《有理数的运算》单元练习2
- 格式:doc
- 大小:88.89 KB
- 文档页数:5
有理数计算题单(含答案)篇一:50道初一数学有理数计算题含答案篇二:有理数及其运算单元测试题(含答案)有理数及其运算单元测试题姓名一、判断题:1.若a、b互为倒数,则?11ab??0() 222.x+5一定比x-5大。
()3.1111?(?)?(?)? () 32234.+(—3)既是正数,又是负数.()5.数轴上原点两旁的数是相反数.()6.任意两个有理数都可以相减.()7.有绝对值最小的数,没有绝对值最大的数.()8.a是有理数,—a一定是负数.()9.任何正数都大于它的倒数.()10.大于0的数一定是正数,a2一定是大于0的数.()二、填空题:1.、2.白天的温度是零上10°C记作午夜的温度比白天低15°,那么午夜的温度记作°C.3.平方得9的有理数是?4.比?1的有理数是 273的倒数小2的数是 25.5与—12的和的绝对值是6.倒数与它本身相等的数是.7.若aa?1,则a 0;若aa??1,则a 0.8.在数轴上,从1.5的点向左移动2个单位得到点A,再从A 点向右平移4个单位得到点B,则点A表示的数为,点B表示的数为.9.大于-5的负整数是,绝对值小于5而大于2的非负整数是10.?3的相反数的倒数是,-(-5)的倒数的绝对值是 4 11.如果x<0,那么-|x|=|-x|=|-3|,那么.12.如果a2+|b-1|=0,则3a-4b=.13.若a?2b,2b?a?.14.(2a?1)?1的最小值是.15.已知a<2,则|a-2|=4,则a的值是 2三、选择题:1.下列说法错误的是()(A )整数的相反数一定是整数(B)所有的整数都有倒数(C)相反数与本身相等的数只有0 (D)绝对值大于1而不大于2 的整数有±22.如图所示,数轴上两点分别表示数m、n,则|m-n|为()(A)m-n (B)n-m (C)±(m-n)(D) m+n3.计算(-3)2-(-2)3-22+(-2)2,其结果是()(A )17 (B)-18(C)-36(D)184.若两个有理数的和为负,那么这两个有理数()(A)都为负(B)一个为零,另一个为负(C)至少有一个为负(D)异号5..若a?b,则()33(A)a?b(B)a?b . (C)a?b?0 (D)a??b. 22334?(?)?(?,其结果是() 4433344(A)?(B)(C)? (D) 43436.计算?7.下列结论正确的是()(A)一个有理数的平方不可能为负数(B)一个有理数的平方必为正数(C)一个数的平方与它的绝对值相等(D)一个数的平方一定大于这个数8.若a为有理数,则下列各式的值一定为正数的是()3+1322(A)a(B)a(C)a+1(D)(a+1)9.计算(-2)2004+(-2)2005所得的结果是()(A)22004 (B)-22004(C)(-2)2004 (D)-210.如果0<x<1,那么下列各式正确的是()(A)1111?x?x2 (B)x2?x? (C)x2??x (D)x??x2 xxxx四、把下列各数填入它相应所属的集合内:?2-1,(-2),0,-[+(-3.4)],-, ?,0.1010010001?,-(-5),32—32,-(-2)3正整数集合{ ?};分数集合{ ?}负数集合{ ?};有理数集合{ ?}五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.4,—?,0,—(—3.5),—?11. 2六、计算:1. 0?(?3)?(?)??(?) 2.3. 281132 3243353?(?6) 4.(?2) 3685.?1?(?)?1 6.?2?[?232319211?(1??)?(?2)2] 451211?4?(?1)2?3?(?)2?1?2?(?2)2334 7.?(?1)2?82七、求值:.1.已知x=-2,y=1,z=-3,求x4-(x2y2-y2)-z3-7的值.2.已知|a|=3,|b|=5,|a-b|=b-a,且ab<0,求a+b 与a-b的值.3.已知a、b互为相反数,c、d互为倒数,x的绝对值是2 .220042003试求代数式x-(a+b+cd)x+(a+b)+(-cd)的值.12114.已知a=?7?2?(?3)?(?6)?(?);b?3?6??2?2; 332222 c=83251211?6?(?)?(?1)?(?)2;d=1?[3?(?)2?(?1)4]??(?)3,814772342试确定ab—cd的符号.5.三个有理数a,b,c,abc?0,a?b?c?0.当x?※aa?bb?cc时,求x-92x+2的值. 19答案一.判断题:1. [ √ ] 2. [ √ ] 3. [ × ] 4. [ × ]5. [ × ] 6. [ √ ] 7. [ √ ]8. [× ] 9. [ × ] 10. [ × ]二、填空题12] 4. [?2] 5. [7,-7] 6. [±1]33417. [>,<=] 8. [-,] 9.[-4、-3、-2、-1,3、4] 10.[,] 351.[整数、分数] 2. [+10°C] 3. [±3,?11.[x,±3] 12. [-4] 13. [a-2a] 14. [-1] 15. [-2]三、选择题:1.[B] 2.[B] 3.[A] 4.[C] 5.[A] 6.[C] 7.[A] 8.[C] 9.[B] 10.[A] 四、把下列各数填入它相应所属的集合内:?22[(-2),-(-5),-(-2)],[-[+(-3.4)],-,?],[-1,-,—332、3?23,],[-1,(-2),0,-[+(-3.4)],-, ?,0.1010010001?,-(-3225),—32,-(-2)3 ]五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.[??111?0??(?)?4] 21451]4. 63六、计算: 1. [-] 2. [?] 3.[?173139714] 6.[?]7.[-] 41009七、求值:. 5.[5. [33]6. [2,-8]7. [当x=2时,原式=1;当x=-2时,原式=5]8. [a=-85,b=4,c=371,d=?,原式=-339] 4865. [a、b、c三数只能是二正一负,所以x=1,原式=-89]篇三:专题练习(含答案)专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列各组中两个式子的值相等的是A.6÷(3×2)与6÷3×2B.(-3+4)3与(-3)3+(-4)3C.-3×(5-8)与-3×5-8D.(-4×3)2与(-4)2×322.下列各式计算正确的是A.-8-2×6=-60C.2÷ B.?23+??2?=0 D.-(-4)2=8 343×=2343.若两个有理数的和与积都是正数,则这两个有理数A.都是负数B.一正一负且正数的绝对值大C.都是正数D.无法确定4.计算:-2×32-(-2×32)的结果是A.0 B.-54C.-72D.-185.-24÷??2?的结果是A.46.计算: B.-4C.2D.-2 211×(-5)÷(-)×5的结果是 55D.35A.1 B.25C.-57.下列说法正确的是A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次数幂仍互为倒数8.