面向社会大数据的数据挖掘技术研究
- 格式:docx
- 大小:37.47 KB
- 文档页数:2
《数据挖掘研究现状及发展趋势》篇一一、引言随着信息技术的飞速发展,大数据时代已经来临。
数据挖掘作为处理海量数据并提取有价值信息的重要手段,其研究与应用日益受到广泛关注。
本文将介绍数据挖掘的研究现状,并探讨其未来的发展趋势。
二、数据挖掘研究现状1. 研究领域数据挖掘涉及多个学科领域,包括统计学、机器学习、数据库技术、人工智能等。
目前,国内外学者在数据挖掘领域进行了大量研究,涵盖了金融、医疗、教育、电商等多个行业。
2. 研究方法数据挖掘主要采用统计学、机器学习算法等方法对数据进行处理和分析。
其中,聚类分析、分类与预测、关联规则挖掘等是常用的数据挖掘方法。
此外,深度学习、神经网络等新兴技术在数据挖掘中也得到了广泛应用。
3. 研究成果近年来,数据挖掘在各个领域取得了丰硕的成果。
例如,在金融领域,通过数据挖掘技术可以预测股票价格走势、识别欺诈行为等;在医疗领域,数据挖掘有助于实现疾病预测、基因分析等。
此外,数据挖掘还为电商推荐系统、智能决策支持系统等提供了强有力的技术支持。
三、数据挖掘的发展趋势1. 云计算与大数据的结合随着云计算技术的不断发展,大数据存储和处理能力得到了极大提升。
未来,云计算与大数据的结合将进一步推动数据挖掘技术的发展。
通过云计算平台,可以实现对海量数据的快速处理和分析,为各行业提供更高效的数据挖掘服务。
2. 深度学习与神经网络的广泛应用深度学习与神经网络是当前研究的热点领域,其在数据挖掘中发挥了重要作用。
未来,随着算法的不断优化和模型性能的提升,深度学习与神经网络将在数据挖掘领域得到更广泛的应用。
3. 数据挖掘与人工智能的融合数据挖掘与人工智能的融合将是未来发展的重要趋势。
通过将数据挖掘技术与人工智能算法相结合,可以实现更高级的数据分析和预测功能,为各行业提供更智能的决策支持。
4. 数据隐私与安全保护的重要性日益凸显随着数据挖掘的广泛应用,数据隐私和安全保护问题日益受到关注。
未来,如何在保证数据隐私和安全的前提下进行数据挖掘将成为一个重要的研究方向。
大数据背景下数据挖掘技术的应用研究摘要:随着科技的发展,数据信息大量出现,越来越多的人想要从许多混杂的资源中找出最具有价值的信息。
本文将从数据挖掘技术的基本概念入手,并结合当下现实来分析大数据的出现给数据挖掘技术应用带来的变化。
在数据挖掘技术应用中主要从数据分析的利用和数据聚类的利用两大方面进行阐释,总体研究大数据背景下数据挖掘技术的应用。
关键词:大数据时代;数据挖掘技术;数据挖掘技术的应用大数据的发展会带来大量的信息资源,人们的思维方式也会随之发生改变。
于此同时信息发展也逐渐成为了开启信息时代的钥匙。
全球各国普遍认识到数据的重要性及其对国家的发展发挥的许多重要意义,许多国家以此为基点制定适合自己国家发展的战略性计划,由此占领数据的高地,实现国家创新性发展。
因此,大数据在当今时代具有极强的研究价值和应用价值。
笔者将主要从大数据可视化给数据挖掘技术带来的影响为着眼点,进而进一步分析高性能计算(HPC)给数据挖掘技术带来的一定程度的影响,且通过这些变化研究大数据背景下数据挖掘技术的具体应用。
正文:当今的数据挖掘技术的理论已经成熟,数据挖掘技术的应用愈加广泛。
受众趋向了解更多的数据挖掘技术,从而利用起大量的信息资源。
我们对于大数据背景下的数据挖掘技术的具体应用,将会获得信息的有效运用和资源的科学整合。
同时,掌握和了解到有关于数据挖掘技术的知识对普通受众来说不仅可以掌握到大量的数据资源,从而更好地利用这些资源为我们的生活实践服务,而且对于专业技术人员来说,广泛被大众所接受的数据挖掘知识前景将更加开阔,理论弹性增大,这将促进数据挖掘技术的进一步发展。
