几何不等式(一)
- 格式:ppt
- 大小:155.50 KB
- 文档页数:6
基本不等式几何证明方法宝子,今天咱来唠唠基本不等式的几何证明方法,可有趣啦。
咱先说说基本不等式是啥哈,就是对于正实数a、b,有(a + b)/(2) ≥ √(ab),当且仅当a = b时等号成立。
那它的几何证明可形象了呢。
想象一个直角三角形,设直角边为a和b。
我们以a + b为边长构造一个正方形。
这个正方形的面积就是(a + b)^2。
然后呢,我们把这个正方形进行分割。
在这个正方形里,有四个直角三角形,每个直角三角形的直角边就是a和b。
那这四个直角三角形的面积总和就是4×(1)/(2)ab = 2ab。
中间还剩下一个小正方形,这个小正方形的边长就是a - b(假设a>b哈),它的面积就是(a - b)^2。
所以整个大正方形的面积(a + b)^2就等于四个直角三角形面积加上中间小正方形面积,也就是(a + b)^2=4×(1)/(2)ab+(a - b)^2。
化简一下就得到(a + b)^2≥4ab,两边同时除以4,就有((a + b)^2)/(4)≥ ab,再开个方,就得到(a + b)/(2) ≥ √(ab)啦。
你看,当中间小正方形面积为0的时候,也就是a = b的时候,这个等号就成立了呢。
就好像这个正方形被分割得特别规整的时候。
还有一种几何证明也很有意思哦。
我们画一个半圆,直径是a + b。
然后在直径上取一点,把直径分成a和b两段。
从这点作一条垂直于直径的弦。
根据圆的性质,这条弦长的一半就是√(ab)。
而半圆的半径就是(a + b)/(2)。
因为弦长的一半肯定小于等于半径呀,所以又一次证明了(a + b)/(2) ≥ √(ab)。
当这条弦刚好是直径的时候,也就是a = b的时候,等号就成立啦。
宝子,这么看基本不等式的几何证明是不是超级好理解,就像看一幅画一样,一下子就明白这个不等式为啥是成立的啦。
几何法证明不等式(精选多篇)^2(a,b∈r,且a≠b)设一个正方形的边为c,有4个直角三角形拼成这个正方形,设三角形的一条直角边为a,另一条直角边为b,(b>a)a=b,刚好构成,若a不等于b时,侧中间会出现一个小正方形,所以小正方形的面积为(b-a)^2,经化简有(b+a)^2=4ab,所以有((a+b)/2)^2=ab,又因为(a^2+b^2)/2>=ab,所以有((a+b)/2)^2<=(a^2+b^2)/2,又因为a不等与b,所以不取等号可以在直角三角形内解决该问题=^2-(a^2+b^2)/2=/4=-(a-b)^2/4<0能不能用几何方法证明不等式,举例一下。
比如证明sinx不大于x(x范围是0到兀/2,闭区间)做出一个单位圆,以o为顶点,x轴为角的一条边任取第一象限一个角x,它所对应的弧长就是1*x=x那个角另一条边与圆有一个交点交点到x轴的距离就是sinx因为点到直线,垂线段长度最小,所以sinx小于等于x,当且尽当x=0时,取等已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;能给出其他方法的就给分(a1+a2+...+an)/n≥(a1a2...an)^(1/n)一个是算术,一个是几何。
人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^搞笑归搞笑,我觉得可以这样做,题目结论相当于证(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。
我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)我们考虑各元偏导都等于0,得到方程组,然后解出a1=a2=……=an再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。