计算:-÷×2÷(-2)3的结果是A.9 100 B.-9 100C.9 200 D.-9 2009.计算:-2?517?+×(-)的结果是 5?8612?B. C.- D.3A.- ?a?ab?c?10.若a,b互为倒数,a,c互为相反数,且d=2,则代数式d-d.??的值2??2为A.33 4 B.41 4 C.331和4 44D.321和4 33二、填空题(每小题3分,共24分)11.在计算器上,依次按键得到的结果是______.12.32×+3×(-)=_______.13.一个负数减去它的相反数后,再除以这个负数的绝对值,所得的商是_______.14.如图所示是一个数值转换机,若输入数是3,则输出数是_______15.欢欢发烧了,欢欢妈妈带她去看医生,结果测量出体温是℃,用了退烧药后,以每15分钟下降℃的速度退烧,则两小时后,欢欢的体温是_______℃.16.计算:(9-10)×(10-11)×(11-12)×?×(108-109)=_______.17.若“!”是一种数学运算符号,并且知道:1!=1;2!=2x1=2;3!=3x2x1=6;?.则2014!?_______. 2013!18.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+?+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+?+98+99+100 ①,S=100+99+98+?+3+2+1 ②,①+②,有2S=(1+100) ×100,解得S=5050.请类比以上做法,回答:令S=3+5+7+?+51,则S=_______.三、解答题(共46分)19.(10分)计算:(1)24+16÷(-2)2÷(-10);?21??1?(2)12?; ?32??12?2?5?(3)??3??[];3?9?2 2?3??2?(4)2?;23??3?1?(5)162??4?. ?8?20.(6分)光的速度是3×108m/s,太阳光从太阳射到地球上的时间约为500 s,求太阳离地球的距离大约为多少米.(结果用科学记数法表示)21.(6分)做一个圆柱形有盖铁桶,要求底面的半径为 dm,高为 dm,制作这样的铁桶所需的材料面积是多少(精确到 dm2)?22.(6分)某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过5个小时,这种细菌由1个可分裂成多少个?23.(10分)小红爸爸上星期六买进某公司股票1 000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期三收盘时,每股是多少元?(2)本周内每股最高是多少元?最低是多少元?(3)已知小红爸爸买进股票时付了?的手续费,卖出时还需付成交额?的手续费和1?的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?24.(8分)计算:(1)21×75%-125×+×;25.先观察下列等式,再完成题后问题: (2)34111. 1?22?39?10111111111?? ???? 2?3233?4344?5451(1)请你猜想:= _________. 2010?2011(2)若a、b为有理数,且a??(ab?2)?0, 2求:1111的值. ab(a?1)(b?1)(a?2)(b?2)(a?2009)(b?2009)参考答案一、二、11. 12.0 13.-2 14.65 15. 16.117.2014 18.675三、19.(1).(2)168. (3)-11. (4)75 (5)- 3220.×1011 m21.1206 dm2.22.1024个23.(1)元;(2)(元);26(元);(3)赚了元24.(1)-60. (2)9 10。
2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元综合选择专项练习题(附答案)1.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×105 2.2022的倒数是()A.﹣2022B.C.2022D.﹣3.﹣|﹣6|的相反数是()A.﹣6B.C.﹣D.64.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣(﹣)=1D.﹣(﹣2)=2 5.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元6.实数a的绝对值是,a的值是()A.B.﹣C.±D.±7.一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,则点A表示的数是()A.3B.﹣3C.0D.±38.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣39.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)10.数轴上的点B到原点的距离是6,则点B表示的数为()A.12或﹣12B.6C.﹣6D.6或﹣611.算式+﹣(﹣)之值为何?()A.B.C.D.12.计算(﹣1)×()的结果是()A.1B.﹣1C.D.﹣13.某单位开展了“健步迎冬奥,一起向未来”职工健步走活动,职工每天健步走5000步即为达标.若小王走了7205步,记为+2205步;小李走了4700步,记为()A.﹣4700步B.﹣300步C.300步D.4700步14.已知|a|=1,b是的相反数,则a+b的值为()A.或B.C.D.或15.(﹣1)2022的相反数是()A.﹣1B.2022C.﹣2022D.116.计算(﹣+﹣)×(﹣24)的结果是()A.1B.﹣1C.10D.﹣1017.下列计算中,正确的是()A.|﹣2|=﹣2B.(﹣1)2=﹣2C.﹣7+3=﹣4D.6÷(﹣2)=3 18.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2021+2020b+c2019的值为()A.2021B.2020C.2019D.019.计算:(﹣1)2022+(﹣1)2021的结果是()A.﹣2B.2C.0D.﹣120.用简便方法计算﹣(9+)×17时,最合适的变形是()A.﹣(10﹣)×17B.﹣(9﹣)×17C.﹣(10+)×17D.﹣9×17+×1721.下列运算正确的是()A.B.﹣24+22÷20=﹣20÷20=﹣1C.D.22.下列结论正确的是()A.互为相反数的两个数的商为﹣1B.在数轴上与表示数4的点相距3个单位长度的点对应的数是7或1C.当|x|=﹣x,则x<0D.带有负号的数一定是负数23.下列各对数中,数值相等的是()A.﹣28与(﹣2)8B.(﹣3)7与﹣37C.﹣3×23与﹣33×2D.﹣(﹣2)3与﹣(﹣3)224.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣2×3225.已知119×21=2499,则119×212﹣2498×21=()A.11B.21C.41D.3126.在(﹣5)2、﹣(﹣2.9)、﹣72、|﹣3|、0、、﹣1中,非负数共有()A.2个B.3个C.4个D.5个27.