天线工程设计基础 第3章
- 格式:pptx
- 大小:2.93 MB
- 文档页数:85
天线基础知识(RFID⼯程师必会)天线基础知识1 天线1.1 天线的作⽤与地位⽆线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很⼩很⼩⼀部分功率),并通过馈线送到⽆线电接收机。
可见,天线是发射和接收电磁波的⼀个重要的⽆线电设备,没有天线也就没有⽆线电通信。
天线品种繁多,以供不同频率、不同⽤途、不同场合、不同要求等不同情况下使⽤。
对于众多品种的天线,进⾏适当的分类是必要的:按⽤途分类,可分为通信天线、电视天线、雷达天线等;按⼯作频段分类,可分为短波天线、超短波天线、微波天线等;按⽅向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、⾯状天线等;等等分类。
*电磁波的辐射导线上有交变电流流动时,就可以发⽣电磁波的辐射,辐射的能⼒与导线的长度和形状有关。
如图1.1 a 所⽰,若两导线的距离很近,电场被束缚在两导线之间,因⽽辐射很微弱;将两导线张开,如图1.1 b 所⽰,电场就散播在周围空间,因⽽辐射增强。
必须指出,当导线的长度L 远⼩于波长λ时,辐射很微弱;导线的长度L 增⼤到可与波长相⽐拟时,导线上的电流将⼤⼤增加,因⽽就能形成较强的辐射。
1.2 对称振⼦对称振⼦是⼀种经典的、迄今为⽌使⽤最⼴泛的天线,单个半波对称振⼦可简单地单独⽴地使⽤或⽤作为抛物⾯天线的馈源,也可采⽤多个半波对称振⼦组成天线阵。
两臂长度相等的振⼦叫做对称振⼦。
每臂长度为四分之⼀波长、全长为⼆分之⼀波长的振⼦,称半波对称振⼦, 见图1.2 a 。
另外,还有⼀种异型半波对称振⼦,可看成是将全波对称振⼦折合成⼀个窄长的矩形框,并把全波对称振⼦的两个端点相叠,这个窄长的矩形框称为折合振⼦,注意,折合振⼦的长度也是为⼆分之⼀波长,故称为半波折合振⼦, 见图1.2 b。
1.3 天线⽅向性的讨论1.3.1 天线⽅向性发射天线的基本功能之⼀是把从馈线取得的能量向周围空间辐射出去,基本功能之⼆是把⼤部分能量朝所需的⽅向辐射。
第1篇一、工程概况本项目为XX地区通信信号塔基础施工,工程地点位于XX市XX区,总建筑面积约XX平方米。
信号塔主要用于无线通信、电视广播、雷达监测等功能。
本工程基础施工包括塔基、塔身、天线等部分,其中塔基施工是整个工程的关键环节,关系到信号塔的稳定性和使用寿命。
二、施工方案概述为确保信号塔基础施工质量,保障工程顺利进行,特制定以下施工方案:1. 施工组织与管理(1)成立项目施工领导小组,负责工程整体施工组织与管理。
(2)明确各部门职责,确保施工过程中各部门协调配合。
(3)建立健全施工质量保证体系,确保施工质量。
2. 施工工艺(1)施工前,对施工现场进行勘察,了解地质条件,制定相应的施工方案。
(2)根据地质条件,选用合适的施工工艺,确保施工质量。
(3)施工过程中,严格控制施工工艺,确保施工质量。
3. 施工材料(1)选用优质材料,确保施工质量。
(2)材料进场前,进行质量检验,确保材料符合要求。
(3)材料堆放整齐,标识清晰,方便施工。
4. 施工进度安排(1)根据工程进度,合理安排施工计划,确保工程按期完成。
(2)加强施工进度监控,确保施工进度符合要求。
(3)根据施工进度,调整施工方案,确保施工顺利进行。
三、施工工艺1. 塔基施工(1)开挖:根据设计要求,开挖塔基,确保基础尺寸符合设计要求。
(2)基础处理:对基础进行夯实、平整,确保基础稳定性。
(3)钢筋绑扎:根据设计要求,绑扎钢筋,确保钢筋间距、保护层厚度符合规范。
(4)模板安装:根据设计要求,安装模板,确保模板稳固、垂直。
(5)混凝土浇筑:采用商品混凝土,确保混凝土质量。
(6)养护:混凝土浇筑完成后,进行养护,确保混凝土强度。
2. 塔身施工(1)组装:根据设计要求,组装塔身,确保塔身尺寸、垂直度符合要求。
(2)焊接:对塔身进行焊接,确保焊接质量。
(3)防腐处理:对塔身进行防腐处理,延长使用寿命。
3. 天线施工(1)安装天线:根据设计要求,安装天线,确保天线位置、角度符合要求。
天线专业面试基础知识前言天线是通信系统中不可或缺的重要组成部分,负责将电磁波转换为电信号或将电信号转换为电磁波。
天线专业面试涉及到的基础知识是天线工程师必备的技能。
本文将介绍天线专业面试的基础知识,希望对天线工程师的求职面试有所帮助。
一、基础概念1. 天线天线是一种用于收发无线电波的装置,一般由导体构成。
根据其结构形式和工作原理的不同,可以分为定向天线和非定向天线。
2. 增益增益是衡量天线辐射能力的指标,表示天线辐射功率与等效辐射源辐射功率之比。
增益越高,天线的辐射距离和接收灵敏度越大。
3. 方向性天线的方向性是指其辐射或接收无线电波的指向性能。
