碳纤维的研究现状与发展
- 格式:doc
- 大小:52.00 KB
- 文档页数:8
纤维材料的研究现状及应用前景纤维材料是一种由纤维组成的材料,其具有优良的机械性能、化学稳定性和热稳定性,因而在军事、航空航天、汽车、建筑、体育器材等领域得到了广泛应用。
本文将从纤维材料的基础特性、研究现状、应用前景三个方面进行探讨。
一、基础特性纤维材料的基础特性包括物理、化学和力学性能。
物理性能包括材料密度、热膨胀系数、导热系数等。
对于特殊的应用领域,如航空航天,需要考虑胶接性能和尺寸稳定性等方面。
化学稳定性包括材料的耐腐蚀性、耐热性、耐辐射性等。
强度、刚度、韧性和疲劳性能是纤维材料最为重要的机械性能指标,是选择材料的主要依据之一。
纤维材料的强度在很大程度上取决于纤维的特性。
常见的纤维材料有玻璃纤维、碳纤维、芳香族聚酰亚胺纤维、芳香族聚醚酮纤维等,每种纤维都有其独特的物理和化学性质。
碳纤维具有极高的强度和刚度,但也相应地很容易出现断裂现象。
芳香族聚酰亚胺纤维具有较高的玻璃转移温度和较好的抗高温性能,天然和人造的玻璃纤维材料则具有较低的成本和较好的机械性能,成为较为广泛应用的纤维材料之一。
二、研究现状近年来,随着科技研究的深入和人们对高性能材料需求的不断增加,纤维材料得到了广泛的研究和应用。
纤维材料研究的主要方向包括纤维材料的制备工艺、力学性能的表征和改性以及纤维材料复合材料的研究等。
制备工艺的改良是提高纤维材料性能和应用范围的重要手段。
研究者们通过改进纤维的纺丝、拉伸、塑性加工等方法,提高了纤维在加工过程中的强度和刚度。
同时,制备工艺的改进还可以实现新型纤维材料的开发,进一步扩大了纤维材料的应用领域。
例如,奈米级碳纤维因其优异的力学性能和良好的导电性能,成为电子元器件、基体复合材料等领域的重要材料。
另一方面,对纤维材料力学性能的表征是优化纤维材料性能和设计新型复合材料的关键。
目前,常用的表征方法包括拉伸试验、压缩试验、弯曲试验、交变疲劳试验等。
这些方法可以为研究者提供纤维材料的极限力学性能指标,为复合材料的设计提供理论依据。
碳纤维的发展现状碳纤维(carbon fiber),它不仅具有碳材料的固有本征特性,乂兼具纺织纤维的柔软可加工性,是新一代增强纤维碳,是纤维状的碳素材料,含碳量在90% 以上,其中含碳量高于99%的称石墨纤维。
与传统的玻璃纤维(GF)相比,氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。
有学者在1981年将聚丙烯膳(PAN)基碳纤维浸泡在强碱洛液中,时间已过去20多年,它至今仍保持纤维形态。
图1碳纤维碳纤维最早山美国联合碳化物公司和美国空军材料实验室于1959年投产,原丝采用粘胶纤维。
1962年,日本碳公司进行了通用级聚丙烯睹基碳纤维的生产。
1971年,曰本东丽公司的高性能聚内•烯月青基碳纤维投产。
沥青基碳纤维是日本吴羽化学工业公司于1973年投产的。
联合碳化物公司生产了高模量沥青基碳纤维,1985年,美国、日本及西欧的聚丙烯月青基碳纤维年生产能力共约有7.25kt,沥青基碳纤维为1.28kto碳纤维一般以力学性能和制造原材料来进行分类。
按力学性能一般可分为两类:a)通用型(GP)碳纤维;b)高性能型(HP)碳纤维。
通用型碳纤维强度lOOOMPa、模量lOOGPa左右,高性能型碳纤维乂可分为高强型(强度2000MPa、模量250GPa)和高模型(模量在300GPa以上)。
强度大于4000MPa者称为超高强型;模量大于450GPa者称为超高模型。
按原材料可分为3类:a)聚丙烯膳基(PAN)碳纤维;b)沥青基碳纤维;c)粘胶基(纤维素)碳纤维。
3种原料碳纤维的主要性能见表1。
表1 3种原料碳纤维的主要性能种类抗拉强度/MPa 抗拉模量/GPa密度/g ■ cm_3断后延伸率,%PAN基碳纤维>3 500>230 1.76 ~ 1.940.6-L2沥青基碳纤维1 600379 1.7 1.0粘胶基碳纤维2 100 ~2 800414 ~552 2.00.7碳纤维按照一束纤维中根数的多少分为小丝束和大丝束碳纤维。