一架飞机的原飞行高度是8000米,然后飞机上升300米,又下降200米,这时飞机的飞行高度是()A.8000米B.8100米C.8200米D.8300米28.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=2,f(2)=4,f(3)=6…;(2)f()=2,f()=3,f()=4….利用以上规律计算:f(2022)﹣f()等于()A.2021B.2022C.D.29.下列说法正确的是()A.数据0.80精确到百分位B.14185用科学记数法表示(精确到百位)为1.42×104 C.数据2.002×1011可以表示为20020亿D.66.8万用科学记数法表示为6.68×105 30.(多选题)某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正、减产记为负).如表是本周一至周五的生产情况:星期一二三四五增减(单位:个)﹣1﹣4+7+2﹣6根据记录的数据,该厂本周每天生产产量超过基本量35个的是()A.星期二B.星期三C.星期四D.星期五参考答案1.解:1600000=1.6×106.故选:C.2.解:2022的倒数是.故选:B.3.解:﹣|﹣6|=﹣6,﹣6的相反数是6,∴﹣|﹣6|的相反数是6.故选:D.4.解:A:﹣2+2=0,故A正确;B:2﹣(﹣2)=2+2=4,故B错误;C:﹣(﹣)=+=1,故C正确;D:﹣(﹣2)=2,故D正确.故选:B.5.解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.6.解:∵|a|=,∴a=±.故选:D.7.解:∵由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,首先点A表示的数是正数,又与原点相距三个单位长度,∴点A表示的数是3,故选:A.8.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.9.解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.10.解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.11.解:+﹣(﹣)==()+()=﹣+1=.故选:A.12.解:原式=﹣×=﹣1.故选:B.13.解:∵5000步达标地,7205步记为+2205步,∴4700﹣5000=﹣300(步),即4700步记为﹣300步,故选:B.14.解:∵|a|=1,∴a=±1,∵b是的相反数,∴b=,∴当a=1,b=时,a+b=1+=,当a=﹣1,b=时,a+b=﹣1+=﹣,综上所述:a+b=或﹣.故选:A.15.解:(﹣1)2022=1,1的相反数是﹣1.故选:A.16.解:(﹣+﹣)×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)=﹣22+28+(﹣18)+13=1,故选:A.17.解:A、|﹣2|=2,故本选项计算错误,不符合题意;B、(﹣1)2=1,故本选项计算错误,不符合题意;C、﹣7+3=﹣4,故本选项计算正确,符合题意;D、6÷(﹣2)=﹣3,故本选项计算错误,不符合题意;故选:C.18.解:根据题意知,a=﹣1,b=0,c=1,则原式=(﹣1)2021+2020×0+12019=﹣1+1=0,故选:D.19.解:(﹣1)2022+(﹣1)2021=1+(﹣1)=0,故选:C.20.解:﹣(9+)×17=﹣(10﹣)×17,故选项A正确,符合题意,故选:A.21.解:∵2÷8×=,∴选项A不符合题意;∵﹣24+22÷20=﹣24+=﹣23,∴选项B不符合题意;∵(﹣2)××(﹣5)=5,∴选项C符合题意;∵6÷()=6×=,∴选项D不符合题意,故选:C.22.解:A选项,0的相反数是0,0÷0没有意义,故该选项不符合题意;B选项,在数轴上与表示数4的点相距3个单位长度的点对应的数是7或1,故该选项符合题意;C选项,当|x|=﹣x,则x≤0,故该选项不符合题意;D选项,﹣(﹣2)=2,故该选项不符合题意;故选:B.23.解:A选项,﹣28<0,(﹣2)8>0,故该选项不符合题意;B选项,(﹣3)7=﹣37,故该选项符合题意;C选项,﹣3×23=﹣3×8=﹣24,﹣33×2=﹣27×2=﹣54,故该选项不符合题意;D选项,﹣(﹣2)3=﹣(﹣8)=8,﹣(﹣3)2=﹣9,故该选项不符合题意;故选:B.24.解:∵34=81,43=64,∴34≠43,因此选项A不符合题意;∵﹣42=﹣16,(﹣4)2=16,∴﹣42≠(﹣4)2,因此选项B不符合题意;∵﹣23=﹣8,(﹣2)3=﹣8,∴﹣23=(﹣2)3,因此选项C符合题意;∵(﹣2×3)2=36,﹣2×32=﹣18,∴(﹣2×3)2≠﹣2×32,因此选项D不符合题意;故选:C.25.解:119×212﹣2498×212=119×212﹣(119×21﹣1)×21=119×212﹣119×212+21=21.故选:B.26.解:(﹣5)2=25,﹣(﹣2.9)=2.9,﹣72=﹣49,|﹣3|=3,非负数有:25,2.9,3,0,共5个,故选:D.27.解:根据题意得8000+300﹣200=8100(米).所以这时飞机的飞行高度是8100米,故选:B.28.解:由(1)知f(2022)=2022×2=4044,由(2)知f()=2022,∴f(2022)﹣f()=4044﹣2022=2022,故选:B.29.解:∵数据0.80精确到百分位,∴选项A符合题意;∵14185用科学记数法表示(精确到百位)为1.42万或1.42×104,∴选项B符合题意;∵数据2.002×1011可以表示为2002亿,∴选项C不符合题意;∵66.8万用科学记数法表示为6.68×105,∴选项D符合题意,故选:ABD.30.解:星期二:35﹣1﹣4=30(个),星期三:30+7=37(个),星期四;37+2=39(个),星期五:39﹣6=33(个).∴该厂本周每天生产产量超过基本量35个的是星期三、星期四.故选:BC.。
七年级数学《有理数及其运算》单元练习题一、认真填一填,相信你可以把正确的答案填上.1.︱-21︱倒数是______,︱-2︱相反数是______. 若a 与2互为相反数,则︱a+3︱=_______. 2.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________.3.实数a 在数轴上位置如图所示,则︱a+1︱的结果是_________.a -1 0 14.绝对值等于5的有理数是_____ __.绝对值最小的数是_____.绝对值大于2小于5的所有整数和为_______.5.计算: (-2)-(-5)=(-2)+(______); 0-(-4)=0+(______); (-6)-3=(-6)+(______);1-(+37)=1+(______). 612-的绝对值的相反数是____________________.O7.若用A 、B 、C 分别表示有理数a 、b 、c,0为原点如图所示.已知a<c<0,b>0.化简c+│a+b │+│c-b │-│c-a │=_____________.8.数轴上与2-这个点的距离等于6个单位长度的点所表示的数是 .9.绝对值小于2008的所有整数的和为 .10.|3-| 的意义是 .|3-|= .11.