§6几何不等式几何中表示量的不等关系的式子叫做几何不等式.几何不等式就其形式来说分为线段不等式、角不等式以及面积不等式三类.下面给出一些基本的几何不等式性质. (1) 在三角形中,两边之和大于第三边,两边之差小于第三边. (2) 在同一个三角形中,大边对大角,小边对小角;反之也成立.(3) 两组对边对应相等的两个三角形中,夹角大的第三边也大;反之也成立.(4) 三角形内任一点到两顶点的距离之和小于另一顶点到这两个顶点的距离之和. (5) 三角形一边上的中线小于另外两边之和的一半. (6) 在△ABC 中,点P 是边BC 上任意一点,则有 PA ≤max{AB ,AC }, 当点P 与点B 或C 重合时,等号成立.在解决几何不等式问题时,经常要用到一些已经学过的基本定理和已经证明过的结论,运用不等式的基本性质,通过几何、三角、代数等解题方法进行计算和证明.同时,还需考虑几何图形的特点和性质. 1、与线段有关的不等式问题 例1、已知BC 是△ABC 的最长边,O 是△ABC 内部任意一点,直线OA 、OB 、OC 分别交对边于点1A 、1B 、1C .证明:(1)1OA +1OB +1OC <BC ;(2)1OA +1OB +1OC ≤max{1AA ,1BB ,1CC }.证明:(1)如图1,过点O 作OX ∥AB ,OY ∥AC ,分别交BC 点X 、Y . 再过点X 、Y 分别作XS ∥1CC ,YT ∥1BB ,分别交AB 、AC 于点S 、T .因为△OXY ∽△ABC ,则XY 是△OXY 的最大边.由性质6知 1OA <max{OX ,OY }≤XY .又△BXS ∽△BC 1C ,△YCT ∽△BC 1B ,所以,由1CC <max{CA ,BC }=BC ,可得BX >XS =1OC .同理,CY >YT =1OB . 故BC =XY +BX +YC >1OA +1OB +1OC .(2)设11OA AA =x , 11OB BB =y , 11OC CC =z . 则 x +y +z =OBC ABC S S +OCA ABC S S +OABABCS S =1.故1OA +1OB +1OC =x 1AA +y 1BB +z 1CC ≤(x +y +z )max{1AA ,1BB ,1CC } =max{AA 1 ,BB 1 , CC 1 }.说明:其实,(2)比(1)更强,由(2)可以推得(1). 例2、如图2,在△ABC 中,∠B =2∠C .求证:AC <2AB.证明:延长CB 至D ,使得DB =AB .则有∠D =∠BAD ,∠ABC =2∠D . 由题设知∠ABC =2∠C .所以,∠D =∠C .故AD = AC .在△ABC 中,因为DB +AB >AD ,即2AB >AD ,所以,AC <2AB .说明:(1)把问题中的不等量尽量集中到一个三角形(或者 两个具有紧密关系的三角形) 中,利用三角形中的线段不 等关系(或角的不等关系)解决问题.这是一种常用的解题 思路.(2)若将题中的“∠B =2∠C ”改为“∠B =n ∠C ”,可以得到相似的结论:在△ABC 中, 若∠B =n ∠C (n 是不小于2的正整数),则AC ≤nAB .例3、已知P 是△ABC 内任一点.(1)求证: 12(AB +BC +CA )<PA +PB +PC <AB +BC +CA ; (2)若△ABC 是正三角形,且边长为1,求证: 32<PA +PB +PC <2. 分析:不等式12(AB +BC +CA )<PA +PB +PC 可化为AB +BC +CA <2(PA +PB +PC )=(PA +PB )+(PB +PC )+ (PC +PA ),由“三角形两边之和大于第三边”即可得证.由不等式PA +PB +PC <AB +BC +CA 的轮换对 称性,只要证明PA +PB <CA +CB 即可.证明:(1)在△PAB 中,PA +PB >AB .同理,PB +PC >BC ,PC +PA >CA .三式相加得 2(PA +PB +PC )>AB +BC +CA ,即12(AB +BC +CA )<PA +PB +PC .又由性质4知PA +PB <CA +CB .同理,PB +PC <AB +AC ,PC +PA <BC +BA .三式相加得 PA +PB +PC <AB +BC +CA . 综上可知12(AB +BC +CA )<PA +PB +PC <AB +BC +CA .(2)如图3,若△ABC 是正三角形,过P 作MN ∥BC ,交AB 于M 、交AC 于N , 则△AMN 也是正三角形.由(1)的结论知PA +PB +PC >12(AB +BC +CA )=32.