配电网馈线系统保护原理及分析参考文本
- 格式:docx
- 大小:84.47 KB
- 文档页数:15
配电网馈线自动化系统分析及技术实施要点探析摘要:配电网馈线自动化系统在实际的应用中,可以对多种不同的技术故障进行解决,通过自动化系统分析的方式,有利于明确技术实施要点。
本文首先对配电网馈线自动化系统的应用模式进行了分析;其次,探究了配电网馈线自动化系统的主要作用;最后,总结了智能分布式自动化亏吓你保护技术的实施要点,希望能为该领域关注者提供有益参考。
关键词:配电网;电压;馈线自动化;外网电缆引言:我国现代化经济建设进程中,国内电力系统的优化建设,尤其是配电网馈线自动化系统等方面的技术应用,也得到了充分创新与发展。
在现代化的电网规划管理过程中,配电网馈线自动化系统的应用范围也在逐步扩大。
因此,如何将现代化的管理技术与配电网馈线自动化系统有机地融合起来,进一步明确配电网馈线自动化系统的保护技术实施要点,成为了相关领域工作人员的工作重点。
一、配电网馈线自动化系统应用模式(一)无通信馈线自动化配电网馈线自动化系统主要的作用是实现配电自动化,作为实现该项目标的基础,配电网馈线自动化系统技术在实际的应用中,能够充分地提高供电的可靠性。
无通信馈线自动化模式通常也被称为控制馈线自动化模式。
此种模式被表达为重合器-分段器配合型FA,也可以被简称为A型FA。
此种管理模式下,主要是根据就地电压和电流的基本情况,从变电站的出口重合器和断路器的位置,以及线路自动分段器中进行故障判断,以此为基础还可以完成相应的隔离操作与系统恢复。
在对整个系统线路处理中,无须通信的子站和主站系统参与其中就可以进一步完成电压、电流以及电压电流控制型的分化管理。
将完成分化管理的电压、电流与电压电流控制类型,可以简单地表达为A-V、A-I与A-VI型[1]。
(二)有无通信自动化有无通信馈线自动化模式还可以进一步被细化分为以下几种模式:第一种为集中控制模式,也可以被简称为B型FA模式。
此种模式主要是对主站和子站的通信系统进行操作,实现FTU各馈线终端中的故障信息检测。
10kV配电网馈线自动化系统控制技术分析馈线自动化系统是10kV配电网的重要组成部分,在正常的运行条件下,通过远程监控电网馈线的电压、限流情况以及联络开关和馈线分段开关的运行状态,实现馈线开关的分闸和合闸操作,自动隔离电网故障线线路,获取故障信息,保障配电网非故障馈线区域的供电。
因此要根据10kV配电网的运行特点,进一步完善和优化馈线自动化系统的控制技术,确保10kV配电网安全、稳定的运行。
本文分析了馈线自动化系统的控制方式和控制功能,阐述了10kV配电网馈线自动化系统的控制技术。
标签:10kV配电网;馈线自动化;控制方式;控制技术配电控制系统自动化大致分为配电管理自动化、变电站配电自动化、配电线路的自动化、面向用户管理的自动化和配电通信的自动化等,其中配电线路的自动化即为馈线自动化,在电力电网配电过程中起着重要的作用。
馈线自动化控制能够实时监控配电线路中各个供电开关的状态,得到线路正常运行过程中的电压电流,实现整个配电线路的自动控制和供电。
因此结合10kV 配电的基本情况分析馈线自动化的应用具有重要的意义。
1. 10kV配电网馈线自动化的控制方式及控制功能1.1馈线自动化系统的控制方式馈线自动化的控制方式分为远方控制和就地控制,这与配电网中可控设备(主要是开关设备)的功能有关。
如果开关设备是电动负荷开关,并有通信设备,那就可以实现远方控制分闸或合闸; 如果开关设备是重合器、分段器、重合分段器,它们的分闸或合闸是由这些设备被设定的自身功能所控制,这称为就地控制。
远方控制又可分为集中式和分散式两类。
所谓集中式,是指由SCADA 系统根据从FTU 获得的信息,经过判断作出控制,亦称为主从式; 分散式是指FTU 向馈线中相关的开关控制设备发出信息,各控制器根据收到的信息综合判断后实施对所控开关设备的控制。
1.2馈线自动化系统的控制功能1.2.1运行状态监控10kV配电网馈线自动化系统的运行状态监控是指实时监控配电网各支路和主干线的电能量、功率因数、无功功率、有功功率、电流、电压等电气参数,监测配电网线路联络开关、分段开关的操作状态。
配电网馈线系统保护原理及分析【摘要】配电网馈线系统是电力系统中非常重要的部分,对其进行保护至关重要。
本文首先介绍了配电网馈线系统保护的原理,包括过电流保护、短路保护等。
然后对配电网馈线系统的保护进行了深入分析,探讨了各种可能的故障情况和应对措施。
通过本文的学习,读者可以更加深入地了解配电网馈线系统的保护机制,并掌握如何应对各种故障情况。
在将对整篇文章进行总结,并指出配电网馈线系统保护的重要性。
本文将有助于电力系统相关人员更好地了解和应用配电网馈线系统保护原理,提高电力系统的可靠性和安全性。
【关键词】配电网、馈线系统、保护原理、保护分析、引言、结论1. 引言1.1 引言配电网馈线系统保护原理及分析配电网馈线系统作为电力系统中至关重要的组成部分,其稳定运行对于维护电网安全和可靠性至关重要。
在配电网中,馈线系统起着承载电能输送和供电功能的作用,因此其保护措施显得尤为重要。
本文将就配电网馈线系统的保护原理和保护分析进行详细探讨。
配电网馈线系统的保护原理主要包括保护动作原则、保护动作方式和保护动作逻辑等方面。
保护动作原则是指在电力系统发生故障时,保护设备应根据特定的动作原则实施保护动作,以快速隔离故障区域,保护系统内部设备和人员的安全。
保护动作方式包括电压保护、电流保护、距离保护等多种方式,根据具体的系统要求和故障情况选择合适的保护方式。
保护动作逻辑是指保护设备根据预先设定的逻辑关系,判断故障类型和位置,并进行相应的保护动作。
对配电网馈线系统的保护进行分析,需要考虑系统的拓扑结构、负荷特性、故障特性等因素。
首先需要确定系统的基本参数和特性,包括馈线长度、负载类型、故障类型等。
然后根据系统的运行情况和故障情况,进行保护策略的制定和分析,确保系统在发生故障时能够及时准确地实施保护措施。
同时还需要考虑保护设备的灵敏度和可靠性,以确保保护装置在各种环境条件下都能够正常工作。