碳纤维铺丝机调研报告碳纤维铺丝机调研报告一、引言碳纤维是一种具有轻质、高强度和高刚度等优异性能的先进材料,广泛应用于航空航天、汽车、体育器材等领域。
与传统材料相比,碳纤维具有重量轻、强度高、抗腐蚀性好等优势,因此在多个领域有着广泛的应用前景。
碳纤维铺丝机是碳纤维制造过程中的重要设备,它用于将碳纤维纱线在模具上进行连续铺丝,形成复合材料。
本报告通过对碳纤维铺丝机进行调研,旨在了解其技术发展情况、市场需求以及未来趋势。
二、技术发展现状目前,碳纤维铺丝机的技术发展主要表现在以下几个方面:1. 自动化水平提高:随着科技的发展,碳纤维铺丝机逐渐实现了自动化控制。
通过智能控制系统,能够精确控制铺丝速度、张力和厚度等参数,提高铺丝的质量和效率。
2. 连续铺丝技术改进:传统的碳纤维铺丝机在铺丝过程中容易出现断纱现象,影响铺丝质量。
目前,一些先进的铺丝机采用了连续铺丝技术,通过调节纱线的张力和速度,实现了无断纱的连续铺丝,提高了产品的质量。
3. 多头铺丝技术应用:为了提高铺丝效率,一些厂家开始推出多头铺丝机,可以同时进行多个模具的铺丝工作,大大缩短了生产周期,提高了产能。
三、市场需求分析碳纤维材料在航空航天、汽车、体育器材等领域有着广泛的应用需求。
随着技术的不断进步,碳纤维铺丝机的需求也在逐渐增长。
1. 航空航天领域:随着航空航天领域对轻质材料和高性能材料需求的增加,碳纤维材料在这个领域的应用越来越广泛。
碳纤维铺丝机可以实现高质量的连续铺丝,满足航空航天领域对于轻质、高强度部件的需求。
2. 汽车制造领域:汽车制造业是碳纤维铺丝机的另一个重要应用领域。
随着汽车制造业对重量减轻和燃油效能提高的需求增加,碳纤维材料在汽车制造中的应用也得到了广泛关注。
3. 体育器材领域:碳纤维材料的高强度和高刚度使其在体育器材制造中具有独特的优势。
碳纤维铺丝机可以为体育器材制造商提供高质量的碳纤维材料,满足市场需求。
四、未来趋势展望碳纤维铺丝机作为碳纤维制造过程的重要设备,将随着碳纤维材料在多个领域的广泛应用而迎来更加广阔的市场前景。
碳纤维前景及应用论文碳纤维是一种高性能纤维材料,具有轻质、高强度、高模量、耐腐蚀和耐疲劳等优良特性,被广泛应用于航空航天、汽车、体育器材、建筑工程等领域。
随着全球工业化进程的不断推进,碳纤维的需求量也在逐步增加,其未来发展前景十分广阔。
碳纤维的应用领域十分广泛。
在航空航天领域,碳纤维被用于制造飞机的机身、机翼、舵面等部件,能够大幅减轻飞机的整体重量,提高机动性和燃油效率。
在汽车领域,碳纤维被广泛应用于高性能跑车、电动车等车辆的车身、悬挂系统、内饰等组件,能够提高车辆的性能和安全性。
在体育器材领域,碳纤维被用于制造高尔夫球杆、网球拍、自行车等器材,提高了产品的性能和使用寿命。
同时,在建筑工程领域,碳纤维也被广泛应用于桥梁、建筑结构、地基处理等方面,能够提高建筑物的抗震性和耐久性。
碳纤维的未来发展前景也备受瞩目。
首先,随着科技的不断进步,碳纤维的生产工艺和技术不断提升,能够生产出更加优质的碳纤维材料,提高了其性能和稳定性。
其次,随着人们对于节能减排和资源循环利用的重视,碳纤维作为一种轻质高强度材料,能够有效减轻产品的整体重量,降低能源消耗和环境污染。
同时,碳纤维材料还可以实现回收利用,提高了资源的可持续利用性。
此外,碳纤维的市场需求量也在不断增加,随着新兴产业的不断涌现,碳纤维的应用领域也将不断扩大。
然而,碳纤维在应用过程中还面临一些挑战和问题。
首先,碳纤维的生产成本较高,限制了其在一些领域的大规模应用。
其次,碳纤维的回收利用技术还不够成熟,难以实现资源的循环利用。
同时,碳纤维的制造过程对环境造成了一定的污染,需要更加环保的生产工艺。
另外,碳纤维的安全性以及其与其他材料的复合性也需要更多的研究和改进。
综上所述,碳纤维作为一种高性能的纤维材料,具有广泛的应用前景和发展空间。