方向性天线能够在某个方向上有更高的辐射或接收能力。
4. 驻波比驻波比是指在馈电系统中,驻波电压与最小驻波电压之比。
驻波比越大,表示天线系统匹配越差。
5. 频率带宽频率带宽是指天线在频率上的工作范围。
频率带宽越大,表示天线在更广泛的频率范围内能够正常工作。
二、天线类型1. 定向天线定向天线是指具有明确辐射方向的天线。
常见的定向天线有:定向天线、馈源天线、角度扫描天线等。
2. 非定向天线非定向天线是指在水平方向上辐射均匀的天线。
常见的非定向天线有:全向天线、鞭状天线、片状天线等。
三、天线参数1. 增益已经在基础概念中介绍过,增益是衡量天线辐射能力的指标。
2. 阻抗天线的阻抗是指天线对电路的输入或输出端口所呈现的电阻特性。
阻抗匹配是天线系统设计中非常重要的一个方面。
3. 有效长度天线的有效长度是指天线导体上产生有效信号的部分长度。
4. 损耗天线的损耗是指天线在辐射和接收过程中的能量损失。
5. 驻波比已经在基础概念中介绍过,驻波比是指在馈电系统中驻波电压与最小驻波电压之比。
四、常见面试问题在天线专业的面试中,可能会遇到以下几个常见问题:1. 什么是天线的增益?如何计算天线的增益?答:已经在基础概念中介绍过,增益是衡量天线辐射能力的指标,可以通过理论计算或实际测量来获得。
电气工程基础知识指南第1章电路基础 (4)1.1 电路元件 (4)1.1.1 电阻 (4)1.1.2 电容 (4)1.1.3 电感 (4)1.1.4 电压源 (5)1.1.5 电流源 (5)1.2 基本电路定律 (5)1.2.1 欧姆定律 (5)1.2.2 基尔霍夫定律 (5)1.2.3 诺顿定律 (5)1.3 电路分析方法 (5)1.3.1 等效电路法 (5)1.3.2 节点电压法 (5)1.3.3 网孔电流法 (6)1.3.4 叠加原理 (6)1.3.5 等效电源法 (6)1.3.6 阻抗分析法 (6)第2章电磁学原理 (6)2.1 磁场与电磁感应 (6)2.1.1 磁场的基本概念 (6)2.1.2 电磁感应定律 (6)2.1.3 磁场与电场的相互作用 (6)2.2 交流电基础 (6)2.2.1 交流电的基本特征 (6)2.2.2 正弦交流电 (6)2.2.3 交流电的有效值与峰值 (7)2.3 电磁波 (7)2.3.1 电磁波的产生与传播 (7)2.3.2 电磁波的波动方程 (7)2.3.3 电磁波的传播介质 (7)2.3.4 电磁波的辐射 (7)第3章电子元器件 (7)3.1 分立电子元器件 (7)3.1.1 引言 (7)3.1.2 电阻器 (7)3.1.3 电容器 (7)3.1.4 电感器 (8)3.1.5 二极管 (8)3.1.6 晶体管 (8)3.2 集成电路 (8)3.2.2 数字集成电路 (8)3.2.3 模拟集成电路 (8)3.2.4 混合信号集成电路 (8)3.3 电子器件的应用与选型 (8)3.3.1 引言 (8)3.3.2 电阻器的选型 (8)3.3.3 电容器的选型 (8)3.3.4 电感器的选型 (9)3.3.5 二极管和晶体管的选型 (9)3.3.6 集成电路的选型 (9)3.3.7 电子器件的应用注意事项 (9)第4章数字电路与逻辑设计 (9)4.1 数字逻辑基础 (9)4.1.1 数字逻辑的概念与特点 (9)4.1.2 逻辑代数与逻辑函数 (9)4.1.3 逻辑门电路 (9)4.2 组合逻辑电路 (9)4.2.1 组合逻辑电路概述 (9)4.2.2 常用组合逻辑电路 (9)4.2.3 组合逻辑电路的设计方法 (10)4.3 时序逻辑电路 (10)4.3.1 时序逻辑电路概述 (10)4.3.2 基本时序逻辑电路 (10)4.3.3 同步时序逻辑电路的设计方法 (10)4.3.4 异步时序逻辑电路的设计方法 (10)第5章电机与变压器 (10)5.1 电机原理与分类 (10)5.1.1 电机工作原理 (10)5.1.2 电机分类 (10)5.2 电机特性与控制 (11)5.2.1 电机特性 (11)5.2.2 电机控制 (11)5.3 变压器 (11)5.3.1 变压器原理 (11)5.3.2 变压器分类 (11)第6章电力系统概述 (12)6.1 电力系统组成 (12)6.1.1 发电环节 (12)6.1.2 输电环节 (12)6.1.3 变电环节 (12)6.1.4 配电环节 (12)6.1.5 用电环节 (12)6.2 电力系统运行原理 (12)6.2.2 电压和频率控制 (12)6.2.3 系统保护 (12)6.2.4 经济调度 (13)6.3 电力系统稳定性分析 (13)6.3.1 静态稳定性分析 (13)6.3.2 动态稳定性分析 (13)6.3.3暂态稳定性分析 (13)6.3.4 小干扰稳定性分析 (13)6.3.5 电压稳定性分析 (13)6.3.6 频率稳定性分析 (13)第7章电力电子技术 (13)7.1 电力电子器件 (13)7.1.1 二极管 (14)7.1.2 晶体管 (14)7.1.3 晶闸管 (14)7.1.4 门极可关断晶闸管 (14)7.1.5 绝缘栅双极晶体管 (14)7.2 整流与逆变技术 (14)7.2.1 整流技术 (14)7.2.2 逆变技术 (14)7.3 电力电子装置及其应用 (14)7.3.1 电力电子装置的分类 (14)7.3.2 电力电子装置的应用 (15)第8章自动控制原理 (15)8.1 自动控制基础 (15)8.1.1 自动控制概述 (15)8.1.2 控制系统的基本组成 (15)8.1.3 控制系统的分类 (15)8.2 经典控制理论 (15)8.2.1 线性控制系统 (15)8.2.2 控制系统的数学模型 (16)8.2.3 控制系统的稳定性分析 (16)8.2.4 控制系统设计方法 (16)8.3 现代控制理论 (16)8.3.1 状态空间分析 (16)8.3.2 最优控制理论 (16)8.3.3 鲁棒控制 (16)8.3.4 智能控制 (16)8.3.5 网络控制系统 (16)第9章电力系统保护与自动化 (16)9.1 电力系统保护原理 (16)9.1.1 故障类型及保护方式 (17)9.1.2 保护装置的配置原则 (17)9.2.1 过电流保护装置 (17)9.2.2 差动保护装置 (17)9.2.3 距离保护装置 (17)9.3 电力系统自动化 (18)9.3.1 监控系统 (18)9.3.2 自动装置 (18)9.3.3 保护装置 (18)第10章电气工程应用实例 (18)10.1 工业自动化 (18)10.1.1 交流调速系统 (18)10.1.2 伺服控制系统 (18)10.1.3 工业现场总线与通信技术 (18)10.2 智能电网 (18)10.2.1 分布式发电与储能技术 (19)10.2.2 智能电网通信技术 (19)10.2.3 智能电网调度与控制技术 (19)10.3 电动汽车 (19)10.3.1 电动汽车驱动系统 (19)10.3.2 电动汽车充电技术 (19)10.3.3 电动汽车能量管理系统 (19)10.4 新能源发电技术与应用 (19)10.4.1 风力发电技术 (19)10.4.2 太阳能光伏发电技术 (20)10.4.3 水力发电技术 (20)第1章电路基础1.1 电路元件电路元件是电路系统的基本组成部分,主要包括电阻、电容、电感、电压源和电流源等。
目录摘要 (2)Abstract (3)1 绪论 (4)1.1研究背景及意义 (4)1.2国内外发展概况 (5)1.3本文的主要工作 (6)2 微带天线的基本理论和分析方法 (7)2.1 微带天线的辐射机理 (7)2.2微带天线的分析方法 (8)2.2.1传输线模型理论 (9)2.2.2 全波分析理论 (11)2.3微带天线的馈电方式 (12)2.3.1微带线馈电 (12)2.3.2同轴线馈电 (12)2.3.3口径(缝隙)耦合馈电 (13)2.4本章小结 (13)3宽带双频双极化微带天线单元的设计 (14)3.1天线单元的结构 (14)3.2天线单元的设计 (15)3.2.1介质基片的选择 (16)3.2.2天线单元各参数的确定 (16)3.3天线单元的仿真结果 (17)3.4本章小结 (18)4 结束语 (19)参考文献 (20)致谢 (22)ku波段双频微带天线的设计摘要本文的主要工作是Ku波段宽带双频双极化微带天线研究。
在微带天线的基本理论和分析方法的基础上,对微带天线的技术进行了深入的研究,设计了3种不同结构的Ku波段宽带双频微带天线单元,并完成了实验验证。
依据传输线模型理论并结合软件仿真分析了3种不同结构的天线单元在天线的带宽、隔离度和增益等性能方面的差异,并作了比较,得出了性能最佳的一种天线单元结构形式。
最后,对全文的研究工作加以总结,并提出本文进一步的研究设想。
关键词:Ku波段;双频;传输线模型;微带天线AbstractIn this paper, broadband dual-frequency and dual-polarized microstrip antenna at Ku band is described. Three kind s o f wideband dual-frequency and dual-polarized microstrip antenna element are proposed and their experimental verifications are completed which based o n the classical theory and a deeper stud y on broadband, dual-frequency and dual-polarization technique