结论配电网馈线系统的保护是保障电网安全运行和系统可靠性的重要手段,只有科学合理地设计和运行保护系统,才能有效地保护电力系统设备和人员的安全。
10kV馈线继电保护实用整定方案分析摘要:目前,我国10kV配电网络的主干线路中设有大量配电变压器,与之相连的多条分支线路中同样配有一个或多个配电变压器,为了提高电路故障隔离质量,电网中具备大量的分段断路器。
由此造成的后果是,电网线路结构接线十分复杂,反而由安全隐患。
本文围绕10kV馈线继电保护实用整定方案展开分析,供参考。
关键词:10kV;继电保护;实用整定方案;分段断路器引言:馈线是电力系统配电网络中的一个专业术语,既可以指代与任意配网节点相连接的之路,又可以是馈入/馈出支路[1]。
由于配电网的典型拓扑呈现出“辐射”状,故绝大多数馈线中的能量流动均是单向的。
为了提高供电的可靠性,配网的结构设置日趋复杂,功率的传输方向不再具备单一性。
因此,现代10kV配网中的所有支路事实上都是馈线。
1.10kV配电网络馈线经典电路结构梳理目前,全国范围内几乎完全覆盖了10kV配电网络,尽管各地变电站的建设受地形因素以及地方实际供电需求等因素的影响而存在一定的差异,但10kV馈电线路结构大同小异。
其中一种经典的构成方式为:①S1、S2两个供电电源分别设置在电路的两侧,整体呈现出环网并联的态势,多见于城市10kV配电网络(业内人士形象地称之为“手拉手”模式);②断路器、熔断器等设备分别设置在环形配电网络的主干路上;③除了主干路之外,还设有两个处于表面看来处于并联状态的分支线(分别命名为Br1和Br2),之所以称之为“表面”,是因为两条分支线与主干线之间均存在一个开关,分支线是否启动取决于控制开关是否处于闭合状态;若两个开关均同时闭合,则两条分支线之间以及与主干线之间均呈现并联的关系。
上述提到的断路器,除了S2电源附近母线出口处的断路器开关处于打开(中断连接)状态之外,主干线路中的其他断路器、熔断器均处于接通状态。
通常情况下,各段线路的具体长度取决于电力负载情况,且供电半径通常不会超过15km。
除此之外,主干线路以及分支线路中的多个配电变压器均有特定的作用,包含民居住宅日常生活变压器以及企业生产专用变压器,与线路之间相互连接的方式均以断路器或熔断器作为主要控制器件。
配电网馈线自动化技术分析随着电力系统的发展和智能化水平的提升,配电网馈线自动化技术逐渐成为电力行业的热点话题。
馈线自动化技术是指利用先进的电力设备、智能化系统和通信技术,对配电网中的馈线进行实时监测、分析和控制,以提高配电网的可靠性、安全性和经济性。
本文将对配电网馈线自动化技术进行深入分析,从技术原理、功能特点、应用案例等方面展开讨论。
一、技术原理配电网馈线自动化技术是基于先进的智能终端设备和通信网络构建的智能化配电系统。
其主要包括以下几个方面的技术原理:1. 智能终端设备:配电网馈线自动化系统需要利用先进的智能终端设备,如智能开关、智能保护装置、智能电能表等,实现对配电网设备状态的检测、监视、保护和控制。
这些智能终端设备具有高精度、高稳定性、快速响应等特点,能够实时采集电力系统数据,为系统的自动化运行提供可靠的数据支持。
2. 通信网络:配电网馈线自动化系统需要建立可靠的通信网络,将各个智能终端设备连接在一起,实现数据的互联互通。
通信网络可以采用有线通信、无线通信等多种技术手段,满足不同环境下的通信需求,确保系统的稳定性和可靠性。
3. 智能控制系统:配电网馈线自动化系统需要配备智能控制系统,利用先进的控制算法和逻辑判定,实现对配电网设备的自动化控制。
智能控制系统能够根据系统状态实时调整操作策略,提高系统的运行效率和安全性。
以上几个方面的技术原理共同构成了配电网馈线自动化技术的核心内容,为电力系统的智能化运行提供了重要的技术支持。
二、功能特点配电网馈线自动化技术具有以下几个主要的功能特点:1. 实时监测与控制:配电网馈线自动化技术能够实时监测配电网设备的运行状态和负荷情况,及时发现故障和异常情况,并采取相应的控制措施,保障系统的安全稳定运行。
2. 智能化分析与判断:配电网馈线自动化技术能够通过智能分析和判断技术,对电力系统的运行情况进行实时评估和分析,为系统的运行优化提供决策支持。
3. 快速故障定位与恢复:配电网馈线自动化技术能够快速定位故障点,并自动切除故障区域,实现自动化的故障恢复,缩短故障处理时间,提高系统的可靠性和供电质量。
《配电网馈线系统保护原理及分析|馈线原理》摘要:引言配电动化技术是城乡配电改造建设重要技术配电动化包括馈线动化和配电管理系统通信技术是配电动化关键,3基馈线动化馈线保护配电动化包括馈线动化和配电管理系统其馈线动化实现对馈线信息采集和控制也实现了馈线保护,馈线保护发展趋势目前配电动化馈线动化较地实现了馈线保护功能引言配电动化技术是城乡配电改造建设重要技术配电动化包括馈线动化和配电管理系统通信技术是配电动化关键目前我国配电动化进行了较多试由配电主、子和馈线终端构成三层结构已得到普遍认可光纤通信作主干通信方式也得到共识馈线动化实现也完全能够建立光纤通信基础上这使得馈线终端能够快速地彼通信共实现具有更高性能馈线动化功能二配电馈线保护技术现状电力系统由发电、输电和配电三部分组成发电环节保护集元件保护其主要目是确保发电厂发生电气故障将设备损失降输电保护集输电线路保护其首要目是维护电稳定配电环节保护集馈线保护上配电不存稳定问题般认馈线故障切除并不严格要是快速不配电对荷供电可靠性和供电质量要不许多配电仅是考虑线路故障对售电量影响及配电设备寿命影响尚将配电故障对电力荷(用户)面影响作配电保护目随着我国济发展电力用户用电依赖性越越强供电可靠性和供电电能质量成配电工作重而配电馈线保护主要作用也成提高供电可靠性和提高电能质量具体包括馈线故障切除、故障隔离和恢复供电具体实现方式有以下几种传统电流保护电流保护是基继电保护考虑到济原因配电馈线保护广泛采用电流保护配电线路般很短由配电不存稳定问题了确保电流保护动作选择性采用配合方式实现全线路保护常用方式有反限电流保护和三段电流保护其反限电流保护配合特性又分标准反限、非常反限、极端反限和超反限参见式()、()、(3)和()这类保护整定方便、配合灵活、价格便宜可以包含低电