若三个有理数的乘积为负数,则在这三个有理数中,有 个负数.127.用算式表示:温度由4-℃上升7℃,达到的温度是 .13.规定521a b a b ⊗=+-,则(4)6-⊗的值为 .149.已知||3a =,||2b =,且ab <0,则a b -= .151.绝对值大于2且小于5的所有整数的和是_________.16.若│a │=5,│b │=2,且a,b 同号,则│a-b │=_________.17. 已知a 是最小的正整数,b 的相反数比它本身大2,c 比最大的负整数大3,计算(2a +3c )·b =_________.18.用“>”或“<”号填空: (1)如果a >0,b >0,那么a+b ______0; (2)如果a <0,b <0,那么a+b ______0;(3)如果a >0,b <0,|a|>|b|,那么a+b ______0;(4)如果a <0,b >0,|a|>|b|,那么a+b ______0.19.若x>3,则︱x -3︱=_______;若x<3, 则︱x -3︱=_______.20.若︱x -2︱+︱ y +3︱=0,则2x-3y=_______.21.计算︱21-1︱+︱31-21︱+︱41-31︱+…+︱1001-991︱=_______. 22.把-0.11+(-5.24)-(+0.15)-(-1015)写成省略括号的和的形式为_________. 23.24.求-1,+2,-3,+4,-5,…,-99,100这100个数的和________.25.规定了一种新运算*:若a 、b 是有理数,则a *b = b a 23-,计算2*(-5)=26.已知|x-1|=2,则|1+x|-5 =_______.二、请你选择符合题意的答案的代号填入各小题的括号中.1. 若 |x | =-x ,则x 一定是( ) (A ) 负数, (B )正数, (C ) 负数或0, (D ) 0.2. 下列说法正确的是( )(A )一个数的绝对值一定是正数, (B ) 任何正数一定大于它的倒数,(C )a 的相反数的绝对值与a 的绝对值的相反数相等 (D ) 绝对值最小的有理数是03. 比-3.1大的非正整数的个数是( ) (A ) 2 (B )3 (C )4 (D ) 54.. 关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零5. a ,b 是有理数,它们在数轴上的对应点的位置如下图所示:把,,,a a b b --按照从小到大的顺序排列 ( ) (A )-b <-a <a <b (B )a <-b <b <-a(C )-b <a <-a <b (D )a <-b <-a <b6.数轴上表示3-的点与表示5+的点的距离是( ) A.3 B.-2 C.+2 D.87.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数8.在数轴上与-3的距离等于4的点表示的数是 ( ). A 、1. B 、-7 C 、1或 -7 D 、无数9.把(-5)-(+3)-(-7)+(-2)写成省略加号和括号的形式,正确的是( )A 、-5-3+7-2B 、5-3-7-2C 、5-3+7-2D 、5+3-7-211.下列说法正确的是( ) A .绝对值相等的两数差为零 B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数12.若0>a ,且b a >,则b a -是( ) A .正数 B .正数或负数 C .负数 D .0 13.若│a │=5,│b │=3且a>b ,则a-b=( ) A .2或8 B .-2或-8 C .-5或-3 D .±3或±814.若a 是有理数,则a a -一定是( ) A .正数 B.负数 C.零 D.非负数15.已知b a b a b a +=+==且,7,5,则b a -的值等于( ) A.-12 B.-2 C.-2或-12 D.216. 有理数a 、b 在数轴上的位置如图所示,则a+b 的值为( ) a A 正数 B 负数 C 零 D 无法确定17. 两个有理数相加,如果和小于每一个加数,那么这两个数 ( )A 同为正数B 同为负数C 一个为0,一个为负数D 一正一负18.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.2三、解答题:1.观察下面按次序排列的每一列数,研究它们各自的变化规律,并接着填出后面的数.(1)22222222____________---- ,,,,,,,,,, (2)246810121416____________---- ,,,,,,,,,, (3)303030303030____________--- ,,,,,,,,,,,,,,(4)光谱数据 3236,2125,1216,59,…的下一个数据是 _ (5)观察下面一列数的规律并填空:0,3,8,15,24,_______,_______,...2.计算(1); (2) ; (3) .(4)(5)2.7-(-3.1); (6)(-5)-(-3.5);(7)(8)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(9)-40-(-19)+(-24) (10))91()65(45-⨯-÷ (11))17(171319-⨯(12)61)3161(1⨯-÷ (13))24()121876532(-⨯+-- (14))16(94412)81(-÷⨯÷-(15)、将下列各有理数填入相应的集合内: ()78.1,36.0,27,0,4,76,38-+---,π 整数:{ …} 分数:{ …}正数:{ …} 负数:{ …}(16)、在数轴上把数+(-2),)3.1(,5.0,0,431-----表示出来,并用“>”号连接起来。
七年级数学上册有理数及其运算单元测试题一、选择题(每小题3分,共30分) 1.若规定向东走为正,则-8 m 表示( ) A .向东走8 m B .向西走8 m C .向西走-8 m D .向北走8 m2.数轴上点A ,B 表示的数分别为5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .|-3+5|D .|-3-5| 3.下面与-3互为倒数的数是( ) A .-13 B .-3 C.13D .34.如图1,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()图15.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )A .213×106B .21.3×107C .2.13×108D .2.13×1096.下列说法错误的有( ) ①-a 一定是负数; ②若|a |=|b |,则a =b ; ③一个有理数不是整数就是分数; ④一个有理数不是正数就是负数. A .1个 B .2个 C .3个 D .4个7.如图2所示,数轴上两点A ,B 分别表示有理数a ,b ,则下列四个数中最大的是()图2A.a B .b C.1a D.1b8.已知x -2的相反数是3,则x 2的值为( )A .25B .1C .-1D .-259.把一张厚度为0.1 mm 的纸对折8次后的厚度接近于( ) A .0.8 mm B .2.6 cm C .2.6 mm D .0.18mm10.