又由性质6有AP ≤max{AM ,AN }=AM ,且BP <BM +MP ,CP <NC +NP . 三式相加得AP +BP +CP <AB +MN +NC =AB +AN +NC =AB +AC =2.所以,32<PA +PB +PC <2.例4、已知凸六边形ABCDEF 的边长都为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. 证明:如图4,由于∠A +∠B +∠C +∠D +∠E +∠F =720,故不妨设∠A +∠F ≤7203=240°.作菱形ABGF ,则∠GFE ≤60°,FG =FE =1.于是,GE 是△FGE 的最小边. 故GE ≤1.又BG =1,则BE ≤BG +GE ≤2.例5、有A 、B 、C 三个村庄成三角形(如图5),A 、B 、C 三个村 庄上小学人数的比为1∶2∶3.现需要办一所小学.问小学应设在什么地方,才能使得上学儿童所走的路程的总和S 最小?解:设小学办在点P ,A 、B 、C 三个村庄的上学人数分别为a 、2a 、3a .则 S =aPA +2aPB +3aPC =a (PA +PC )+2a (PB +PC )≥aAC +2aBC . 当且仅当P =C 时,上式等号成立. 所以,小学设在C 村庄,可以使得上学 儿童所走的路程的总和S 最小.2、与角有关的不等式问题例6、在△ABC 中,已知12AC >AB .求证:12∠ABC >∠ACB . 证明:因为AC >2AB >AB ,所以,∠ABC >∠ACB . 如图6,作∠ABD =∠ACB ,交AC 于D . 下面只要证明∠CBD >∠ACB .因为△BAD ∽△CAB ,所以,BC BD =ACAB>2,即BC >2BD . 又CD >BC -BD ,两式相加得BC +CD >2BD +BC -BD =BD +BC ,即CD >BD .所以,∠CBD >∠ACB .故∠ABC =∠ABD +∠DBC >∠ACB +∠ACB =2∠ACB . 从而,12∠ABC >∠ACB .说明:与角有关的不等式常常转化为边的不等式进行证明. 例7、已知平面内的任意四点,其中任意三点不共线.试问:是否一定能从这样的四个点中选出三点构成一个三角形,使得这个三角形至少有一个内角不大于45°?试证明你的结论.证明:根据内角的大小分情况讨论.(1)如图7,若四边形ABCD 是凸四边形,那么,必有一个内 角不大于90°,不妨设为∠A .于是,∠A =∠BAC +∠CAD ≤90. 所以,∠BAC 与∠CAD 中必有一个不大于45°.(2)如图8,若四边形ABCD 是凹四边形,联结AC ,则△ABC 中必有一个内角小于或等于60,不妨设为∠A .于是,∠A =∠BAD +∠CAD .所以,∠BAD 与∠CAD 中必有一个不大于12×60=30≤45.综上可知,一定可以从中选出三点符合题意.说明:由不等式的性质“若1a +2a +⋯+n a =m (1a ,2a ,⋯,n a 为正数),则必存在i a (i =1,2,⋯,n ),满足i a ≤mn”,得出“凸四边形必有角不大于90°,三角形中必有角不大于60°”的结论,由此找出不大于90°的∠A .再将∠A 分成两个角,得到含有不大于45°内角的三角形. 3、与面积有关的不等式问题例8、在△ABC 中,点D 、E 、F 分别在边BC 、CA 、AB 上.求证:min{AEF S ,BFD S , CDE S }≤14ABC S .证明:设min{AEF S ,BFD S , CDE S }=S .如图9,注意到又由均值不等式知同理,则故min{AEF S ,BFD S , CDE S }≤14ABC S说明:在处理几何不等式最大值与最小值问题时,常常会用到一些代数不等式.本题用到了不等式2()x y +≥4xy .例9、正△ABC 的边长为1,点M 、N 、P 分别在边BC 、CA 、AB 上,且MB +CN +AP =1.求△MNP 面积的最大值.解:如图10,设BM =x ,CN =y ,AP =z .则0≤x 、y 、z ≤1,x +y +z =1.