压闭锁或方向闭锁以提高可靠性;增加重合闸功能、低周减功能和电流接地选线功能电流保护实现配电保护前提是将整条馈线视单元当馈线故障将整条线路切并不考虑对非故障区域恢复供电这些不利提高供电可靠性另方面由依赖延实现保护选择性导致某些故障切除偏长影响设备寿命重合器方式馈线保护实现馈线分段、增加电是提高供电可靠性基础重合器保护是将馈线故障动限制区段有效方式「参考献」参见图重合器R位线路首端该馈线由、B、三分段器分四段当B区段发生故障重合器R动作切除故障、B、分段器失压动断开重合器R延重合分段器电压恢复延合闸样分段器B电压恢复延合闸当B合闸故障重合器R再次跳开当重合器二次重合分段器将再次合闸B将动闭锁分闸位置从而实现故障切除、故障隔离及对非故障段恢复供电目前我国城乡电改造仍有量重合器得到应用这种简单而有效方式能够提高供电可靠性相对传统电流保护有较优势该方案缺是故障隔离较长多次重合对相关荷有定影响3基馈线动化馈线保护配电动化包括馈线动化和配电管理系统其馈线动化实现对馈线信息采集和控制也实现了馈线保护馈线动化核心是通信以通信基础可以实现配电全局性数据采集与控制从而实现配电、配电高级应用()以地理信息系统(G)平台实现了配电设备管理、图管理而、G和体化则促使配电动化成提供配电保护与监控、配电管理全方位动化运行管理系统参见图所示系统这种馈线动化基原理如下当开关和开关发生故障(非单相接地)线路出口保护使断路器B动作将故障线路切除装设处检测到故障电流而装设开关处没有故障电流流动化系统将确认该故障发生与遥控跳开和实现故障隔离并遥控合上线路出口断路器合上络开关3完成向非故障区域恢复供电这种基通信馈线动化方案以集控制核心综合了电流保护、R遥控及重合闸多种方式能够快速切除故障几秒到几十秒实现故障隔离几十秒到几分钟实现恢复供电该方案是目前配动化主流方案能够将馈线保护集成体化配电监控系统从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性整配电动化可以加装电能质量监测和补偿装置从而全局上实现改善电能质量控制三馈线保护发展趋势目前配电动化馈线动化较地实现了馈线保护功能但是随着配电动化技术发展及实践对配电保护目也要悄然发生变化初配电保护是以低成电流保护切除馈线故障随着对供电可靠性要提高又出现以低成重合器方式实现故障隔离、恢复供电随着配电动化实施馈线保护体现基远方通信集控制式馈线动化方式配电动化基础上配电通信得到充分重视成动化核心目前国主流通信方式是光纤通信具体分光纤环和光纤以太建立光纤通信基础上馈线保护实现由以下三部分组成)电流保护切除故障;)集式配电主或子遥控实现故障隔离;3)集式配电主或子遥控实现向非故障区域恢复供电这种实现方式实质上是动装置无选择性动作恢复供电如能够馈线故障保护动作选择性就可以提高馈线保护性能从而次性地实现故障切除与故障隔离这要馈线上多保护装置利用快速通信协动作共实现有选择性故障隔离这就是馈线系统保护基思想四馈线系统保护基原理基原理馈线系统保护实现前提条件如下)快速通信;)控制对象是断路器;3)终端是保护装置而非高压线路保护高频保护、电流差动保护都是依靠快速通信实现主保护馈线系统保护是多两装置通信基础上实现区域性保护基原理如下参见图3所示型系统该系统采用断路器作分段开关如图、B、、、、对变电手拉手线路至部分变电则对应至部分侧馈线系统保护则控制开关、B、、保护单元R至R7组成当线路故障发生B区段开关、B处将流故障电流开关处无故障电流但出现低电压系统保护将执行步骤保护起动R、R、R3分别起动;保护计算故障区段信息;3相邻保护通信;R、R3动作切除故障;5R重合如重合成功至9;6R重合故障再跳开;7R3△测得电压恢复通知R合闸;8R合闸恢复段供电至0;9R3△测得电压恢复R3重合;0故障隔离恢复供电结束故障区段信息定义故障区段信息如下逻辑表示保护单元测量到故障电流逻辑0表示保护单元测量到故障电流但测量到低电压当故障发生系统保护各单元向相邻保护单元交换故障区段对保护单元当身故障区段信息与收到故障区段信息异或出口跳闸了确保故障区段信息识别正确性进行逻辑判断可以增加低压闭锁及功率方向闭锁3系统保护动作速及其备保护了确保馈线保护可靠性馈线首端R处设限电流保护建议整定0秒即要馈线系统保护00完成故障隔离保护动作上系统保护能够0识别出故障区段信息并起动通信光纤通信速很快考虑到重发多帧信息相邻保护单元通信应30完成断路器动作0~00这样只要通信环节理想即可实现快速保护馈线系统保护应用前景馈线系统保护很程上沿续了高压线路纵保护基原则由配电通信条件很可能十分理想基础上实现馈线保护功能性能提高馈线系统保护利用通信实现了保护选择性将故障识别、故障隔离、重合闸、恢复故障次性完成具有以下优()快速处理故障不多次重合;()快速切除故障提高了电动机类荷电能质量;(3)直接将故障隔离故障区段不影响非故障区段;()功能完成下放到馈线保护装置无配电主、子配合四系统保护展望继电保护发展历了电磁型、晶体管型、集成电路型和微机型微机保护拥有很强计算能力也具有很强通信能力通信技术尤其是快速通信技术发展和普及也推动了继电保护发展系统保护就是基快速通信由多位不位置保护装置共构成区域行广义保护电流保护、距离保护及主设备保护都是采集就地信息利用局部电气量完成故障就地切除线路纵保护则是利用通信完成两故障信息交换进行处异地两装置协动作近年出现分布式母差保护则是利用快速通信络实现多装置快速协动作如由位广域电不变电保护装置共构成协保护则很可能将继电保护应用围提高到新层次这种协保护不仅可以改进保护配合共实现性能更理想保护而且可以演生基继电保护相角测量稳定监控协系统基继电保护高精多端故障测距以及基继电保护电力系统动态模型及动态程分析等应用领域目前输电已出现了基G动态稳定系统和分散式行波测距系统配电伴随贼配电动化开展配电馈线系统保护有可能率先得到应用五结论建立快速通信基础上系统保护是继电保护发展方向随着配电改造深入及配电动化技术发展系统保护技术可能配电率先得以应用讨论了配电馈线保护发展程提出了建立配电动化和光纤通信基础上馈线系统保护新原理这种新原理能够进步提高供电可靠性系统保护分布式功能也将提高配电动化主及子性能是种极具前途馈线动化新原理。