在某一段时间内,计算机按如图3所示的程序工作,如果输入的数是2,那么输出的数是()图3A.-54 B .54 C .-558 D .558 请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.-2的相反数是________,-0.5的倒数是________. 12.绝对值小于2018的所有整数之和为________.13.如图4所示,有理数a ,b 在数轴上对应的点分别为A ,B ,则a ,-a ,b ,-b 按由小到大的顺序排列是________________.图414.若两个数的积为-20,其中一个数比-15的倒数大3,则另一个数是________.15.若数轴上的点A 表示的有理数是-3.5,则与点A 相距4个单位长度的点表示的有理数是__________.16.若|x|=5,y 2=4,且xy<0,则x +y =________. 三、解答题(共72分)17.(6分)把下列各数填入相应的集合中:-3.1,3.1415,-13,+31,0.618,-227,0,-1,-(-3).正数集合:{ …}; 整数集合:{ …}; 负数集合:{ …}; 负分数集合:{ …}.18.(6分)画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来.-5,2.5,-52,0,312.19.(8分)计算: (1)-24×⎝ ⎛⎭⎪⎫-56+38-112;(2)-9+5×(-6)-(-4)2÷(-8);(3)0.25×(-2)2-⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-232+1+(-1)2018;(4)-42÷⎝ ⎛⎭⎪⎫-135-⎣⎢⎡⎦⎥⎤56×⎝ ⎛⎭⎪⎫-34-⎝ ⎛⎭⎪⎫-123.20.(8分)规定一种新的运算:a ☆b =a ×b -a -b 2+1,例如:3☆(-4)=3×(-4)-3-(-4)2+1.请你计算下列各式的值:(1)2☆5; (2)(-2)☆(-5).21.(10分)某食品厂从生产的袋装食品中抽出20袋样品,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数表示,数据记录如下表:(1)样品的平均质量比标准质量多还是少?多或少多少克? (2)若标准质量为每袋450克,则抽检的总质量是多少克?22.(10分)在数轴上有三个点A ,B ,C ,回答下列问题:图523.(12分)一名足球守门员练习折返跑,从球门线出发,向前记为正,返回记为负,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少? (3)守门员全部练习结束后,他共跑了多少米?24.(12分)在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,c 满足|a +2|+(c -7)2=0.(1)填空:a =________,b =________,c =________; (2)画出数轴,并把A ,B ,C 三点表示在数轴上;(3)P 是数轴上任意一点,点P 表示的数是x ,当PA +PB +PC =10时,x 的值为多少?七年级数学上册有理数及其运算单元测试题答案1.B 2.D 3.A 4.C 5.C 6.C 7.D 8.B 9.B 10.C 11.2 -2 12.0 13.-a <b <-b <a 14.10 15.-712或1216.3或-317.解:正数集合:{3.1415,+31,0.618,-(-3),…}; 整数集合:{+31,0,-1,-(-3),…}; 负数集合:{-3.1,-13,-227,-1,…};负分数集合:{-3.1,-13,-227,…}.18.图略 -5<-52<0<2.5<31219.(1)13 (2)-37 (3)-8 (4)101220.解:(1)2☆5=2×5-2-52+1=-16.(2)(-2)☆(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12. 21.解:(1)[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]÷20=1.2(克).答:样品的平均质量比标准质量多,多1.2克.(2)20×450+[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]=9024(克).答:若标准质量为每袋450克,则抽检的总质量是9024克. 22.(1)-1 (2)0.5 (3)-323或-923.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,所以守门员最后回到了球门线的位置. (2)因为5+(-3)=2, 2+10=12,12+(-8)=4,4+(-6)=-2,-2+12=10,10+(-10)=0, 所以守门员离开球门线的最远距离为12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).答:他共跑了54米.24.解:(1)由题意可知a +2=0,c -7=0, 解得a =-2,c =7.因为b 是最小的正整数,所以b =1. 故答案为-2,1,7. (2)画出数轴如图所示:(3)因为PA +PB +PC =10,所以|x +2|+|x -1|+|x -7|=10. 当x ≤-2时,-x -2+1-x +7-x =10, 解得x =-43(舍去).当-2<x ≤1时,x +2+1-x +7-x =10, 解得x =0.当1<x ≤7时,x +2+x -1+7-x =10, 解得x =2.当x >7时,x +2+x -1+x -7=10, 解得x =163(舍去).综上所述,当PA +PB +PC =10时,x 的值是0或2.。
一、解答题1.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 2.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+ ④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.3.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.4.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374 (3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可; (3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆; (2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.8.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.9.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯-01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.10.