故ANP S +BPM S +CMN S =12[x (1-z )+y (1-x )+z (1-y )]sin60°=34[x (1-z )+y (1-x )+z (1-y )]. 由2()x y z ++≥3(xy +yz +zx ),易得xy +yz +zx ≤13.从而,x (1-z )+y (1-x )+z (1-y )=x +y +z -(xy +yz +zx )≥1-13=23.故NMP S =ABC S -(ANP S +BPM S +CMN S当x =y =z =13时,上式等号成立.因此,△MNP 例10、△ABC 是边长为8的正三角形,M 是边AB 上一点,MP ⊥AC 于点P ,MQ ⊥BC 于点Q ,联结PQ . (1)求PQ 的长的最小值;(2)求△CPQ 面积的最大值.解:(1)设△ABC 的高为h ,则h =由ACM S +BCM S =ABC S ,得MP +MQ =h =如图11,过点P 、Q 分别作边AB 的垂线,垂足分别为1P 、1Q . 因为∠PMA =∠QMB =30°,所以,1PM =PM ,1Q M =QM QM ,PQ ≥11PQ =1PM +1MQ PM +QM )=6. 当M 为AB 的中点时,上式等号成立. 因此,PQ 的最小值为6.(2)因为∠PMA =∠QMB =30°,所以,AP +BQ =12AM +12BM =12AB =4,CP +CQ =16-(AP +BQ )=12.故CPQ S =12CP ·CQ sin C ·CQ 2()4CP CQ =.当M 为AB 的中点时,上式等号成立.因此,△CPQ 面积的最大值为4、费马点问题例11、在已知平面内找一点P ,使得它到△ABC 三个顶点的距离之和最小(此点称为费马(Fermat)点).解:(1)证明点P 不会在△ABC 外.如图12,将△ABC 外部分为6个区域. 若点P 在区域Ⅰ中(如图13),则有 AB +AC ≤PB +PC <PA +PB +PC ,即点A 到三顶点的距离之和比点P 到三顶点的距离之和小. 若点P 在区域Ⅲ和Ⅴ,也有同样的结论.若点P 在区域Ⅵ中(如图14),设BP 交AC 于点Q .则有 QA +QB +QC =QB +AC <BP +AC <PA +PB +PC ,即点Q 到A 、B 、C 三点的距离之和比点P 到A 、B 、C 三点 的距离之和小.若点P 在区域Ⅱ和Ⅳ,也有同样的结论. 因此,点P 一定在△ABC 的内部或边上.(2)当△ABC 的三个内角均小于120时,以BC 、CA 、AB 为边分别向△ABC 外作等边△BCD 、等边△CAE 、等边△ABF ,再分别作 三个等边三角形的外接圆.三个外接圆的圆周在△ABC 内的交点,即对△ABC 三边张角均 为120°的点记为点P (如图15).下面证明:对于△ABC 内任意一点Q ,都有PA +PB +PC ≤QA +QB +QC .过A 、B 、C 三点分别作PA 、PB 、PC 的垂线,三条垂线相交所成 的三角形记为△111A B C .因为P 对△ABC 三边张角均为120°,则 ∠111B AC =∠111C B A =∠111ACB =60°. 所以,△111A BC 是正三角形,设其边长为a .任取不同于P 的一点Q ,向△111A B C 的三边作垂线,得到距离1h 、2h 、3h . 由“正三角形内任一点到三边距离之和等于正三角形的高”得 2111A B C S =a (PA +PB +PC )=a (1h +2h +3h )≤a (QA +QB +QC ). 因此,PA +PB +PC ≤QA +QB +QC .当且仅当Q =P 时,上式等号成立.如图16,将△BAQ 绕点A 旋转,使B 成为CA 延长线上一点B ′,Q 为Q ′. 因为旋转角小于或等于60°,所以,QQ ′≤AQ . 则QA +QB +QC ≥QQ ′+Q ′B ′+QC ≥CB ′=CA +AB . 当且仅当Q =A 时,上式等号成立.综上所述,当△ABC 各个内角均小于120°时,费马点为△ABC 内部对三角形的三边张角均为120°的点. 若△ABC 中有一 内角不小于120°,则此内角的顶点即为费马点. 练习题1.在△ABC 中,若∠B =n ∠C (n 是不小于2的正整数),则AC ≤nAB .