线性规划模型及其举例
- 格式:doc
- 大小:333.00 KB
- 文档页数:7
中学数学建模中的常见模型举例1、线性规划模型:线性规划模型是用于研究一个或多个决策变量和相关约束条件下最优化某个优化函数的一种选择性规划工具,也就是说把现实情况强行约束在线性范围种,运用单纯形理论,从而解决优化求解问题,是与现实环境相适应的一类数学模型。
线性规划的应用范围广泛,它可以用来求解企业的最优生产批量、最优生产技术、最优产品分配问题、交通运输问题、选择经营地区等问题。
2、单纯形模型:单纯形模型可以通过线性规划方法得到一个精确最优解,它可以较简单地将一个给定的线性规划模型转化为单纯形,单纯形模型也被称为经济系统规划模型,它可以用来解决经济学上的最优化问题,例如:以最小成本来求解企业的生产成本问题、市场需求的优化分配问题、固定预算的优化结构问题等。
3、最大流模型:最大流模型是有源网络流量分配中最常用的一种求解模型,即将一个网络流量从源节点推送到汇点,使得推送的总流量尽可能地大,特别是在一定的给定约束条件下,通过调整流量的大小,以达到最大化网络流量的目的。
此外,最大流模型也可以由弧变种变相技术,有效解决水源分配、医疗救援、供应链管理、电力系统调度等及最终用户的问题。
4、二次规划模型:二次规划模型是一种非线性模型,它是指一类未知函数是二次函数(quadratic)的最优化模型,也就是指对变量和约束条件下,求解优化函数的一类模型。
常用的求解算法有最小熵法、二次凸化算法、李曼-算法等,应用范围比较广泛,可以用来求解金融数学模型、分布式优化模型,还有通信网络优化模型等问题。
5、离散规划模型:离散规划模型又称有穷整数规划,是一类模型,其中变量要求只能有穷个整数值,任何一个变量取值仅仅限制在有穷的多个可能的离散的整数之间。
离散规划模型常被用于决策支持系统中,其优势就是可以求解出实际可行制度上的最优值,如供应链管理、通信路由优化、购物路线建议与推荐、优先级调度计划等。
线性规划模型及其举例摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。
关键词:资源规划;约束条件;优化模型;最优解在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。
如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。
一.背景介绍如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式:1()ni ij j j f x a x ==∑,1,2,,,1i m m =+ (1)若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为:OPT. 1()nj j j f x c x ==∑ST. 1nij j j a x =∑> ( =, < )i b , 1,2,,i m = (2)0,j x ≥ 1,2,,j n =…(2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。
将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。
1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。
决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。
2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都应考虑是否符合实际,有没有可行性,因而要构造基于科学预测的综合性约束(或限定)条件。
§2.1 线性规划问题1、线性规划问题举例例2.1.1 某工厂用三种原料生产三种产品,已知的条件如表2.1.1所示,试制订总利润最大的生产计划解、每天生产三种产品的数量,分别设为321,,x x x ,则321453max x x x ++15003221≤+x xs .t . 8004232≤+x x2000523321≤++x x x 0,,321≥x x x例 2.1.2 运输问题一个制造厂要把若干单位的产品从两个仓库 2,1;=i A i ,发送到零售点 4,3,2,1;=j B j ,仓库 i A 能供应的产品数量为 2,1;=i a i ,零售点 j B 所需的产品的数量为 4,3,2,1;=j b j 。
假设供给总量和需求总量相等,且已知从仓库 i A 运一个单位产品往 j B 的运价为 ij c 。