配电网馈线自动化技术及其应用随着社会的发展和电力需求的增长,配电网的稳定和安全变得越来越重要。
而随着科技的发展,配电网馈线自动化技术应运而生,并被广泛应用于实际生产中。
本文将从配电网馈线自动化技术的原理、特点、应用以及未来发展趋势等方面进行详细介绍。
一、配电网馈线自动化技术的原理配电网馈线自动化技术主要是通过对配电网的监测、继电保护、远动管理等方面进行自动化改造,以实现对配电网的智能化控制和管理。
其原理主要包括对配电网各环节的监测和控制,确保配电网各个环节的安全运行。
配电网馈线自动化技术的原理可以简单概括为:通过监测系统对配电网的工作状态进行实时监测,当出现故障或异常情况时,通过自动化系统进行快速处置,保证配电网的安全稳定运行。
1.智能化管理:配电网馈线自动化技术采用先进的监测系统和自动化设备,能够实现对配电网各个环节的实时监测和智能化管理,大大提高了配电网的运行效率和稳定性。
2.快速响应:配电网馈线自动化技术能够实现对配电网故障的快速识别和处理,大大缩短了故障处理时间,提高了配电网的可靠性和稳定性。
3.灵活性:配电网馈线自动化技术可以根据不同的配电网需求进行灵活配置,适应不同类型的配电网和不同工作环境的需求。
4.节能环保:配电网馈线自动化技术能够提高配电网的运行效率,减少能源消耗,从而达到节能环保的效果。
随着科技的不断发展和配电网的不断完善,配电网馈线自动化技术也在不断创新和发展。
未来,配电网馈线自动化技术的发展趋势主要表现在以下几个方面:1. 人工智能技术的应用:未来,随着人工智能技术的发展,配电网馈线自动化技术将更加智能化,能够实现对配电网的智能化管理和控制。
3. 全面覆盖:未来,随着配电网馈线自动化技术的不断完善,将实现对配电网的全面覆盖,提高了配电网的整体运行效率和安全稳定性。
随着配电网馈线自动化技术的不断创新和发展,将为配电网的安全稳定运行提供更强有力的保障,有利于推动配电网的智能化管理和控制,提高配电网的整体运行效率和可靠性。
配电网馈线自动化技术及其应用随着社会经济的快速发展和城市化进程的加快,对电力供应的需求越来越大。
传统的电力配网往往存在着很多问题,如配电网故障率高、供电可靠性低、故障定位时间长等。
为了解决传统电网存在的问题,提高供电可靠性和维护效率,配电网馈线自动化技术应运而生。
本文将从配电网馈线自动化技术的基本原理、应用现状和发展趋势等方面进行探讨。
一、配电网馈线自动化技术的基本原理配电网馈线自动化技术是指通过先进的通信、计算机、自动控制等技术手段,实现对配电网馈线设备的监测、控制、故障定位和恢复等操作,从而提高配电网的供电可靠性和投资效益。
1.监测和控制功能馈线自动化系统通过安装传感器和智能设备,实时监测馈线设备的运行状态和电气参数。
一旦发现异常情况,系统即可自动进行相应控制操作,例如切换负载、故障分段隔离、跳闸刀闸等,保证配电网的正常运行。
2.故障定位和恢复功能当馈线设备发生故障时,自动化系统可以通过故障信号定位、智能分析等手段,快速准确地确定故障位置,并自动进行分段隔离和恢复操作,缩短供电中断时间,提高供电可靠性。
3.智能控制和运维管理馈线自动化系统可以通过先进的计算机和通信技术,实现对配电网设备的智能控制和运维管理,提高管理效率和节约运行成本。
目前,我国城市配电网馈线自动化技术已经得到了广泛应用,取得了明显的效果。
主要体现在以下几个方面:1.设备智能化配电网馈线自动化技术通过引入智能终端设备和传感器,实现对配电设备的实时监测和数据采集,为运维管理提供了有效的数据支持。
2. 运行效率提升通过自动化系统的监控和控制功能,可以降低人工巡检频率,减少了运维成本,提高了运行效率。
3. 供电可靠性提高馈线自动化技术可以实现快速准确的故障定位和恢复,缩短了供电中断时间,提高了供电可靠性。
4. 运维管理智能化通过自动化系统的智能控制和运维管理功能,提高了运维管理的智能化水平,减轻了运维管理人员的工作负担。
5.经济效益突出自动化系统的应用大大提高了供电可靠性,减少了停电损失,增加了经济效益。
配电网馈线体系维护原理及剖析配电主动化技能是效劳于城乡配电网改造发明的首要技能,配电主动化包含馈线主动化和配电处理体系,通讯技能是配电主动化的要害。
如今,中国配电主动化进行了较多试点,由配电主站、子站和馈线终端构成的三层构造已得到广泛认可,光纤通讯作为骨干网的通讯办法也得到一同。
馈线主动化的结束也彻底能够树立在光纤通讯的根底上,这使得馈线终端能够活络地互相通讯,一同结束具有更高功用的馈线主动化功用。
二.配电网馈线维护的技能现状电力体系由发电、输电和配电三有些构成。
发电环节的维护会集在元件维护,其首要意图是确保发电厂发作电气缺陷时将设备的扔掉降为最小。
输电网的维护会集在输电线路的维护,其首要意图是维护电网的安稳。
配电环节的维护会集在馈线维护上,配电网不存在安稳疑问,通常以为馈线缺陷的切除并不严峻恳求是活络的。
纷歧样的配电网对负荷供电牢靠性和供电质量恳求纷歧样。
很多配电网仅是思考线路缺陷对售电量的影响及配电设备寿数的影响,没有将配电网缺陷对电力负荷(用户)的负面影响作为配电网维护的意图。
跟着中国经济的翻开,电力用户用电的依托性越来越强,供电牢靠性和供电电能质骤变成配电网的作业要害,而配电网馈线维护的首要效果也变成跋涉供电牢靠性和跋涉电能质量,详细包含馈线缺陷切除、缺陷阻隔和康复供电。
详细结束办法有以下几种:2.1传统的电流维护过电流维护是最根柢的继电维护之一。
思考到经济要素,配电网馈线维护广泛选用电流维护。
配电线路通常很短,由于配电网不存在安稳疑问,为了确保电流维护动作的挑选性,选用时刻协作的办法结束全线路的维护。
常用的办法有反时限电流维护和三段电流维护,其间反时限电流维护的时刻协作特性又分为规范反时限、十分反时限、极点反时限和超反时限,拜见式(1)、(2)、(3)和(4)。
这类维护整定便当、协作活络、报价廉价,一同能够包含低电压闭锁或方向闭锁,早年进牢靠性;添加重合闸功用、低周减载功用和小电流接地选线功用。
10kV电力配网馈线自动化技术分析摘要:在我国社会经济快速发展的背景下,各行各业的生活和工作都离不开电力的有效支撑,因此,人们对于用电量的需求也呈现出逐年攀升的状态。
