功补偿的设备装置不少,变电站能够选择使用的无功补偿装置主要有并联电容器、并联电抗器、静止无功补偿器(SVC)、静止无功发生器(SVG)。
其中,并联电容器、并联电抗器具备使用成本少、电能耗损量少、建造时间短以及维护简便等优势。
在通常状态下,变电站一般使用的无功补偿装置是并联电容器组和电抗器组。
然而,当在一些风电汇集升压站,母线电压受风处理变换影响而时常变化,并且变化幅度大,当对电力系统的供电质量亦或是系统稳定性有影响的情况下,应该选择SVC或者SVG。
低压无功补偿的原理一、无功功率的产生和影响无功功率通常是由感性负载(如电动机)和容性负载(如电容器)引起的。
感性负载会产生感性无功功率(或称为无功电感),而容性负载会产生容性无功功率(或称为无功电容)。
无功功率对电网有一定的影响,如引起电网电压的波动、降低电能的利用效率等。
低压电网中的无功补偿主要采用静态无功补偿装置(SVC)、静止无功发生器(SVG)以及电力电容器等设备和系统实现。
其主要原理如下:1.静态无功补偿装置(SVC)SVC是一种基于IGBT(绝缘栅双极型晶体管)技术的无功补偿设备。
其工作原理是通过电容器和电感器组成谐振电路,产生可变的无功电流,来补偿感性或容性负载所引起的无功功率。
SVC可以根据电网的需求实时调整无功功率的大小和相位角,从而达到电网无功补偿的目的。
2.静止无功发生器(SVG)SVG是一种基于IGBT技术的无功补偿设备,主要通过电流控制策略来实现静止无功补偿。
SVG具有快速响应、精确无功补偿以及对电力质量有良好改善等特点。
其工作原理是通过IGBT器件对电网电压的波形进行调节,将电网的无功功率转化为有源功率,进而补偿无功功率。
3.电力电容器电力电容器是一种主动的无功补偿设备,可以通过给电网提供容性功率来补偿感性负载所引起的无功功率。
其工作原理是将感性无功功率转变为容性功率,通过并联接入电网实现补偿。
电力电容器通常具有快速响应、体积小、运行稳定等特点。
三、低压无功补偿的控制策略为了保持电网无功功率在正常范围内,实现无功功率补偿,需要通过控制策略来调整无功补偿装置的工作状态。
一般常用的控制策略有如下几种:1.基于电压稳定控制根据电网电压的变化,实时调整无功补偿设备的容性或感性无功功率,使电网电压保持稳定。
2.基于电流平衡控制通过监测电网三相电流的大小和相位差,实时调整无功补偿设备的工作状态,使电网三相电流保持平衡。
3.基于功率因数控制根据电网功率因数的变化,实时调整无功补偿设备的容性或感性无功功率,使功率因数保持在设定范围内。
无功补偿SVG、SVC、MCR、TCR、TSC区别TSC TCR型SVC MCR型SVC SVG吸收无功分级连续连续连续响应时间20ms 20ms100ms 10ms运行范围容性感性到容性感性到容性感性到容性谐波受系统谐波影响大,自身不产生谐波受系统谐波影响大,自身产生大量谐波受系统谐波影响大,自身产生较大量谐波受系统谐波影响小,可抑制系统谐波受系统阻抗影响大大大无损耗小大较大小分相调节能力有限可以不可可以噪声较小较小小体积(同等容量)大大较大小TSC:晶闸管投切电容器,采用无源器件(电容器)进行无功补偿,分级补偿,不能实现连续可调。
TCR:晶闸管控制电抗器。
MCR:磁控电抗器,与TCR类似,需要和电容柜配合实现动态无功补偿,可实现连续可调。
SVC:静止无功补偿装置,采用无源器件进行无功补偿的技术总称,包括:TSC、TCR等,“静止”是与同步调相机对应,一般来说将使用晶闸管进行控制的补偿装置成为“SVC"。
SVG:静止无功发生器,采用电能变换技术实现的无功补偿。
SVG与其它的最大区别在于能主动发出无功电流,补偿负载无功电流。
而其它均为无源方式,依靠无源器件自身属性进行无功补偿。
静止无功补偿器(SVC) 与静止无功发生器(SVG)有什么异同?静止无功补偿器(SVC)该装置产生无功和滤除谐波是靠其电容和电抗本身的性质产生的。