问应如何组织运输才能使总运费最小?解、从仓库i A 运往j B 的产品数量 设为4,3,2,1,2,1;==j i x ij m i n ∑∑==2141i j ij ij x c2,1;4321==+++i a x x x x i i i i i s .t .4,3,2,1;21==+j b x x j j j 4,3,2,1,2,1;0==≥j i x ij2、线性规划模型(1)一般形式⎪⎪⎩⎪⎪⎨⎧==≥+=≥++==+++++=q j x qj x m p i b x a x a x a p i b x a x a x a t s x c x c x c z j j i n in i i i n in i i nn ,...,2,1;,...,2,1;0,...,1;,...,2,1;..min 221122112211无限制ΛΛΛn j x j ,...,2,1;=为待定的决策变量,),,,(21n c c c c Λ=为价值向量,n j c j ,...,2,1;=为价值系数,),...,,(21m b b b b =为右端向量,矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 为系数矩阵。
线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
第五节线性规划建模举例线性规划是一种操作研究的数学方法,广泛应用于商业、经济、工程领域中的优化问题。
线性规划建模是将实际问题描述为线性规划模型的过程。
本节将介绍几个线性规划建模的典型例子。
例1:混合饲料配方问题某饲料厂要生产一种混合饲料,需包括以下六种饲料成分:大豆粉、面粉、玉米、鱼粉、鸡粉、牛粉,并且要求这种混合饲料包含不少于25%的蛋白质和不多于15%的纤维素。
每吨饲料的生产成本和含量如下:| 饲料成分 | 成本(元/吨) | 蛋白质含量(%) | 纤维素含量(%) || -------- | ------------- | -------------- | -------------- || 大豆粉 | 200 | 45 | 10 || 面粉 | 100 | 10 | 2 || 玉米 | 150 | 8 | 5 || 鱼粉 | 300 | 60 | 0 || 鸡粉 | 280 | 50 | 2 || 牛粉 | 320 | 70 | 5 |问如何使得生产的混合饲料成本最小,同时满足蛋白质含量不少于25%和纤维素含量不超过15%的要求。
自变量:混合饲料中每种成分的含量。
目标函数:最小化混合饲料的成本。
约束条件:1. 蛋白质含量不少于25%:0.45×x1 + 0.1×x2 + 0.08×x3 + 0.6×x4 + 0.5×x5 + 0.7×x6 ≥ 0.25。
2. 纤维素含量不超过15%:0.1×x1 + 0.02×x2 + 0.05×x3 + 0×x4 + 0.02×x5 + 0.05×x6 ≤ 0.15。
3. 非负性:x1, x2, x3, x4, x5, x6 ≥ 0。
其中,x1,x2,x3,x4,x5,x6 分别表示大豆粉、面粉、玉米、鱼粉、鸡粉和牛粉的含量,单位为吨。
第一章线性规划问题及其数学模型一、问题旳提出在生产管理和经营活动中常常提出一类问题,即怎样合理地运用有限旳人力、物力、财力等资源,以便得到最佳旳经济效果。
例1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需旳设备台时及A、B两种原材料旳消耗,如表1-1所示。
表1-1该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应怎样安排计划使该工厂获利最多?这问题可以用如下旳数学模型来描述,设x1、x2分别表达在计划期内产品I、II旳产量。
由于设备旳有效台时是8,这是一种限制产量旳条件,因此在确定产品I、II旳产量时,要考虑不超过设备旳有效台时数,即可用不等式表达为:x1+2x2≤8同理,因原材料A、B旳限量,可以得到如下不等式4x1≤164x2≤12该工厂旳目旳是在不超过所有资源限量旳条件下,怎样确定产量x1、x2以得到最大旳利润。
若用z表达利润,这时z=2x1+3x2。
综合上述,该计划问题可用数学模型表达为:目旳函数 max z =2x 1+3x 2 满足约束条件 x 1+2x 2≤84x 1≤16 4x 2≤12 x 1、x 2≥0例2 某铁路制冰厂每年1至4季度必须给冷藏车提供冰各为15,20,25,10kt 。
已知该厂各季度冰旳生产能力及冰旳单位成本如表6-26所示。
假如生产出来旳冰不在当季度使用,每千吨冰存贮一种季度需存贮费4千元。