为了能够确保供电的可靠性和稳定性,为电力行业提出了更高的要求和标准。
电力配网馈线自动化是配网自动化中的重要组成部分,他不仅能够实现对配电线路运行情况的实施监督,而且还能够在第一时间内发现故障线路,并且将故障线路进行有效的切除,进而确保供电的稳定性和可靠性。
所以,10千伏电力配网馈线自动化技术对于确保电网的安全运行起到了非常重要的作用。
本文主要对10千伏电力配网馈线自动化技术进行了详细的分析与探讨,希望能够为电力行业的快速发展提供参考性的意见或者是建议。
关键词:10千伏、电力配网馈线自动化、技术分析引言:在配电网正常运行的前提下,馈线自动化技术不仅能够对馈线的电压、电流及分段开关的实时状态进行远程的监控和管理,同时还能够通过远程的操作实现线路的开合和分闸内容,尤其是当配电网出现故障的时候,配网馈线自动化系统更是能够在最快的时间将故障进行有效的隔离,进而确保其他线路的稳定运行。
从目前来看,10千伏电力配网馈线自动化技术已经被广泛的应用到配电网中。
一、配电网馈线自动化技术的主要功能在配网自动化系统中,配网的馈线自动化系统不仅具有远程监控的功能,而且还能够将馈线在运行过程中出现的故障问题进行实时的解决与处理。
在进行故障处理的过程中不仅能够把馈线的运行负荷进行重新的优化与整合,以此来确保配电网供电系统的安全稳定运行。
除此之外,在电力系统正常运行的过程中,配电网馈线的自动化系统还能够实现将超负荷运行的配电网系统进行系统的正常切换功能,以此来实现对整个配电系统的正常运行设计。
在完成以上功能的过程中,馈线自动化技术主要是通过馈线开关来实现对配电网系统的远程监控操作的。
与此同时配网馈线自动化系统还能够实现对操作的内容进行详细的记录功能[1]。
二、10千伏电力配网馈线自动化技术的工作原理当10千伏电力配网馈线在自动化的系统中正常运行时,在对于馈线运行过程中出现得故障问题的决绝措施主要是通过与电力系统的变电站出现断路器设备的有效配合下,才能够及时的将出现的故障问题进行隔离或者是解决处理。
直流牵引供电系统馈线保护原理与配置分析摘要:本文以伊朗德黑兰地铁采用的赛雪龙直流开关柜为例,通过介绍几种主要保护功能原理,保护功能如何整定,区分故障情况和正常运行情况,为地铁馈线保护的配置提供了理论基础。
关键词:牵引供电系统,直流馈线保护,配合整定牵引供电系统可能发生各种故障和不正常运行状态,最常见的、同时也是最危险的故障就是发生短路。
当被保护线路上发生短路故障时,其主要特征就是电流增加和电压降低。
利用这两个特征,可以构成电流电压保护。
本文重点介绍馈线保护的几种主要形式。
一、大电流脱扣保护大电流脱扣保护属于断路器的本体保护,不具有延时性。
通过断路器内设置的脱扣机构实现保护。
当通过断路器的电流超过整定值时,脱扣器马上动作,使断路器跳闸实现保护。
其固有动作时间仅几毫秒,所以大电流脱扣保护非常灵敏。
该保护用以快速切除金属性近端短路故障,往往先于电流上升率及电流增量保护动作。
而对于短路点在远端的情况下,由于短路电流相对较小,大电流脱扣不能有效保护。
大电流脱扣保护的整定值要通过计算和短路试验设定,整定值的配置原则是:比最大负荷时列车正常启动的电流大,并且比最大短路电流小。
二、定时限过流保护当直流线路发生长时间的非正常的电流增大时,可以设置定时限过流保护,通过在保护控制单元预先设定电流最大值和时间值来实现保护功能,保护原理与大电流脱扣保护类似,不同之处电流最大值的设定应小于大电流脱扣保护装置动作值,且过电流延时T的单位是秒,远远大于脱扣保护动作延时。
对于最大电流值的设定,要求小于被保护线路末端短路电流,且大于列车的启动电流。
通过过电流定值和过电流延时时间定值的整定,躲过列车正常启动、加速过程引起电流变化而产生的误动作。
三、DDL 保护DDL 保护是一种反应电流变化趋势的保护,它逐渐成为直流牵引网末端短路的主保护。
采用DDL?保护功能,在牵引直流供电系统中作为主保护,赛雪龙直流柜控制保护单元SEPCOS通过分析电流上升率di/dt、电流增加持续的时间t?及电流增量ΔI,检测中远距离短路故障,其故障电流低于断路器的大电流脱扣整定值。
配电网馈线组自动化技术及其应用分析引言随着社会的不断发展,电力需求量不断增加,配电网的安全可靠运行变得尤为重要。
而馈线组是配电网的重要组成部分,其自动化技术的应用对于提高配电网的可靠性、安全性和经济性具有重要意义。
本文将对配电网馈线组自动化技术进行分析,并探讨其在实际应用中的优势和挑战。
一、馈线组自动化技术的概念和原理1.1 概念馈线组自动化技术是指利用先进的电气设备、智能控制系统和现代通信技术,对配电网的馈线组进行自动监测、控制和调度,以提高其运行效率、可靠性和安全性的一种技术手段。
1.2 原理馈线组自动化技术主要包括以下几个方面的内容:(1)监测技术:通过智能仪表和传感器等设备对馈线组的电压、电流、功率等参数进行实时监测,获取配电网的运行状态信息。
(2)控制技术:通过智能控制器对馈线组进行实时控制,实现供电装置的远程操作或自动控制。
(3)保护技术:通过保护装置对馈线组进行实时保护,当出现故障时能够立即切除故障部分,保障配电网的安全运行。
(4)通信技术:通过现代通信技术实现馈线组之间、以及馈线组与配电网调度中心之间的信息传输和数据交换,实现远程监控和调度。
二、馈线组自动化技术的应用优势2.1 提高运行效率馈线组自动化技术能够实现对配电网的实时监测、控制和调度,能够及时发现和处理故障,提高配电网的运行效率,降低故障处理时间,减少停电损失。
2.2 提高供电质量通过馈线组自动化技术,能够实现对电压、频率等供电质量参数的实时监测和调节,提高供电质量,降低谐波、电压波动等问题,保障用户电力设备的安全运行。
2.3 提高系统可靠性通过自动化技术实现馈线组的远程监测和控制,可以减少人为因素对系统的影响,提高系统的可靠性和稳定性,确保配电网的安全运行。
2.4 降低管理成本自动化技术的应用可以减少人力资源的投入,降低管理成本,提高管理效率,降低运行维护成本,实现电网的智能运行与管理。