一、数据挖掘技术的概述数据挖掘技术主要是一个搜索的过程,它主要利用算法进行搜索,并通过一定媒介,从大量的信息中提取对搜索者有用的信息资源。
这个过程的原始数据被分成建模样本和分析样本两部分。
建模样本将会经过数据预处理后变成预处理后的专家样本。
而分析样本则会经过特征选择后变成预处理后的分析样本。
计算社会科学中的数据挖掘与分析技术的研究随着数字化的发展,研究计算社会科学中的数据挖掘与分析技术变得越来越热门。
数据挖掘和分析技术可以通过大量实证研究数据发现社会现象和模式,同时也为社会科学的基础研究和政策制定提供了有用的参考建议。
这篇文章将深入探讨计算社会科学中的数据挖掘与分析技术的研究。
数据挖掘是一种通过数据分析来发现结构、模式和异常的过程。
在计算社会科学中,数据挖掘技术可以用来解决大量数据的分析问题,这些数据隐藏着有价值的社会现象和模式。
例如,在人类社会中,文化传承、社会流动性和意识形态发展等问题都可以通过数据挖掘技术探索和发现。
与数据挖掘相比,数据分析是对大量数据进行统计分析,以获得有关社会现象和行为的深入洞察。
例如,政治学家经常使用数据分析来预测选举结果,而社会学家则使用数据分析来探索犯罪率、教育质量和种族生活经验的影响因素。
然而,数据挖掘和分析并不是完美的工具。
让计算科学家们头疼的问题是,在大数据时代,隐私保护变得至关重要,这就限制了数据挖掘和分析的可用性。
另外,由于大数据的异常性,导致数据加工需要一定的专业知识,这也增加了数据挖掘和分析中的误解和误差风险。
因此,为了更好地解决这些问题并更好地利用数据挖掘和分析技术,计算社会科学已经建立了一些针对性的新技术,例如社会网络分析和文本分析等。
社会网络分析使用社会网络理论来分析人类社会中的关系,并以这些关系来研究社会行为和社会现象。
社交网络在互联网时代变得越来越流行,可以通过分析这些社交网络数据来发现真正的模式。
在社会网络分析中,网络拓扑结构和节点属性以及关系都非常重要。
这些属性可以被集成成模型,以帮助建立预测模型和社会影响分析。
例如,社会网络分析可以利用顶点特征分析来预测网络中的个人成对关系是否会产生后续联系。
文本分析是通过对大量文本进行计算分析来获取有价值的信息的一种技术。
文本分析技术可以解决社会科学中的很多问题,如文化分析、政治分析和虚假信息检测等问题。
基于大数据的数据挖掘和分析方法研究在信息时代,数据积累迅速,对于数据处理的需求也变得越来越强烈。
数据挖掘和分析就是一种利用数学、计算机科学、统计学等方法,从大规模的数据中提取出有用的信息的技术。
而基于大数据的数据挖掘和分析方法更是为数据挖掘和分析提供了更广阔的空间和更精密的工具。
近年来,随着互联网的不断发展,产生了海量的数据,传统的数据分析方法显得无能为力。
此时,基于大数据的数据挖掘和分析方法应运而生。
大数据技术可以挖掘数据的真实价值,协助企业或个人进行更加精确地决策。
而在大数据技术的支持下,数据挖掘和分析的应用场景也在不断拓展。
一、基于大数据的数据挖掘和分析方法大数据技术一般包括数据处理和分析两个方面。
数据处理主要是指从数据源中提取数据,并进行清洗、预处理和存储。
而数据分析则是针对数据进行一系列的分析操作,提取出有用信息。
在大数据技术支持下,数据挖掘和分析的方法有以下几种类型:1.关联规则挖掘:通过发现数据集中的相互关联和依赖关系,以及研究这些关联和依赖关系,从而识别出有趣的关联规则。
2.聚类分析:聚类分析是将一组具有相似特征的数据对象划分到同一组中,同时将不同组之间具有较大差异的数据对象分开,通过研究分类结果进行对数据的理解与解释。
3.分类分析:是通过训练样本,来创建分类模型,然后通过实时数据的判断,将某个数据对象划分到分类模型中。
4.时间序列分析:是通过分析某个数据对象在时间上的变化,确定该数据对象的走势和变化规律,同时借此预测未来的发展趋势。