又设该制冰厂每年第3季度末对贮冰库进行清库维修。
问应怎样安排冰旳生产,可使该厂整年生产费用至少?解:由于每个季度生产出来旳冰不一定当季度使用,设x ij 为第i 季度生产旳用于第j 季度旳冰旳数量。
按照各季度冷藏车对冰旳需要量,必须满足:⎪⎪⎩⎪⎪⎨⎧++++++33231343221242114144x x x x x x x x x x 。
,,,25201510==== 又每个季度生产旳用于当季度和后来各季度旳冰旳数量不也许超过该季度旳生产能力,故又有⎪⎪⎩⎪⎪⎨⎧++++++33232213121143424144x x x x x x x x x x 。
线性规划模型及其举例摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。
关键词:资源规划;约束条件;优化模型;最优解在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。
如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。
一.背景介绍如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式:1()ni ij j j f x a x ==∑,1,2,,,1i m m =+ (1)若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为:OPT. 1()nj j j f x c x ==∑ST. 1nij j j a x =∑> ( =, < )i b , 1,2,,i m = (2)0,j x ≥ 1,2,,j n =…(2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。
将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。
1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。
决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。
2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都应考虑是否符合实际,有没有可行性,因而要构造基于科学预测的综合性约束(或限定)条件。
3.目标函数(Objective Function,OF )人们有目的活动,总是希望获得最满意的目标值,该目标值可以表达成决策变量的一个函数,即目标函数。
根据需要,目标函数可以取极大化,极小化两种类型,即求最优解。
4.影子价格(Shadow Price ),用线性规划方法计算出来的反映资源最优使用效果的价格。
用线性规划方法求解资源最优利用时,即在解决如何使有限资源的总产出最大的过程中,得出相应的极小值,其解就是对偶解,极小值作为资源的经济评价,表现为影子价格。
二.建模的基本步骤1. 确定目标函数(按照模型所需要解决的问题,用数学函数来描述目标)2. 确定决策变量(目标的实现与那些变量有关,这里有主要变量和次要变量,在建模的初期可以进考虑主要变量对目标的影响,随后可以逐步增加变量的个数)3. 确定约束条件(这是优化模型建模过程中最重要,也是最难的,在很多情况下,是否能够得到最优解,最优解是否合理,都是取决于约束条件的建立)4. 模型求解(使用数学工具或数学软件求解)5. 结果分析(分析结果的合理性、稳定性、敏感程度等) 三.线性规划的一般模型一般地,假设线性规划数学模型,有m 个约束,有n 个决策变量j x (1,2,,j n =…),目标函数的变量系数用j c 表示,j c 称为价值系数。
约束条件的变量系数用ij a 表示,ij a 称为工艺系数。
约束条件右端的常数用i b 表示,i b 称为资源限量。
则线性规划数学模型的一般表达式可写成:1max(min)nj j j z c x ==∑S .T. 1(,)nij j i j a x b =≤≥=∑, 1,2,,i m =…0j x ≥, 1,2,,j n =… 四.线性规划模型处理1. 图解法就是在平面直角坐标系上画出各个约束条件所容许变化的范围,通过图上作业法求到最优解和目标函数极值。
图解法只适用于求解两个决策变量的Lp (线性规划)问题。
2. 单纯形法01 给定一般的Lp 问题:{min |,0}z cx Ax b x =≤≥。
02 建立Lp 问题的典式: {min |0;,0}N N B B N B N B z c c c x Nx Bx b x x =++=≥≥。