(提示:如图18,在△ABC 的外接圆上,将∠B所对的AC n 等分,联结相邻分点得n 条彼此相等的弦,且这些弦都与AB 相等. 因为折线A 12A A ⋯1n A -C 的长大于AC ,所以,AC ≤nAB .)2.在△ABC 中,AB >AC ,AM 为中线,P 为△AMC 内一点.证明:PB >PC .(提示: 易知 ∠AMB >∠AMC .于是,∠AMC <90°.过P 作PH ⊥BC 于点H ,则垂足H 必在MC 的内部 或其延长线上.从而,BH >CH .因此,PB >PC .)3.在Rt △ABC 中,P 是斜边BC 的中点,Q 、R 分别是AB 、AC 上的点.求证:△PQR的周长大于BC 的长.(提示:如图19,分别作点P 关于AB 、AC 的对称点M 、N ,联结 MQ 、NR .由对称性知PQ =MQ ,PR =NR .联结AP ,由对称性知M 、A 、N 三点共线,且 ∠MPN =90°.所以,MN =2AP =BC .故PQ +QR +RP =MQ +QR +RN >MN =BC .)4.如图20,将任意△ABC 的三边四等分,边BC 、CA 、AB 上的分点分别为1A 、2A 、3A ,1B 、2B 、3B ,1C 、2C 、3C . 记△ABC 、△111A B C 的周长分别为p 、1p .求证:12p <1p <34p .(提示:易知13C B =14BC . 在△131B B C 中,有 13C B +31B B >11B C ,即14BC +12CA >11B C .同理,14CA +12AB >11C A ,14AB +12BC >11A B . 三式相加即得1p <34p .在△11AB C 中, 11B C >1AB -1AC =34CA -14AB .同理,11C A > 34AB -14BC ,11A B > 34BC -14AC .三式相加即得12p <1p .)5.凸四边形ABCD 中,AB +AC +CD =16.问:当对角线AC 、BD 为何值时,四边形ABCD 面积最大?面积最大值是多少?(提示:设AB =x ,AC =y ,则CD =16-x -y .而ABCD S =ABC S +ACD S ≤12xy +12y (16-x -y )=- 122(8)y -+32.所以,当∠BAC =∠ACD =90°,AC =8,BD =,四边形ABCD 的最大面积为32.)6.如图21,在△ABC 中,AB =AC ,D 为BC 的中点,E 为△ABD 中任意一点,联结AE 、BE 、CE . 求证:∠AEB >∠AEC . (提示:如图21,作点E 关于AD 的对称点E ′,联结AE ′、CE ′、 EE ′,并延长EE ′交AC 于点F .根据对称性得△ABE ≌△ACE ′.所以,∠AEB =∠AE ′C .易知∠AE ′C =∠AE ′F +∠CE ′F >∠AEF +∠CEF =∠AEC ,即∠AEB >∠AEC .)7.已知凸六边形ABCDEF 的边长至多为1.证明:对角线AD 、BE 、CF 中至少有一条不超过2. (提示:如图22,联结AC 、CE 、EA .在△AEC 中,不妨设边CE 最大,即CE ≥AC ,CE ≥AE .对A 、C 、D 、E 四点用托勒密不等式,有AD ·CE ≤AC ·ED +CD ·AE ,故AD ≤AC CE ·DE +CD ·ACCE≤1×1+1×1=2.)8.如图23,在凸四边形ABCD 中,M 、P 分别是BC 、CD 的中点,已知AM +AP =a .求证:ABCD S <212a .(提示:如图23,联结AC 、MP .则AMP S +14BDC S =AMCP S =12ABCD S .又BDC S <ABCD S ,AMP S ≤12AM ·AP ≤12·2()4AM AP =218a ,从而,ABCD S <212a .)。
基本不等式几何证明1. 引言基本不等式是初中数学中的重要概念之一,它是解决不等式问题的基础。
在几何中,我们可以通过基本不等式来证明一些关于线段、角度和面积的性质。
本文将介绍基本不等式在几何证明中的应用。
2. 基本不等式回顾在初中数学中,我们学习了以下两个基本不等式:•对于任意实数a和b,有a + b ≥ 2√(ab)。
•对于任意实数a和b,有a² + b² ≥ 2ab。