随着工业化进程的不断推进和科技的不断发展,碳纤维的生产工艺和技术将不断完善,其应用领域将不断扩大。
同时,我们也需要进一步加大对碳纤维材料的研究力度,解决其在生产、应用过程中存在的问题,推动碳纤维材料行业的可持续发展。
高科技纤维碳纤维芳纶等高性能纤维的应用和发展前景高科技纤维:碳纤维、芳纶等高性能纤维的应用和发展前景高科技纤维是指那些具有出色性能和广泛应用前景的纤维材料。
在众多高科技纤维中,碳纤维和芳纶被认为是最具潜力和前景的材料之一。
本文将探讨碳纤维、芳纶以及其他高性能纤维的应用领域和发展前景。
一、碳纤维碳纤维是一种由碳元素构成的纤维材料,具有轻质、高强度、高模量和抗腐蚀等特点。
由于其优异的性能,碳纤维已经广泛应用于航空航天、汽车、体育器材、建筑等领域。
1.航空航天领域碳纤维在航空航天领域有着广泛的应用。
它可以用于制造飞机的机身和飞机零部件,如机翼、垂直尾翼等。
由于碳纤维的轻质和高强度,可以降低飞机的重量,提高燃油效率和飞行性能。
2.汽车领域碳纤维在汽车领域的应用也日益增多。
由于其高强度和轻质特性,碳纤维可以用于制造车身结构,提高汽车的安全性和燃油经济性。
此外,碳纤维在制动系统、排气系统和悬挂系统等方面也有着广泛的应用。
3.体育器材领域碳纤维在体育器材领域的应用已成为一种趋势。
高尔夫球杆、网球拍、自行车等器材中采用碳纤维材料可以提高器材的强度和灵活性,使运动员可以更好地发挥自己的技术水平。
4.建筑领域碳纤维在建筑领域的应用也备受关注。
碳纤维增强聚合物(CFRP)可以用于加固和修复混凝土结构,提高建筑物的抗震性能和承载能力。
此外,碳纤维也可以用于制造轻质建筑材料,如碳纤维板、碳纤维砖等。
二、芳纶芳纶是一种由芳香族聚合物构成的纤维材料,具有耐热、耐化学腐蚀和优异的力学性能。
芳纶被广泛应用于航空航天、防护服、电子器件等领域。
1.航空航天领域芳纶是航空航天领域中一种重要的纤维材料。
由于其优异的耐高温性能和抗腐蚀性能,芳纶可以用于制作航天器的耐热保护系统、燃料储存和输送系统等关键部件。
2.防护服领域芳纶是制作防护服的理想材料之一。
由于其高强度和阻燃性能,芳纶可以用于制作防弹衣、防化服等防护装备,保护人员免受来自爆炸、火灾和化学品等危险物质的伤害。
碳纤维树脂基复合材料发展现状碳纤维树脂基复合材料是一种具有轻质、高强、高刚度等优异性能的高级材料,具有广泛的应用前景。
本文主要就碳纤维树脂基复合材料的发展现状做一个简单的介绍。
碳纤维树脂基复合材料就是由一种或多种纤维(通常是碳纤维、玻璃纤维或芳纶纤维等)与树脂(通常是环氧树脂、酚醛树脂或聚酰亚胺树脂等)混合形成的一种材料。
其主要特点是具有轻质、高强、高刚度等优点,是一种高性能的结构材料。
由于其优异的性能,碳纤维树脂基复合材料在航空航天、汽车、轨道交通、运动器材、电子设备、建筑结构等领域得到了广泛的应用。
在航空航天领域,碳纤维树脂基复合材料被广泛应用于飞机机身、机翼、发动机罩等部位,以提高其结构强度和减轻重量,从而提高飞行性能。
在电子设备领域,碳纤维树脂基复合材料可以用于制作高性能的塑料外壳、散热片、接线板等,从而提高电子设备的性能和可靠性。
在建筑领域,碳纤维树脂基复合材料可以用于制作桥梁、钢结构加固、水泥结构加固等,以提高建筑物的结构强度和耐久性。
1.技术发展碳纤维树脂基复合材料技术的发展趋势是向高强、高刚度、高稳定性、高耐疲劳性和高阻尼性方向发展。
同时,随着工艺技术的不断改进,碳纤维树脂基复合材料的成本也在不断降低。
2.市场应用碳纤维树脂基复合材料的需求量不断增长。
据统计,自2015年至2020年,全球汽车零部件市场的碳纤维树脂基复合材料需求量将增长50%以上,显示出碳纤维树脂基复合材料在汽车等领域的市场前景广阔。
3.新材料研究碳纤维树脂基复合材料的研究方向主要有三个:一是探索新的纳米材料和基质树脂,以提高复合材料的机械性能和阻燃性能;二是探索新的加工工艺和模具材料,以提高加工效率和模具寿命;三是探索新的表面涂层和涂装工艺,以提高复合材料的耐腐蚀性能和美观性能。