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.11.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 12.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题.13.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.18.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.20.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-,(2)原式1139 24()(8)8444 =⨯--⨯-⨯+ 39324=-++34=,【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.22.计算:(1)311 13+(0.25)(4)3 444 ---+--(2)31(2)93 --÷(3)1125 100466() 46311 -⨯-⨯-⨯解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)311 13+(0.25)(4)3 444 ---+--=3111 13+434444-+=3111 (13+4)(3) 4444+-=183+ =21(2)31(2)93--÷=893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.25.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.29.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
第2章有理数单元练习11.3的相反数是A 、-3B 、+3C 、0.3D 、132.下列四个数中,在-2到0之间的数是A .-1B . 1C .-3D .3 3.在下列数-56,+1,6.7,-14,0,722, -5 中,属于整数的有 A 、2个 B 、3个 C 、4个 D 、5个4.下列计算中,正确的是 A 、(-2)-(-5)=-7 B 、(-2)+(-3)=-1 C 、(-2)×(-3)=6 D 、(-12)÷(-2)=-6 5.下列计算中,错误的是A 、(+37)+(-67)=-37 B 、(-37)+(+67)=-97 C 、(-37)+(-67)=-97 D 、(+37)+(-37)=06.下列说法正确的是A .-1的倒数是1 B. -1的相反数是-1 C. 1的绝对值是1 D. 平方等于1的数只有1 7.一个数的相反数比它的本身大,则这个数是 A.正数 B.负数 C.0 D.负数和0 8.两个数的和为正数,那么这两个数是A.正数B.负数C.一正一负D.至少一个为正数 9.下列说法正确的是A .数轴上表示4的点与表示6的点之间的距离是10B .数轴上表示6-的点与表示4-的点之间的距离为10-C .数轴上表示6-的点与表示4的点之间的距离是10D .数轴上表示6-的点与原点之间的距离是6- 10.下列判断错误的是A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值一定是正数D 、任何数的绝对值都不是负数二、填空题(每小题3分,共24分)11.-2的倒数是 。
12.把(+4)-(-6)-(+8)+(-9)写成省略加号的和的形式为 。
13.在同一数轴上,A 点表示3,B 点表示-2,则A 、B 两点间相距 个单位。
14.绝对值小于100的所有整数的和为 。
15.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第5次跳动后,该质点到原点O 的距离为 。
浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为 .12.计算(−1)2023÷(−1)2004= .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是 .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。
第2章有理数的运算检测题一、选择题(每小题3分,共30分)1.有理数a、b在数轴上对应的位置如图所示,则()A.a+b<0B.a+b>0C.a-b=0D.a-b>02.下列运算正确的是()A. B. C.D. =83.计算的值是()A.0B.-54C.-72D.-184.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个5.气象部门测定发现:高度每增加1 km,气温约下降5 ℃.现在地面气温是15 ℃,那么4 km高空的气温是()A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃6.计算等于()A.-1B.1C.-4D.47.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( )A.90分B.75分C.91分D.81分8.若规定“!”是一种数学运算符号,且1!=1,2!=1×2=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则!98!100的值为( ) A.4950B.99!C.9 900D.2! 9.已知,,且,则的值为( )A.-13B.+13C.-3或+13D.+3或-13 10.若,则a 及b 的大小关系是( )A.a =b =0B.a 及b 不相等C.a ,b 异号D.a ,b 互为相反数二、填空题(每小题3分,共24分) 11.若规定,则的值为 .12.如图所示,在数轴上将表示-1的点向右移动3个单位长度后,对应点表示的数是_____ ____.13.甲、乙两同学进行数字猜谜游戏.甲说:一个数的相反数就是它本身,乙说:一个数的倒数也等于它本身,请你猜一猜_______.14.计算:________ _.15.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .16.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示两只手上约有个细菌.17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分,某班比赛结果是胜3场平2场输4场,则该班得分.18.如图是一个数值转换机的示意图,若输入x的值为3,的值为-2,则输出的结果为.三、解答题(共46分)19.(12分)计算:(1);(2);(3)211; (4).20.(5分)已知:,,且,求的值21.(5分)某工厂本周内计划每日生产300辆电动车,由于每日上班人数不一定相等,实际每日生产量及计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数): 星期 一 二 三 四 五 六 日 增减-5+7-3+4+10-9-25(1)本周三生产了多少辆电动车?