三、馈线组自动化技术的应用挑战3.1 技术成熟度目前,我国配电网自动化技术仍处于发展的初期阶段,各种技术标准和设备规格尚未统一,技术成熟度还有待提高。
配电网馈线自动化技术分析配电网馈线自动化技术是指通过采用现代化的通信、计算机技术和自控技术,对配电网中的馈线进行智能化控制,实现对配电网的自动监测、自动调节、自动保护等功能。
馈线自动化技术可以大大提高配电网的运行效率、降低故障发生率、提升供电质量和稳定性,同时也可以提高配电系统的安全性和可靠性。
馈线自动化技术的核心是智能型馈线开关控制器。
智能型馈线开关控制器是一种集数据采集、信号处理、控制计算和通信传输于一体的装置,可以实现对馈线运行状态的监测、数据处理、控制决策和命令输出等功能。
智能型馈线开关控制器具有高可靠性、点多面广、效率高等优点,是配电网馈线自动化技术的重要组成部分。
配电网馈线自动化技术包括馈线状态监测、故障自动定位、线路重新连接、负荷均衡等多个方面。
馈线状态监测是指通过对馈线电压、电流、功率因数等参数进行在线监测,实时反映馈线运行状态,发现异常状况,及时报警。
故障自动定位是指当馈线发生故障时,自动切换到备用电源或环网电源,同时自动定位故障位置,缩短故障修复时间。
线路重新连接是指当故障得到修复后,自动恢复馈线供电,并在保证供电稳定的前提下,将其他受影响的馈线重新连接上来,提高供电可靠性与连续性。
负荷均衡则是指通过对馈线负荷进行动态平衡控制,保证馈线负荷分布均衡、合理,避免局部过载,提高馈线安全性和稳定性。
馈线自动化技术的实际应用中存在一些挑战,如技术成本高、硬件设计和编程复杂、系统集成和调试难度大等问题。
针对这些挑战,需要配电企业加大投入,提高研发和生产效率,加速馈线自动化技术的推广和应用。
同时,需要提高技术人员的专业素养和技术水平,加强人才培养和引进,为馈线自动化技术的发展提供有力的人才支持。
总之,配电网馈线自动化技术是配电网智能化升级的重要手段,是实现配电网自动化运行的必要步骤。
未来,随着科技的不断发展和应用的广泛推广,配电网馈线自动化技术将会更加成熟和完善,为配电企业提供更加安全、可靠、高效的配电服务。
配电网馈线组自动化技术及其应用分析随着电力系统的不断发展和城市化进程的加快,人们对电力供应质量和可靠性的要求越来越高。
在此背景下,配电网自动化技术应运而生,成为保障电力系统运行安全、提高供电质量的重要手段之一。
配电网馈线组自动化技术作为其重要组成部分,对提高配电网的运行效率、可靠性和经济性具有重要意义。
本文将围绕配电网馈线组自动化技术及其应用进行分析。
一、配电网馈线组自动化技术的概念及原理馈线组自动化技术是指在配电网中,对馈线组进行监测、控制和保护的自动化系统。
其主要包括远动检测、远动控制和远动保护等功能,通过智能终端设备和通信网络实现对馈线组的实时监测和远程控制,提高了配电网的运行效率和可靠性。
配电网馈线组自动化技术依托智能终端设备,对馈线组的各种参数进行实时监测和数据采集,包括电压、电流、功率因数、频率等。
然后,利用通信网络将监测数据传输至监控中心,实时反映馈线组的运行状态。
根据监测数据,通过远程控制设备对馈线组进行调控,保障配电网的稳定运行。
2.1 配电网馈线组自动化技术在供电企业中的应用在供电企业中,配电网馈线组自动化技术被广泛应用于各个配电环节,包括配电变压器、高压开关柜、配电线路等,通过实施远动检测、远动控制和远动保护等功能,提高了配电网的智能化水平,减少了人为操作的影响,提高了供电可靠性。
在新能源并网配电网中,配电网馈线组自动化技术通过对新能源发电系统进行监测和调控,实现了新能源与传统能源的协调运行,提高了新能源发电系统的可靠性和经济性,为新能源发展提供了可靠的配电保障。
随着人工智能、大数据和云计算等新技术的不断发展,配电网馈线组自动化技术将更加智能化,智能设备将能够更好地理解运行环境和用户需求,实现更加精准的监测和控制。
随着物联网和5G技术的快速发展,配电网馈线组自动化技术将更加信息化,实现设备之间的实时互联互通,提高了信息传输的速度和精准度。
配电网馈线组自动化技术将更加注重节能减排和环保,推动新能源的应用和发展,实现能源的绿色可持续利用,为环保事业做出更大贡献。
配电网馈线自动化技术分析配电网是电力系统的一个重要组成部分,它将高压输电的电能通过馈线分布到各个用电点,为城市、工业、农业等各个领域提供电力服务。
馈线自动化技术是一项重要的电力自动化技术,在保障电力供应质量、提高供电可靠性等方面发挥了重要作用。
本文将从馈线自动化技术的原理和应用两个方面进行具体分析。
一、馈线自动化技术的原理馈线自动化技术的实现原理是通过自动化控制和监测设备对馈线运行状况进行监测、分析和控制。
馈线自动化技术涉及的具体装置有:1.监测装置:包括电压、电流、功率、电能等量测装置,用于实时监测馈线运行参数。
2.保护装置:主要包括过电流、过负荷、短路等装置,用于及时切断故障电路,保护设备和人身安全。
3.控制装置:主要包括断路器、隔离开关、接地开关等装置,用于实现馈线的控制和切换。
4.通信装置:包括通讯网络、遥控和遥信等装置,用于馈线与调度中心的信息交换和控制。
以上装置通过配合使用,可以实现对馈线的自动化控制和监测,为运行管理人员提供实时运行参数、故障状态等信息,实现对馈线运行的有效管理和控制。
馈线自动化技术在现代配电网的运行中得到广泛应用,主要体现在以下几个方面:1.故障检测和定位配电网馈线故障是影响供电可靠性的重要因素,对于故障的及时检测和定位是提高供电可靠性的关键措施。
馈线自动化技术可以利用过电流、过负荷等保护装置实现故障检测,同时利用通讯装置和配电网监测中心的信息交换,实现对故障位置的快速定位,为故障处理提供便利。
2.供电质量控制现代城市的电力需求不仅关注电量的充足,还要求电力供应的质量,如电压、频率等参数应控制在一定范围内,以保证各类电气设备的正常运行。
馈线自动化技术可以通过电压、频率等量测装置对馈线运行参数进行实时监测和控制,保障电力供应质量。
3.馈线控制和管理配电网馈线的开关控制和切换是馈线自动化技术的关键应用领域,它可以通过隔离开关、接地开关等控制装置实现馈线的各种操作控制,如切换、投切等操作。