静止无功发生器(SVG)该装置产生无功和滤除谐波是靠其内部电子开关频繁动作产生无功电流和与谐波电流相反的电流。
相关知识静止无功补偿器又称SVC,传统无功补偿用断路器或接触器投切电容,SCV用可控硅等电子开关,没有机械运动部分,所以较静态无功补偿装置。
通常的SVC组成部分为1.固定电容器和固定电抗器组成的一个无功补偿加滤波支路该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性无功,将电网补偿到容性状态。
2.固定电抗器3.可控硅电子开关可控硅用来调节电抗器导通角,改变感性无功输出来抵消补偿滤波支路容性无功,并保持在感性较高功率因数。
静止无功发生器(SVG)无功补偿专业知识:静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进态无功补偿的装置。
SVG的思想早在20世纪70年代就有人提出,1980 年日本研制出了20MVA 的采用强迫换相晶闸管桥式电路的SVG,1991年和1994年日本和美国分别研制成功了80MVA和10OMVA的采用GTO晶闸管的SVG。
目前国际上有关SVG的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。
与传统的以TCR为代表的SVC相比,SVG的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。
更重要的是,SVG使用的电抗器和电容元件远比SVC中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。
由于SVG具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。
无功补偿的专业知识:与电网中的有功损耗相比,无功损耗要大的多,这是因为高压线路、变压器的等值电抗要比电阻大得多,并且变压器的励磁无功损耗也要比励磁有功损耗更大,事实证明电网最基本的无功电源——发电机所发出的无功功率远远满足不了电网对无功的需求,因此对电网进行无功补偿显得尤为必要。
另外,对电网采取适当的无功补偿可以稳定受端及电网的电压,在长距离输电线路中选择合适的地点设置无功补偿装置,还可以改善电网性能,提高输电能力,在负荷侧合理配置无功,可以提高供用电系统的功率因数,减少功率损耗,因此,电网中无功补偿的作用已得到普遍重视。
1.电网无功补偿的方法电网无功补偿方法有很多种,从传统的带旋转机械的方式到现代的电力电子元件的应用经历了近一个世纪的发展历程,下面将按无功补偿方式的发展顺序逐一论述电网的无功补偿方法。
1.1同步调相机同步调相机是一种专门设计的无功功率电源,相当于空载运行的同步电动机。
调节其励磁电流可以发出或吸收无功功率,在其过励磁运行时,向系统供给感性无功功率而起无功电源的作用,可提高系统电压;在欠励磁运行时,它会从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压,同步调相机欠励磁运行吸收无功功率的能力,约为其过励磁运行发出无功功率容量的50%~65%。
装有自动励磁调节装置的同步调相机,能根据装设地点电压的数值平滑的改变(输出或吸取)无功功率,从而进行电压调节。
此外,装有强行励磁调节装置的同步调相机在系统发生故障而引起电压降低时,可以提供短时电压支撑,有利于提高电网稳定性。
但它的不足之处也有很多,如有功损耗大、运行维护复杂,投资费用大、动态调节响应慢以及增加了系统的短路容量等等,同步调相机正逐渐被投资更少性能更优的新型无功补偿设备所取代。
1.2并联电容器并联电容器是目前电网中应用最为广泛的一种无功补偿设备,只能发出无功功率,不能吸收无功功率。
它藉提高负荷侧功率因数以减少无功功率流动而提高受端电压、降低网损。
它需要根据负荷的的变化而进行频繁的投入或切除操作,而此投入或切除操作通常用机械开关控制,因此不能准确快速的实现无功功率补偿。