二、数据挖掘和分析的应用场景基于大数据的数据挖掘和分析可以应用于各种领域。
在商业领域,可以通过大数据挖掘和分析实现更加精准的营销策略,帮助企业快速发现市场机会。
在金融领域,可以通过数据挖掘和分析实现比传统方法更准确的风险控制和投资建议。
在医疗领域,可以通过数据挖掘和分析实现更加精准的疾病诊断和治疗方案。
例如,在金融领域,大数据技术已经成为了风险控制的重要工具。
大数据环境下的数据挖掘与分析技术研究在大数据时代,数据的积累和分析成为了企业和机构的重要任务。
数据挖掘与分析技术就是在大数据环境下进行数据处理和提取有用信息的关键技术。
本文将深入探讨大数据环境下的数据挖掘与分析技术,并分析其研究进展和应用场景。
一、大数据环境下的数据挖掘技术研究1. 数据预处理技术大数据环境下的数据往往是庞大而复杂的,包含噪声和缺失值。
数据预处理技术主要包括数据清洗、数据集成、数据变换和数据规约。
数据清洗用于处理噪声和异常值,数据集成用于将多个数据源的数据进行整合,数据变换用于将数据转换为可分析的形式,数据规约用于减少数据集的大小。
2. 数据挖掘算法数据挖掘算法是大数据环境下进行数据分析的核心。
常用的数据挖掘算法包括关联规则挖掘、分类与预测、聚类分析和异常检测等。
关联规则挖掘用于发现数据集中的关联关系,分类与预测用于根据已有数据来预测未知数据的属性,聚类分析用于将数据集中的对象分成不同的群组,异常检测用于发现与其他对象不同的数据。
3. 数据可视化技术数据可视化技术用于将大数据转化为图表、图形和动画等,便于人们理解和分析数据。
在大数据环境下,数据量庞大,通过可视化技术可以直观地展示数据的模式和趋势,帮助用户发现隐藏在数据中的模式和规律。
二、大数据环境下的数据分析技术研究1. 基于模型的数据分析基于模型的数据分析通过建立数学模型来描述数据之间的关系,然后利用模型进行数据分析和预测。
常用的模型包括回归模型、时间序列模型和神经网络模型等。
通过模型分析,可以揭示数据之间的潜在关系和规律。
2. 数据挖掘与业务智能的结合大数据环境下的数据分析不仅要关注数据本身的分析,还要与业务智能进行结合,从而为决策提供更加准确和可靠的依据。
数据挖掘和业务智能的结合可以帮助企业和机构实现更好的业绩和竞争优势。
3. 文本分析与情感分析大数据环境下的数据不仅包括结构化数据,还包括非结构化数据,如文本、语音和图像等。
科学大数据中的机器学习和数据挖掘技术研究随着科学技术的不断发展,我们已经进入了一个大数据时代,如何挖掘这大量的数据成为了一个亟待解决的问题。
机器学习和数据挖掘作为热门的技术,可以对大数据进行有效地处理和分析,提供了新的思路和方法。
一、机器学习技术机器学习是利用计算机算法和数据模型来让计算机自己学习的技术。
它可以发掘数据中的规律和模式,识别有意义的信息。
机器学习有以下几种常见的方法:1.监督学习:在监督学习中,算法需要一个有标签的数据集来训练自己,然后对未知数据进行预测,例如分类和回归等。
2.非监督学习:非监督学习不需要有标签的数据集,它可以从数据中自行发现规律,例如聚类和关联规则等。
3.强化学习:强化学习是一种通过试错学习的技术,由于该算法需要通过不断地尝试得到奖励,所以具有很强的智能性和鲁棒性。
机器学习技术具有广泛的应用,可以应用于图像识别、语音识别、自动驾驶、医疗健康等多个领域。
二、数据挖掘技术数据挖掘是一种从大量数据中提取出有用的模式、规律、趋势和异常的过程。
它可以用来识别有影响的变量、评估模型的准确性、探索数据间的关联关系等。
数据挖掘技术的主要方法包括以下几种:1.分类:分类是将数据集合划分成有限个类别。
例如,判断一封邮件是垃圾邮件还是正常的电子邮件。
2.聚类:聚类是将数据集合划分成有限个相似的组。