总之,碳纤维树脂基复合材料是一种具有广泛应用前景的高性能材料,在未来的发展中将继续发挥其优势,服务于人类的生产和生活。
碳纤维的研究现状与发展 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。
1.2性能 碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大4-5倍,弹性回复l00%;(3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。 通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。
1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。
二、生产工艺 通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体—原丝—预氧化丝—碳纤维。碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。以聚丙烯腈(PAN)纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法。 2.1干喷湿纺法
干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条,纺出的纤维体密度较高,表面平滑无沟槽,且可实现高速纺丝,用于生产高性能、高质量的碳纤维原丝。与纯湿纺相比,干喷湿纺可纺出较高密度且无明显皮芯结构的原丝,大幅提高了纤维的抗拉强度,可生产细特化和均质化的高性能碳纤维。
2.2 射频法 PAN原丝经过预氧化、碳化到石墨化,主要受到牵伸状态下的温度控制。在这一形成过程中达到纤维定型、碳元素富集,分子结构从聚丙烯腈高分子结构—乱层的石墨结构—三维有序的石墨结构。国内有自主知识产权的“射频法碳纤维石墨化生产工艺”开辟了碳纤维生产的创新之路,它采用射频负压软等离子法预氧化PAN原丝,接着用微波加热法碳化,最后用射频加热法石墨化形成小丝束碳纤维。
三、碳纤维的发展 3.1国外发展 以PAN碳纤维为例,该纤维国际上研发已有30年左右,目前世界碳纤维的生产能力在3.4~3.8万吨左右,主要集中在日本、英国、美国、法国、韩国等少数发达国家和我国台湾省。日本三家以腈纶纤维为主要产品的公司(东丽、东邦以及三菱人造丝公司)依靠其先进的纺丝科学技术,形成了高性能原丝生产的优势,大量生产高性能碳纤维,使日本成为碳纤维大国,无论质量还是数量上都处于世界前三位,三大集团占据了世界75%以上的产量。
3.2国内发展 我国聚丙烯腈基碳纤维的研究开发始于20世纪60年代,当时由于碳纤维作为重要的军工产品,国外对我国进行严格技术封锁,使得当时我国聚丙烯腈基碳纤维基本上以自主研究开发为主。吉林石化公司在采用硝酸一步法生产原丝的基础上,研究开发出性能基本接近T300的碳纤维,但该法对环境污染较大,因而现已放弃。由于种种原因我国碳纤维发展缓慢,表现为生产规模小、产品质量不稳定、产品规格少、品种单一、没有高性能产品、技术设备落后,大多没有形成规模效益,这些成为制约我国碳纤维发展的瓶颈。
近些年来,随着我国整体实力的不断提升,对碳纤维的需求量也与日俱增,而我国碳纤维现阶段大部分依赖进口,2004年全国碳纤维用量为4000吨,国内实际产量仅为1O多吨,而且无论是质量还是规模与国外相比差距都很大。另据估测2009年我国碳纤维需求将达到7500吨,这表明我国碳纤维严重供不应求。尽管目前国际社会碳纤维的制造技术与产品对华出口有所松动,通用级碳纤维进口渠道已经开通,但高性能碳纤维对我国依然限制。由于我国对碳纤维需求的日益增加,聚丙烯腈基碳纤维又成为国内新材料业研发的热点。 3.3存在问题和差距 一是国内PAN碳纤维总生产能力较小,实际生产量仅30~40吨/年,远远不能满足国内的需要,目前我国95%的碳纤维依靠进口;二是与国际先进水平相比,国产碳纤维强度低,均匀性、稳定性差,毛丝多,品种单一且价格昂贵,发展水平总体落后发到国家近20~30年;三是厂家、装置规模小,技术设备落后,经济效益差。