(2)本周总生产量及计划生产量相比,是增加还是减少? (3)产量最多的一天比产量最少的一天多生产了多少辆?22.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m 3以内的,小户(家庭人口3人及3人以下者)每月用水10 m 3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m 3,则这户本月应交水费多少元?23.(6分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:)如下:(1)将第几名乘客送到目的地时,老王刚好回到上午出发点? (2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为0.4/,这天上午老王耗油多少升?24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日收入+15+180+160+25+24支出10 14 13 8 10 14 15(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?25.(6分)观察下列各式:….猜想:(1)的值是多少?(2)如果为正整数,那么的值是多少?第2章 有理数的运算检测题参考答案一、选择题1.A 解析:由数轴可知是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.2.B 解析:,A 错;,C 错;,D错.只有B 是正确的. 3.B解析:.4.B 解析: ①错误,如(-2)×(-3)=6,符号改变; ③错误,如0×0,积为0;②④正确.5.C 解析:15-5×4=-5(℃).6.C解析:.7.C 解析:小明第四次测验的成绩是故选C.8.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴19798198×99×100!98!100⨯⨯⨯⨯⨯= =100×99=9 900,故选C .9.C 解析:因为,,所以,.又,所以.故或.10.A 解析:因为,又,所以.二、填空题11.解析:.12.2 解析:.13.1 解析:因为相反数等于它本身的数是,倒数等于它本身的数是,所以,所以14.解析:.15.78分解析:(分).16.17.7 解析:(分).18.5 解析:将代入得.三、解答题19.解:(1).(2).(3)211(4).20.解:因为,所以.因为,所以.又因为,所以.所以或.21.分析:(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式,再根据有理数的加减法法则计算;(2)首先求出总生产量,然后和计划生产量比较即可得到结论; (3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论. 解:(1)本周三生产的电动车为:(辆).(2)本周总生产量为(辆),计划生产量为:300×7=2 100(辆),2 100-2 079=21(辆), 所以本周总生产量及计划生产量相比减少21辆. 或者由,可知本周总生产量及计划生产量相比减少21辆.(3)产量最多的一天比产量最少的一天多生产了(辆),即产量最多的一天比产量最少的一天多生产了35辆.22.解:因为该用户是大户,所以应交水费(元).答:这户本月应交水费28元.23.解:(1)因为,所以将第6名乘客送到目的地时,老王刚好回到上午出发点.(2)因为,所以将最后一名乘客送到目的地时,老王距上午出发点.(3)因为,,所以这天上午老王耗油.24.分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.25.解:(1).(2).。
第2章有理数及其运算一.选择题1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.﹣(﹣3)2的运算结果是()A.6B.﹣6C.9D.﹣93.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a 4.数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣25.﹣2的绝对值是()A.﹣2B.2C.﹣D.6.下列四个数中,最大的数是()A.(﹣2)3B.﹣23C.﹣|﹣2|3D.﹣(﹣2)3 7.计算(﹣2)11+(﹣2)10的值是()A.﹣2B.(﹣2)21C.0D.﹣2108.|a|=1,|b|=4,且ab<0,则a+b的值为()A.3B.﹣3C.±3D.±5二.填空题9.的相反数是;的绝对值是;的倒数是.10.最大的负整数是.11.观察下列各等式:第一个等式:=1,第二个等式:=2,第三个等式:=3…根据上述等式反映出的规律直接写出第四个等式为;猜想第n个等式(用含n的代数式表示)为.12.一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到﹣3℃;从次日5时至次日8时,气温又将由﹣3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续时,你认为是否有必要对大棚蔬菜采取防冻措施?(填“有”或“没有”)13.用“>”或“<”符号填空:﹣7﹣9.三.解答题14.规定一种新的运算△:a△b=a(a+b)+a﹣b.例如,1△2=1×(1+2)+1﹣2=2.(1)10△12=.(2)若x△3=﹣7,求x的值.(3)求代数式﹣2x△4的最小值.15.(5分)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.四.解答题16.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?17.空气质量指数是国际上普遍采用的定量评价空气质量好坏的重要指标,空气质量指数不超过50则空气质量评估为优.下表记录了我市11月某一周7天的空气质量指数变化情况.规定:空气质量指数50记为零,空气质量指数超过50记为正,空气质量指数低于50记为负.星期一星期二星期三星期四星期五星期六星期日+18﹣4﹣1﹣18﹣10+28+29解答以下问题:(1)根据表格可知,星期四空气质量指数为,星期六比星期二空气质量指数高;(2)求这一周7天的平均空气质量指数.18.【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作aⓝ读作“a的圈n次方”【初步探究】(1)直接写出计算结果:2③=,=(2)关于除方,下列说法错误的是A.任何非零数的圈3次方都等于它的倒数B.对于任何正整数n,1ⓝ=1C.3③=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘法运算呢?(3)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(﹣3)④=;5⑥=;=10 ⑩=(4)想一想:将一个非零有理数a的圈n次方写成幂的形式是(5)算一算:。
第3章 《有理数的运算》
一、填空题
1、计算-3+1= ;=⎪⎭
⎫ ⎝⎛-÷215 ;=-42 . 2、“负3的6次幂”写作 .25-读作 ,平方得9的数是 .