例如,将人群根据其消费行为划分为不同的消费群体。
3.关联规则:关联规则是在数据集合中寻找变量间的关联关系。
例如,预测商品的销售量与天气的关系。
数据挖掘技术可以用于市场研究、客户关系管理、网络监测、信用评估、医学、生物学和物理学等多个领域。
三、机器学习和数据挖掘在科学大数据中的应用机器学习和数据挖掘技术在科学大数据中的应用越来越广泛。
以下是其中的几个应用:1.基因组学:基因组学是研究基因组的学科。
机器学习技术在基因组学中用于基因表达分析、基因聚类、基因分类和基因诊断等领域。
2.地震预测:地震发生的时空非常复杂。
大数据分析的数据挖掘技术和方法近年来,随着大数据时代的到来,数据分析和数据挖掘技术的研究和应用已经成为一个热门的话题。
大数据分析技术已经被广泛应用于商业、医疗、能源、交通等诸多领域,并取得了良好的应用效果。
本文将聚焦于大数据分析的数据挖掘技术和方法,探讨其优点、技术路线和应用场景,并尝试提出一些问题和展望。
一、数据挖掘技术和方法概述数据挖掘是指从大规模数据集中提取有效信息的过程,是一种基于数据驱动的分析技术。
它通过设计合适的算法和模型,从海量数据中找出数据之间的联系和规律,以支持决策制定、商业预测、产品设计等企业和组织的决策活动。
数据挖掘技术包括关联规则挖掘、分类、聚类、预测和异常检测等方法。
具体来说,常用的数据挖掘技术有:决策树分析、聚类分析、关联规则分析、预测模型和异常检测等。
这些技术的目的都是为了从数据集合中挖掘出对决策和业务有用的信息。
二、大数据分析的技术路线大数据分析的过程主要包括数据采集、数据处理和数据分析三个阶段。
其中,数据采集是指从不同的来源获取数据,包括内部系统数据和外部数据,数据需求会议对数据的采集提出了要求。
数据处理阶段主要针对采集到的数据进行去重、清洗、预处理等处理,以保证数据的完整性和准确性。
数据分析阶段则是将处理后的数据应用于数据挖掘、统计分析、机器学习、深度学习等算法和模型,从而挖掘有价值的信息。
通常情况下,大数据分析的技术路线从数据采集、数据存储、数据预处理、数据挖掘、数据建模、数据可视化六个方面展开。
在这六个方面,数据挖掘、数据建模和数据可视化是大数据分析中的重要环节。
三、大数据分析的应用场景大数据分析技术具有很强的灵活性和适应性,广泛应用于金融、医疗、电子商务、保险、物流等领域。
以金融领域为例,数据挖掘技术能够通过对各类金融数据的挖掘和分析,对股票价格、汇率波动、基金收益等进行预测,帮助投资者实现理财增值。
在医疗领域,大数据分析技术可以运用在疾病预测、诊断和治疗等领域,为医生提供科学的治疗建议。
数据挖掘研究现状及发展趋势数据挖掘研究现状及发展趋势引言:随着信息时代的到来,人们对于数据的需求不断增加,数据的挖掘技术也逐渐崭露头角。
数据挖掘是指通过从大量的数据中发现隐含的知识和信息,进行模式识别、预测行为、分类和聚类等任务的过程。
近年来,数据挖掘技术在各个领域取得了广泛的应用,并且不断推动了科学研究和商业发展。
本文将介绍数据挖掘研究的现状及其未来的发展趋势。
一、数据挖掘的研究现状1. 数据挖掘算法数据挖掘算法是数据挖掘研究的核心。
目前,常见的数据挖掘算法包括决策树、聚类、关联规则挖掘、支持向量机等。
这些算法可以有效地从数据中发现知识和信息,并为决策提供支持。
此外,随着深度学习的兴起,神经网络等人工智能算法也被广泛应用于数据挖掘领域。
2. 数据挖掘应用数据挖掘技术在各个领域都有广泛的应用。
在商业领域,数据挖掘可以用于市场分析、客户关系管理、风险评估等。
在金融领域,数据挖掘可以用于预测股票价格、信用评估等。
在医疗领域,数据挖掘可以用于疾病诊断、药物发现等。
在科学研究中,数据挖掘可以用于发现科学规律、推动科学进展。