这两个不等式在解决一元二次方程、证明三角形性质以及推导其他数学公式时起到了重要作用。
3. 线段长度的比较基本不等式可以用来比较线段的长度。
考虑以下问题:已知直线上有三个点A、B和C,且B位于AC之间。
如何判断AB与BC的长度关系?我们可以使用基本不等式来解决这个问题。
设AB = a,BC = b,则根据基本不等式a + b ≥ 2√(ab)可得:AB + BC ≥ 2√(AB * BC)即a + b ≥ 2√(ab)。
若a + b > 2√(ab),则AB + BC > 2√(AB * BC),即AB + BC > AC;若a + b = 2√(ab),则AB + BC = 2√(AB * BC),即AB + BC = AC;若a + b < 2√(ab),则AB + BC < 2√(AB * BC),即AB + BC < AC。
因此,通过基本不等式的比较,我们可以得出线段长度的大小关系。
4. 角度的比较基本不等式还可以用来比较角度的大小。
考虑以下问题:已知有两条射线OA和OB,如何判断∠AOB与直角(90°)的大小关系?我们可以使用基本不等式来解决这个问题。
设∠AOB = θ,则根据余弦定理可得:cosθ = (OA² + OB² - AB²) / (2OA * OB)由于直角的余弦值为0,所以有:cos90° = (OA² + OB² - AB²) / (2OA * OB) ≤ 0化简可得:OA² + OB² - AB² ≤ 0即OA² + OB² ≤ AB²。
第七讲几何不等式(1)几何问题中出现的不等式称为几何不等式.解数学竞赛中出现的几何不等式,需要熟悉几何中有关的基本不等式和常用的定理,还要掌握代数方法和三角方法.1.有关证明线段不等的公理和定理(1) 在联结两点的所有线中,线段最短.(2) 在同一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.(3) 定点P到定直线的最短距离,是从P向定直线所作的垂线段的长.(4) 在两个三角形中,如果有两组对应边分别相等,那么夹角大的所对的第三边也大.(5) 托勒密不等式:在四边形ABCD中,有AB·CD+AD·BC≥AC·BD.当且仅当ABCD是圆内接四边形时等号成立.(6) 欧拉定理,欧拉不等式若△ABC的外接圆半径为R,内切圆半径为r,两圆心间的距离为d,则d=)2(rR-,当且仅当△ABC为正三角形时,d=0. R≥2rR(7) 埃德斯——莫德尔不等式设P为△ABC内任意一点,Ra, R b, Rc分别表示P到顶点A、B、C的距离,d a, d b, d c分别表示P到三边BC,CA,AB的距离,则R a+ R b+ R c≥2(d a+ d b+ d c)(8) 费尔马点在△ABC中,使PA+PB+PC为最小的平面上的点成为费尔马点,当∠BAC≥120°时,A点即为费尔马点,当△ABC内任一内角均小于120°时,则与三边张角均为120°时的P点即为费尔马点.2.有关证明角不等的定理(1)三角形的任何一个外角大于和它不相邻的任意一个内角.(2)在同一个三角形中,大边对大角,小边对小角,反之亦然.3.圆中有关不等量的知识(1)在同圆或等圆中,圆心角(锐角)大则所对的弧大、弦大、弦心距小.(2)过圆内一定点的弦中,以此点为中点的弦最小.(3)若A,B,C为圆上的点,P为圆外的点,Q为圆内的点,且P,C,Q都在直线AB的同侧,则∠AQB >∠ACB >∠APB,4. 有关面积的几何不等式(1) 外森比克不等式:设△ABC的边长和面积分别为a, b, c和S,则a2+b2+c2S3≥,当且仅当△ABC为正三角形时等号成立.4(2) 等周定理:周长一定的三角形中,以正三角形的面积最大;周长一定的矩形中,以正方形的面积最大.5.几何不等式的证明有时还要用到代数知识(如平均不等式等)和三角知识.例1. (1995 IMO)凸六边形ABCDEF,满足AB= BC= CD,DE=EF=FA,∠BCD=∠EFA=60º.设G和H是这六边形内部的两点,使得∠AGB=∠DHE= 120º.试证:AG+ GB+ GH+ DH+ HE≥CF.例2. 已知正方形ABCD内部一点E,并且E到三个顶点A,B,C的距离之和的。