配网自动化及馈线自动化技术探讨一、引言配网自动化及馈线自动化技术是现代电力系统中的重要组成部份,它们的应用能够提高电网的可靠性、安全性和经济性。
本文将对配网自动化及馈线自动化技术进行探讨,包括技术原理、应用案例和未来发展趋势。
二、技术原理1. 配网自动化技术原理配网自动化技术是通过在配电网中安装传感器、执行器和控制器,实现对电网状态的实时监测、故障检测和故障隔离的自动化控制。
该技术可以实现电网的自愈能力,提高电网的可靠性。
2. 馈线自动化技术原理馈线自动化技术是通过在馈线上安装智能装置,实现对馈线电流、电压和功率等参数的实时监测和控制。
该技术可以实现馈线的智能管理和优化运行,提高电网的经济性。
三、应用案例1. 配网自动化技术应用案例在某城市的配电网中,引入配网自动化技术后,实现了对电网设备状态的实时监测和故障检测。
当发生故障时,系统能够自动进行故障隔离和恢复,大大缩短了故障处理时间,提高了电网的可靠性。
2. 馈线自动化技术应用案例在某电力公司的馈线中,引入馈线自动化技术后,实现了对馈线电流和功率的实时监测和控制。
通过对馈线负荷的智能调度,能够实现对馈线运行的优化,提高了电网的经济性。
四、未来发展趋势1. 智能化和自主化未来配网自动化及馈线自动化技术将趋向智能化和自主化发展。
通过引入人工智能、大数据和云计算等技术,实现对电网的智能管理和优化运行。
2. 新能源接入随着新能源的快速发展,配网自动化及馈线自动化技术将面临更多的挑战和机遇。
未来需要加强对新能源接入的监测和控制,实现新能源的高效利用和安全运行。
3. 安全性和可靠性未来配网自动化及馈线自动化技术的发展将更加注重安全性和可靠性。
通过加强对电网设备状态的监测和故障检测,提高电网的故障处理能力,确保电网的安全运行。
4. 网络化和通信技术未来配网自动化及馈线自动化技术将与网络化和通信技术相结合,实现对电网的远程监控和远程控制。
通过建立可靠的通信网络,实现对电网的全面管理和控制。
配电网馈线系统保护原理及分析参考文本In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of EachLink To Achieve Risk Control And Planning某某管理中心XX年XX月配电网馈线系统保护原理及分析参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。
一引言配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。
目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。
馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。
二.配电网馈线保护的技术现状电力系统由发电、输电和配电三部分组成。
发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。
输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。
配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。
不同的配电网对负荷供电可靠性和供电质量要求不同。
许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。
随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。
具体实现方式有以下几种:2.1 传统的电流保护过电流保护是最基本的继电保护之一。
考虑到经济原因,配电网馈线保护广泛采用电流保护。
配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。
常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。
这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。
电流保护实现配电网保护的前提是将整条馈线视为一个单元。
当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。
另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。
2.2 重合器方式的馈线保护实现馈线分段、增加电源点是提高供电可靠性的基础。
重合器保护是将馈线故障自动限制在一个区段内的有效方式【参考文献】。
参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。
当AB区段内发生故螰1,重合器R动作切除故障,此后,A、B、C 分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。
同样,分段器B电压恢复后延时合闸。
当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。
目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。
该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。
2.3 基于馈线自动化的馈线保护配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。
馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。
同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。
参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。
这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。