3. 数据挖掘工具为了帮助人们更好地进行数据挖掘研究,许多数据挖掘工具被开发出来。
例如,Weka、RapidMiner、Python的scikit-learn等工具,它们提供了丰富的功能和算法供用户选择,大大简化了数据挖掘的过程。
二、数据挖掘研究的发展趋势1. 大数据时代的挑战随着互联网的普及和物联网技术的发展,大量的数据被生成和存储。
数据量的急剧增加给数据挖掘技术提出了挑战。
未来,数据挖掘研究将面临如何高效处理和分析大数据的问题。
2. 非结构化数据挖掘现有的数据挖掘技术主要针对结构化数据,例如数据库中以表格形式存储的数据。
然而,随着社交网络、文本和多媒体数据的大量产生,非结构化数据挖掘成为了一个重要的研究方向。
未来的研究将致力于如何从非结构化数据中提取有效的信息和知识。
3. 隐私保护与数据安全随着个人数据的大规模收集和分析,数据隐私和安全成为了一个严峻的问题。
基于数据挖掘的大数据分析技术研究随着网络技术的不断发展和普及,大数据时代已经到来。
在现今信息社会中,大量的数据被不断地产生和积累,大数据的价值和应用愈发凸显。
数据挖掘作为一种重要的大数据分析技术,已经成为数据科学领域不可或缺的一部分。
一、什么是数据挖掘数据挖掘指通过数据分析的方法,从大型数据集中发掘出潜在的、未知的、先前未被预测的信息和模式。
其目的是发现数据中的规律以及隐含的关系,进一步分析这些规律和关系所代表的含义,从而为人们提供更加准确的预测和决策依据。
数据挖掘技术可以应用于各个领域,如智能推荐、金融风险评估、医疗诊断和市场营销等。
二、数据挖掘技术在大数据分析中的应用数据挖掘技术在大数据领域的应用十分广泛,以下列举几个常见的应用场景。
1.智能推荐通过分析用户行为和偏好,在海量的商品数据中推荐用户可能感兴趣的商品,这是智能推荐系统的基本功能。
一般采用协同过滤算法、内容过滤算法和基于深度学习的神经网络算法等。
2.金融风险评估金融机构可通过数据挖掘技术进行风险评估。
包括信用评估、反欺诈、交易监控等,基于风险评估结果,金融机构可结合其他数据,为企业和个人提供贷款、信用卡等服务。
3.医疗诊断医疗影像、病历和诊断数据,以及生物信息数据是大数据中的一个重要部分。
利用数据挖掘技术,可对这些数据进行分析,提高医学诊断的准确性和效率。
4.市场营销企业可利用数据挖掘技术,对自己的产品、广告、促销等进行分析,从而调整自己的市场营销策略。
同时,企业还可以通过数据挖掘技术,了解客户需求和消费习惯,为客户提供更好的产品和服务。
三、数据挖掘技术的主要方法1.分类分类是数据挖掘中最常用的方法之一,其目的是根据数据集中的属性特征,将数据分为不同的类别,从而为后续的分析和决策提供依据。
常见的分类算法包括朴素贝叶斯、决策树、支持向量机等。
2.聚类聚类是指将数据按照某种规则或变量进行分组或分类的过程,相似的数据放在一组中。
聚类后可以用于研究数据之间的相互关系,挖掘数据潜在的规律和内在的结构。
《数据挖掘研究现状及发展趋势》篇一一、引言随着信息技术的高速发展,大数据已经成为了新时代的基石。
数据挖掘技术作为从海量数据中提取有价值信息的重要手段,其在各行各业的应用愈发广泛。
本文旨在探讨数据挖掘的当前研究现状以及其未来的发展趋势。
二、数据挖掘研究现状1. 技术发展数据挖掘技术已经历了多年的发展,从传统的统计方法、机器学习算法,到现今的深度学习、人工智能算法,其技术手段不断更新迭代。
目前,数据挖掘技术已经能够处理结构化、半结构化乃至非结构化的数据,为各行业提供了强大的数据支持。
2. 应用领域数据挖掘的应用领域十分广泛,包括但不限于金融、医疗、教育、商业等领域。
在金融领域,数据挖掘被用于风险评估、股票预测等;在医疗领域,数据挖掘帮助实现疾病预测、基因分析等;在教育领域,数据挖掘为个性化教学、学生评估等提供了有力支持。