另外在系统电压出现紧急状态时,并联电容器组的明显缺点是其无功输出量随电压的平方下降,因此,当电网无功不足需要投入并联电容器进行无功补偿时,最好在高峰负荷到来之前就将电容器组投入,使电网电压提高至上限运行,这样可防止高峰负荷时电压的过分下降,若在电网电压已经下降后采取措施,则补偿效果不好,但又因为它的价格便宜、易于安装、没有旋转部件以及维护也较为方便而得到许多电力公司的青睐。
1.3并联电抗器并联电抗器用于吸收超高压长距离架空线和电缆线的过剩无功功率,防止正常运行时有过多的无功功率注入负荷。
并联电抗器吸收的无功功率QL与所在母线电压U平方成正比即QL=U2/XL,式中的XL为并联电抗器感抗。
并联电抗器一般以直接接到超高压线路或母线,或经主变三次侧或较低电压母线两种接线设置方式接入电网,若采用并联电抗器直接接到超高压线路上,优点是可以限制高压线路的过电压,与中性点小电抗配合,有利于超高压长距离输电线路单相重合闸过程中故障相的消弧,从而保证单相重合闸的成功,不足是造价过高。
若接到主变三次侧或较低电压母线上,优点是造价低、操作简便,具体采用何种方式,依具体情况而定1.4静止无功补偿器静止无功补偿器(SVC)出现在20世纪70年代初期,可以说是灵活交流输电“家族”的最早成员,它通常由静电电容器、电抗器及检测与控制系统组成。
目前常用的有晶闸管控制电抗器型(TCR型)和饱和电抗器型(SR型)。
TCR型补偿器由TCR和若干组不可控制电容器组成,电抗器与反向并联连接的晶闸管相串联,利用晶闸管的触发角控制来改变通过电抗器的电流,就可以平滑的调整电抗器吸收的基波无功功率,TCR型补偿器其实只是以晶闸管开关取代了常规电容器所配置的机械开关,使它的开关次数不受限制,其运行性能要明显优于机械开关投切电抗器。
SR型补偿器中,由饱和电抗器与串联电容器组成的回路具有稳压特性,能维持所连接母线电压水平,对冲击性负荷引起的电压波动具有补偿作用,SR型补偿器具有快速、可靠、过载能力强以及产生谐波小等优点,而且还具有抑制三相不平衡能力,但运行中的电抗器长期处于饱和状态,铁芯损耗较大,且饱和电抗器的造价过高,所以目前国内应用较少1.5静止无功发生器静止无功发生器(SVG)也被称为静止同步补偿器(STATCOM)或静止调相机(STATCON),是在20世纪80年代以来出现的更为先进的静止无功补偿装置。
装置中六个可关断晶闸管(GTO)分别与六个二极管反向并联,适当控制 GTO的通断,可以把电容器C上的直流电压转变成为与电力系统电压同步的三相交流电压,装置的交流侧通过电抗器或变压器并联接入系统。
适当控制逆变器的输出电压就可以灵活地改变SVG的运行工况,使其处于容性负荷、感性负荷或零负荷状态。
与SVC相比,SVG的响应速度更快,运行范围更宽,谐波电流含量更小,尤其重要的是,电压较低时SVG仍可向系统注入较大的无功电流,它的储能元件(如电容器)的容量远比它所提供的无功容量要小2.不同电压等级电网的无功补偿原则对于10kV配电线路,优先在配电变压器低压侧配置带自动投切装置的并联电容器,以提高线路的功率因数,电容器的补偿容量为配电变压器的10%~20%。
在 110kV 及以下的电网中,由于线路输送负荷一般均大于线路的自然功率,电网呈感性,并且负荷与变压器均为感性,所以,无论从调压还是降损角度考虑,均应以容性补偿为主,补偿容量可按主变压器容量的10%~30%来确定。
无功补偿在220kV网络中的情况较为复杂,电网的无功特性与线路实际输送功率(与线路的自然功率比较)的大小有关,对于网架不强的220kV网络,综合线路输送负荷大于线路的自然功率以及变压器为感性等原因,电网呈现感性特质,电网以容性补偿为主;而对网架较强峰谷差较大的220kV网络,则存在以下情况:1)当电网为高峰负荷时,由于线路输送负荷和变压器通过潮流较大,线路和变压器消耗无功多,网络呈感性,此时以容性无功补偿为主,如并联电容器等。