四、产业分析 4.1世界碳纤维市场 4.1.1世界碳纤维扩产加速 2003年以前碳纤维基本供大于求,属于买方市场,当时工业用普通模量级12K碳纤维价格仅12美元/公斤,但到了2004年形势突变,碳纤维一下子由买方市场变为卖方市场,价格一路攀升,2005年翻了好几倍,2006年更是处于有价无市的情况,这给碳纤维厂家带来了难得的发展机遇。从2004年开始全球碳纤维厂家兴起了一轮扩产热潮。
日本三菱集团也加快了扩产步伐,从2005年到2007年,3年内碳纤维产能将增加72%,接近或赶上东邦的产能。
美国Hexcel公司2005年11月16日宣布在西班牙马德里附近建碳纤维厂,另外美国犹塔工厂也增加碳纤维生产线,产能增加大约50%,即从2270吨/年增加到3300吨/年,2006~2007年完成。目标很明确,针对A380、A350和B787对碳纤维的大量需求。Zoltek公 司2006年1月3日报告,希望碳纤维产能从2006年的4080吨/年增加到2007年8620吨/年。
综上所述,从2005年到2008年全球PAN基碳纤维产能将从34050 吨/年增加到61500吨/年,增长80.6%,平均年增长率20%,详见表8。如此显著的增长速度,将会对供需矛盾产生影响。
4.1.2碳纤维供需状况将趋于缓和 2005年全球碳纤维供小于求,按Chris Red的预测缺口约2000吨,Toray预测缺口近3000吨,中国台湾台塑预测缺口也有约1000吨,这就是2005年碳纤维紧张的说明。2006年虽然碳纤维厂家纷纷扩产,其供应量应较需求量大,但是扩产部分要到2006年底或2007年初才能上市供应,且超过部分有限,仍不能满足用户要求。因此2006年碳纤维供应仍然紧张。2007年以后全球碳纤维产量将明显增加,扩量部分陆续上市,供应量显著超过需求量,供需矛盾得到缓解,紧张状况将会所改变。
4.2中国碳纤维市场 (1)需求增长快。我国碳纤维现阶段绝大部分依赖进口,2004年全国碳纤维用量为4000吨,2005年用量约5000吨,年增长率在20%以上,到2009年将达到7500吨/年,而国内现有产量仅约40吨左右,无论质量和规模与国外相比差距都很大。
(2)产能瓶颈明显。我国除了华皖碳纤维及少数科研院所具有完整的产业链外,绝大部分企业仅仅具有部分碳纤维及其制品的生产工艺。安徽华皖碳纤维有限公司目前已经顺利完成200吨碳纤维及 500吨碳纤维原丝的生产装置的安装,2007年还计划开工建设800吨碳纤维及1800吨碳纤维原丝二期项目。
(3)生产效益大。如果按丙烯腈1.3万元/吨的销售价格计算,大体可以测算出碳纤维原丝及碳纤维的生产成本,分别为4.4万元/吨、18万元/吨。一般情况下,军工级碳纤维(3~6K)的售价在200万元/吨左右,民用碳纤维(12K)售价为55万元/吨,可见碳纤维的盈利空间还是非常可观的。
五、发展对策和措施 近年来,中国复合材料产业有了很大的进步,已成为碳纤维复合材料应用大国。但是我国大陆碳纤维长期依赖进口,受治于人,面对当前严峻的形势,必须采取行之有效的措施。
(1)坚持自主创新是发展我国碳纤维的唯一出路。碳纤维是军需战略物资,是国防建设、先进武器不可或缺的关键材料,不可能也不应该长期依赖进口。15年前美国国防部就下决心民用碳纤维可以从国外进口,国防工业所需的碳纤维必须国内自行生产。中国更不能长期从国外进口国防工业所需要的碳纤维。德国、法国虽然也生产碳纤维,但是碳纤维的核心原丝技术牢牢掌握在日本人手中,至今德国和法国得不到PAN原丝技术。因此中国不可能引进国外先进的碳纤维制造技术,只能自力更生,依靠自己,别无出路。
(2)坚持应用中改进提高是碳纤维发展的科学规律。 (3)产、研、用密切配合是提高国产碳纤维性能的有效途径。 (4)采取替代材料、混杂技术等措施渡过难关。