3、-2的倒数是 ,3
11-的倒数的相反数是 ,有理数 的倒数等于它的绝对值的相反数.
4、根据语句列式计算: ⑴-6加上-3与2的积: ;
⑵-2与3的和除以-3: ;
⑶-3与2的平方的差: .
5、用科学记数法表示:109000= ;
89900000≈ (保留2个有效数字).
6、按四舍五入法则取近似值:70.60的有效数字为 个,2.096≈ (精确到百分位);15.046≈ (精确到0.1).
7、在括号填上适当的数,使等式成立:
⑴⨯=÷-7
8787( ); ⑵8-21+23-10=(23-21)+( ); ⑶+-=⨯-69232353
( ). 二、选择题
8、①我市有58万人;②他家有5口人;③现在9点半钟;④你身高158cm ;
⑤我校有20个班;⑥他体重58千克.其中的数据为准确数的是( )
A 、①③⑤
B 、②④⑥
C 、①⑥
D 、②⑤
9、对下列各式计算结果的符号判断正确的一个是( )
A 、()()
0331222<-⨯⎪⎭⎫ ⎝⎛-⨯- B 、()015522<+-- C 、()02
1311>+⎪⎭⎫ ⎝⎛-+- D 、()()0218899>-⨯- 10、下列计算结果错误的一个是( )
A 、613121-=+-
B 、722
13-=÷- C 、632214181641⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= D 、()122133=-⨯⎪⎭
⎫ ⎝⎛- 11、如果a+b <0,并且ab >0,那么( )
A 、a <0,b <0
B 、a >0,b >0
C 、a <0,b >0
D 、a >0,b <0
12、把2
1-与6作和、差、积、商、幂的运算结果中,可以为正数的有( ) A 、4个 B 、3个 C 、2个 D 、1个
13、数轴上的两点M 、N 分别表示-5和-2,那么M 、N 两点间的距离是( )
A 、-5+(-2)
B 、-5-(-2)
C 、|-5+(-2)|
D 、|-2-(-5)|
14、对于非零有理数a :0+a=a,1×a=a ,1+a=a ,0×a=a ,a×0=a ,a÷1=a ,0÷a=a ,a÷0=a ,a 1=a ,a÷a=1中总是成立的有( )
A 、5个
B 、6个
C 、7个
D 、8个
15、在数-5.745,-5.75,-5.738,-5.805,-5.794,-5.845这6个数中精确到十分位得-5.8的数共有( )
A 、2个
B 、3个
C 、4个
D 、5个
16、下列说法错识的是( )
A 、相反数等于它自身的数有1个
B 、倒数等于它自身的数有2个
C 、平方数等于它自身的数有3个
D 、立方数等于它自身的数有3个
17、判断下列语句,在后面的括号内,正确的画√,错误的画× .
⑴若a 是有理数,则a÷a=1 ;( )
⑵()6555211222=+=+ ;( )
⑶绝对值小于100的所有有理数之和为0 ;( )
⑷若五个有理数之积为负数,其中最多有3个负数.( )
三、计算下列各题.
18、直接写出计算结果.
⑴=-7
352 ;
⑵=++-
-2
128216529 ; ⑶=⨯-72213 ; ⑷=⎪⎭
⎫ ⎝⎛-÷-75213 ; ⑸()()=-⨯-÷÷-4323 .
19、利用运算律作简便运算,写出计算结果.
⑴
10725.37.841+--; ⑵⎪⎭⎫ ⎝
⎛-⨯13111109.
20、计算题.
⑴()321322328325+⨯-÷--; ⑵()()⎥⎦⎤⎢⎣⎡-+-÷⎪⎭⎫ ⎝⎛-⨯-52175.02154.
⑶某数加上-5,再乘以-2,然后减去-4,再除以2,最后平方得25,求某数.
四、解答下列各题
21、小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,
100.7,103,95.5,按下列要求计算:
⑴观察这8个数,估计这8只猪的平均质量约为千克;
⑵计算每只猪与你估计质量的偏差(实际质量-估计质量)分别为:
⑶计算偏差的平均数(精确到十分位)
所以这8只猪的平均质量约为.
22、一种圆柱体工件的底面半径是12cm,体积为9950cm3,它的高应做成
多少?(π取3.14,结果精确到0.1)列式后可用计算器计算.
参考答案
一、1、-2;-10;-16. 2、()53-;5的平方的相反数;±3. 3、 1;4
3;21--. 4、(1)-6+(-3)×2; (2)(-2+3)÷(-3);(3)()22
23--. 5、1.09×510;9.0×710. 6、4;2.10;15.0.
7、(1)7
1-;(2)8-10;(3)-5. 二、8、D ;9、A ;10、B ;11、A ;12、C ;13、D ;14、B ;15、C ;16、C
17、⑴、×;⑵、√;⑶、√;⑷、×
三、18、5)5(;9.4)4(;1)3(;6
5)2(;733)1(----. 19、(1)-11; (2)13
8997- 20、(1)3
14-; (2)24 (3)5,-5 ①[5×2+(-4)]÷(-2)-(-5)=-2
②[-5×2+(-4)]÷(-2)-(-5)=-12
四、21、(1)100
(2)4-1.5-4-8.2+2.5+7+3-4.5=1.7
平均偏差=-1.7÷8≈-0.2
100-0.2=99.8
22、9950÷(3.14×122)≈22(cm) 或 设高为h 3.14×122h=9950。