2)当电网为低谷负荷时,则由于路输送负荷和变压器通过潮流较小,此时网络呈现容性,建议调整发电机高功率因数运行,并且将220kV网络电压偏高的变电站的电容器退出。
3)对于冲击性负荷较大的电网,应在冲击性负荷附近配置静止补偿器,以抑制冲击性负荷引起的电压闪变,快速调节无功功率330kV及以上的网络,由于线路实际输送功率均小于线路自然功率,线路无功功率过剩,此时除考虑将发电机进相运行外,电网应配置一定量的感性无功补偿设备,如并联电抗器等,并要求在一般情况下,并联电抗器的总容量应达到超高压线路充电功率的90%以上3.结论通过本文的论述和分析不难得出以下结论:目前我国的无功补偿装置中,并联电容器凭借其优良的性价比仍是电网无功补偿的主要方式,并且在相当一段时间内这种格局不会有太大改变。
新兴的基于电力电子逆变技术的静止无功补偿装置SVG,由于其响应速度快、损耗小、产生谐波小并且能连续大范围调节无功等优点,而正在成为无功补偿技术的发展方向,相信在不久的将来将会成为主要的无功补偿手段。
目前,思源各主要产品的评述:思源在并联电容器产业方面进展较为顺利,本人于09年3月参观其现场,其所制造的电容器,由于设备先进工艺精良,堪称工艺品,外观之精美可媲美家用电器;根据其09中报,营业收入比上年同期增78.30%,毛利率43.52%,远远超过同板块中的超高压电力变压器的毛利率,为其增长最快部分。
其电抗器部分(含消弧线圈),09年一直在进行高端人才引进,技术力量应有所加强,其大容量油浸并联电抗器已通过中国电力企业联合会组织的产品技术鉴定;其中消弧线圈(其实也是一种电抗器)继续保持行业龙头地位。
电力电子产品——大功率静止无功发生器(SVG)部分,中报公告下属子公司思源清能电气完成了35kV直挂SVG、铁路专用SVG、高压滤波、矿井专用SVG系统、100MVAR大容量SVG的模块设计、组合式APF(有源滤波装置)等多个项目的研发和投运,上述部分项目为国内首创技术,并具有国际先进或国际领先水平;其中,SVG的国内主要竞争对手是荣信电力电子,据其网站介绍目前单台最大容量为50MVAR(以35kV/200MVAR的SVG为例,系统由4套完全一样的50MVAR的SVG组成。
),应该说思源的100MVAR大容量 SVG 可能是国内排名前列的。
这是本人目前收集了解的状况;至于数字化变电站、钠硫电池充放电系统、V2G技术,应未规模产业化,效益有待观察;而高压互感器、高压开关GIS,本人不甚了解,不予置评。
变压器油谱在线监测系统,我在变压器行业对此比较熟悉,在国内市场占有率仅次于理工监测(理工监测09年总产值在 1.2亿元左右,股价86元,市盈率106倍),订单增长很快,由于国家电网推广在线监测业务和智能电网的建设,银河证券预测其未来变压器油谱在线监测业务有望保持40%以上的增速。
我在思源内部亦参观了变压器油谱在线监测系统的生产车间,该车间亦生产其他保护控制设备(像消弧线圈成套设备中的保护控制部分),系由思源副总经理WJZ一手打造掌管,生产管理相当先进,现场没有见到一张图纸,每个工人门前一台显示器终端,每天的作业内容直接发至各终端,按图焊接线路板。
工作室的气氛很幽静舒适,工人比较训练有素。
总之,思源的产品非常多样化,覆盖面相当广,这应该是体现了细分行业龙头发展战略和长尾战略的经营思想。
下面根据我在思源的见闻谈谈除外部因素以外思源自身内部生产、管理及技术方面的可能存在的问题:其一,电抗器事业部的技术力量比较薄弱,包括设计技术及制造技术;目前,国内西电及特变沈阳生产的是特高压50万伏及75万伏电抗器,且两公司也是上市公司,人才外流较难;而思源生产的是66千伏及35千伏电抗器;而电抗器作为铁心带气隙的特种变压器,其线圈数不大于2个,技术含量并非太高;因此,在全国各大型变压器制造厂中通常由搞电力变压器的人兼做,并不太重视;所以思源目前的电抗器技术队伍可能还并非来自变压器行业内的顶尖高手。