03 计算检验数:1N N B c c B N σ-=-。
利用N σ进行基可行解B x 的最优性检验(i )0N σ≤,人工变量0R =,判定0B x ≥,0N x =为最优解,输出最优解*[,]T B N X x x =,*z 。
(ii )N σ>0 (至少有一个k σ>0,且k p >0)转下步。
04 选择进基变量:max{,k N N x σσ>0}=k σ,k 列的k x 为进基变量。
05 选择退基变量:min{,il i i ikb x a θθ=>0}=l θ,l 行的l B x x ≤退基。
06 确定主元lk a >0,根据主元进行行换基:01B B ∇−−→(∇意为初等变换)。
07利用新基B 对N ,b ,z 进行基变换:1N B N -=;1B b B b x -==,B B z c x =再转第三步。
3. 对偶单纯形法(为求影子价格作准备)01 确定0B 为Lp 问题的一个初始基,其对应的变量为0x 。
02 判断 0x 的可行性:若010Bx B b -=≥,0N σ≤,则0x 是Lp 问题的最优解,这时计算停止,输出最优解。
否则进行第03步。
03 若存在(1,2,,)r r i m ∈=,使得1()r B b -<0,且在单纯形表中与1()r B b -对应行的非基变量的系数'rj a 全部非负,则Lp 问题无可行解;否则进行第04步。
04确定基变量:令111()max{|()|,()l r r B b B b B b ---=<0},对应的基变量为l x 为出基变量。
O ABCDx1x2321123x3=0x4=0x1=0x2=05确定进基变量:计算''min{|jk ljljaaσθ=<0}='klkaσ。
选择kθ对应的非基变量kx为进基变量。
l行k列交叉的元素'lka为主元。
6以'lka为主元,按单纯形法换基迭代运算,得到一个新的基可行解,仍记为0x,返回到02五.线性规划举例例1.(图形解)1212212max23.1,0z x xx xst xx x=++≤⎧⎪≤⎨⎪≥⎩这个问题的图解如图1所示。
引进松弛变量x3,x40,问题变成为标准形式max z=x1+2x2.x1+x2+x3=3(1)x2+x4=1(2)x1x2x3x4例2.求线性规划 (对偶单纯形求解)1234123412341234min 2356232233,,,0x x x x x x x x x x x x x x x x ω=++++++≥⎧⎪-+-≥⎨⎪≥⎩引入多余变量x 5、x 6把约束化为等式,然后再给两边同乘以(-1)后约束变为:-x 1 -2x 2 -3x 3 -x 4 + x 5 =-2 -2x 1 +x 2 - x 3 + 3x 4 +x 6 =-3得对偶单纯形表:此时基本解为X=(0,0,0,0,-2,-3),不可行。
所以进行第二步。
因为min{-3,-2}=-3,所以x 6为换出变量;又因为min{-2/-2 ,-5/-1}=1,所以x 1为换入变量,就是要将x 1下的系数列向量由变换成形式(和以前学过的单纯形法中的线性变换完全一致)。
做行线性变换, 行(2)×(-1/2);行(1)+行(2)后得出另一个基本解为:X=(3/2,0,0,0,-1/2)此时单纯形表如下:C j → 2 3 5 6 0 0 C B X B b x 1 x 2 x 3 x 4 x 5 x 6 0 x 5 -2 -1 -2 -3 -1 1 0 0x 6 -3 -21 -1 3 0 1 Z j 0 0 0 0 0 0 Z j -C j-2-3-5-60 0仍然不是可行解,还要继续求解。
因为-1/2 < 0,所以x5为换出变量;由因为4491min,,,55512222⎧⎫⎪⎪----⎨⎬⎪⎪----⎩⎭=8/5,所以x2和x3都可以作为换入变量,任选其中一个x2,做线性变换:行(1)×(-2/5);行(2)+行(1)×(1/2)得到一个基本解为X=(8/5,1/5,0,0,0),因解是可行的,所以是满足最优检验下的基本可行解因而也是最优解。
此时单纯形表如下为了实现缩短作出最优方案的时间,运用MATLAB编程,运用计算机模拟计算处理。
MATLAB是MATrix LABoratory的缩写,它将计算可视化和编程功能集成在非常便于使用的环境中,是一个交互式的,以距阵计算为基础的科学和工程计算软件。
MATLAB的特点可以简要地归纳如下:编程效率高,计算功能强,使用简便,易于扩充等特点。
参考文献:1. 沈继红等《数学建模》哈尔滨工程大学出版社 2003年2. 胡富昌《线性规划》中国人民大学出版社 2004年3. 谷源盛《运筹学》重庆大学出版社 2003年4. 姜启源等《数学模型》高等教育出版社 2005年。