3. 研究挑战尽管数据挖掘技术取得了显著的进步,但仍面临一些挑战。
首先是数据的质量和数量问题,大数据环境下如何保证数据的准确性和有效性是一个亟待解决的问题。
其次,算法的复杂性和计算成本也是研究者们需要面对的挑战。
此外,数据隐私和安全问题也是阻碍数据挖掘技术发展的关键因素。
三、发展趋势1. 技术进步未来,随着人工智能、机器学习等技术的进一步发展,数据挖掘技术将更加成熟。
深度学习、强化学习等新兴算法将更深入地应用于数据挖掘中,使得数据处理的速度和准确性得到进一步提升。
2. 多源异构数据处理随着物联网、传感器等技术的发展,多源异构数据的处理将成为数据挖掘的重要方向。
如何从不同来源、不同格式的数据中提取有价值的信息,将是未来研究的重点。
3. 隐私保护与安全随着数据安全意识的提高,如何在保护个人隐私的前提下进行数据挖掘将是未来的一个重要发展方向。
通过采用加密技术、隐私保护算法等手段,实现数据的匿名化和加密处理,同时确保数据的完整性和准确性。
4. 跨界融合与应用创新随着各行业的数字化转型,数据挖掘将与其他领域的技术进行深度融合,如与区块链、云计算等技术的结合,将进一步推动各行业的创新发展。
面向社会大数据的数据挖掘技术研究
在信息时代,我们所生产出的数据以指数级的方式在增长,这些数据被称为大
数据。
而数据挖掘技术也因此变得越来越重要。
面对庞大的数据量,如何从中挖掘出有用的信息,以应对社会中的各种问题,已经成为了一个急切需要解决的问题。
本文将探讨关于面向社会大数据的数据挖掘技术的研究现状与发展趋势。
一、数据挖掘技术的定义
数据挖掘是一种从大量的数据中自动检索出有用信息的过程。
简单来说,它就
是数据分析的一个扩展,通过对收集到的数据进行分析和处理,从中挖掘出未知的、有效的、可理解的信息和关系。
它是一种比较全面的信息处理方法,可以从大规模数据中发现新的信息,并从中获取知识,对于帮助人们更好地了解社会现象、推动社会进步起到至关重要的作用。
二、数据挖掘技术的研究现状
目前,数据挖掘技术已经被广泛应用于很多领域,比如金融、物流、社交网络、医疗,等等。
在这些领域,它已经取得了很好的应用效果。
比如,在金融领域,银行可以通过挖掘用户的消费行为、信用记录等数据,对用户进行评估,从而决定是否发放贷款;在物流领域,公司可以通过挖掘客户招募和生命周期数据等信息,对客户进行分析,提高服务质量和客户满意度。
同时,数据挖掘技术也面临着一些挑战。
比如,在大数据时代,数据的数量急
剧增长,如何使用数据驱动的方法来发现隐含的知识和规律,如何提高数据挖掘技术的效率和准确性,已经成为一个急需突破的问题。
此外,如何保护数据隐私,避免数据泄露和滥用等问题也是一个非常严峻的挑战。
三、数据挖掘技术的发展趋势
为了更好地应对大数据时代的挑战,数据挖掘技术也在不断创新和发展。
以下是一些未来发展趋势的预测:
1、更加自动化和智能化
未来的数据挖掘技术将更加注重自动化和智能化,自动化指的是在大数据下进行数据挖掘将会变得更加自动化,数据分析和数据挖掘成果将自动生产和发布。
而智能化则指数据挖掘在人类知识分析、机器学习等方面的智能支持和交互。
2、更加注重数据隐私保护
未来,随着越来越多的数据被收集和利用,人们对数据隐私的保护将越来越重视。
因此,数据挖掘技术也需要更加关注数据隐私保护,避免数据泄露和滥用。
3、更加注重多维数据的挖掘和分析
随着数据的不断增多,在挖掘和分析多维数据方面,数据挖掘技术将会发挥更加重要的作用。
同时,数据挖掘将逐渐扩散到社会的各个领域,在各个领域探索出更多的应用和实践。
总之,随着科技的不断进步和社会的不断发展,数据挖掘技术将会不断改进和创新,以应对社会中的各种需求。
我们相信,在面向社会大数据的数据挖掘技术的研究和应用的推动下,数据挖掘技术将会在未来发挥更加重要的作用。