该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。
同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。
三.馈线保护的发展趋势目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。
但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。
最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。
在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。
目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。
建立在光纤通信基础上的馈线保护的实现由以下三部分组成:1)电流保护切除故障;2)集中式的配电主站或子站遥控FTU实现故障隔离;3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。
这种实现方式实质上是在自动装置无选择性动作后的恢复供电。
如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。
这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。
四.馈线系统保护基本原理4.1 基本原理馈线系统保护实现的前提条件如下:1)快速通信;2)控制对象是断路器;3)终端是保护装置,而非TTU。
在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。
基本原理如下:参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F。
对于变电站M,手拉手的线路为A至D之间的部分。
变电站N则对应于C至F 之间的部分。
N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。
当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。
但出现低电压。
此时系统保护将执行步骤:Step1:保护起动,UR1、UR2、UR3分别起动;Step2:保护计算故障区段信息;Step3:相邻保护之间通信;Step4:UR2、UR3动作切除故障;Step5:UR2重合。
如重合成功,转至Step9;Step6:UR2重合于故障,再跳开;Step7:UR3在△T内未测得电压恢复,通知UR4合闸;Step8:UR4合闸,恢复CD段供电,转至Step10;Step9:UR3在△T时间内测得电压恢复,UR3重合;Step10:故障隔离,恢复供电结束。
4.2 故障区段信息定义故障区段信息如下:逻辑1:表示保护单元测量到故障电流,逻辑0:表示保护单元未测量到故障电流,但测量到低电压。
当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。
为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。
4.3 系统保护动作速度及其后备保护为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。
在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。
光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。
断路器动作时间为40ms~100ms。
这样,只要通信环节理想即可实现快速保护。
4.4 馈线系统保护的应用前景馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。
由于配电网的通信条件很可能十分理想。
在此基础之上实现的馈线保护功能的性能大大提高。
馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:(1)快速处理故障,不需多次重合;(2)快速切除故障,提高了电动机类负荷的电能质量;(3)直接将故障隔离在故障区段,不影响非故障区段;(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。
四.系统保护展望继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。
微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。
通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。
系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。
电流保护、距离保护及主设备保护都是采集就地信息,利用局部电气量完成故障的就地切除。
线路纵联保护则是利用通信完成两点之间的故障信息交换,进行处于异地的两个装置协同动作。
近年来出现的分布式母差保护则是利用快速的通信网络实现多个装置之间的快速协同动作如果由位于广域电网的不同变电站的保护装置共同构成协同保护则很可能将继电保护的应用范围提高到一个新的层次。
这种协同保护不仅可以改进保护间的配合,共同实现性能更理想的保护,而且可以演生于基于继电保护相角测量的稳定监控协系统,基于继电保护的高精度多端故障测距以及基于继电保护的电力系统动态模型及动态过程分析等应用领域。
目前,在输电网中已经出现了基于GPS的动态稳定系统和分散式行波测距系统。
在配电网,伴随贼配电自动化的开展。
配电网馈线系统保护有可能率先得到应用。
五.结论建立在快速通信基础上的系统保护是继电保护的发展方向之一。