of microstrip antenna. From the transmission-line mode theory and simulative results, he bandwidth, isolation and gain characteristics of a microstrip patch element with various structures are analyzed in detail and compared, and an antenna element with the best performance is adopted. Based on the element described, four-element linear array and planar array is designed which adopted anti-phase feeding and dislocation anti-phase feeding technique, respectively. In addition, the technique of anti-phase feeding which suppresscross-polarized is further studied by using the even/odd theoretical analysis. Finally, we summarize the research of the paper with an outlook for the further researches. Key words: Ku band; dual-frequency; dual-polarized; microstrip antenna1 绪论1.1研究背景及意义近年来,随着卫星通信技术的发展和卫星通信业务及卫星移动通信的迅猛增长,以往的微波较低频段(300MHz-10GHz)已经变得拥挤不堪,因此卫星通信中开始使用Ku波段甚至Ka波段的通信以满足大信息量的需求。
班级:姓名:学号:指导教师:**成绩:电子与信息工程学院信息与通信工程系1微带天线简介微带天线的概念首先是有Deschaps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期造出了实际的微带天线。
微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。
假设矩形贴片的有效长度设为L e ,则有L e =λg /2式中,λg 表示导波波长,有λg =λ0/ε式中,λ0表示自由空间波长;εe 表示有效介电常数,且εe =21)121(2121-+-++w h εε式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。
因此,可计算出矩形贴片的实际长度L ,有L=L e -2ΔL=λ0/e ε-2ΔL=2102-ef c εΔL 式中,c 表示真空中的光速;f 0表示天线的工作频率;ΔL 表示等效的辐射缝隙的长度,且有ΔL=0.412h ()()()()8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算,W=212102-⎪⎭⎫ ⎝⎛+εf c对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。
在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω.对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以(x f ,y f )表示馈点的位置坐标。
对于TM 10模式,在W 方向上的电场强度不变,因此理论上的W 方向上的任一点都可以作为馈点,为了避免激发TM 1n 模式,在W 方向上的馈点的位置一般取在中心点,即 y f =0在L 方向上电场有λg /2的改变,因此在长度L 方向上,从中心点到两侧,阻抗逐渐变大;输入阻抗等于50Ω时的馈点可以由下式计算,x f =)(2L L ξ 式中, )121(212121)(l h L +--++=εεξ上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明来了当参考地平面比微带贴片大出6h 的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度L GND 和宽度W GND 只需要满足以下条件即可, L GND ≥L+6hW GND ≥W+6h2设计指标和天线结构参数计算我这次设计的矩形微带天线工作于ISM 频段,其中心频率为 2.45GHz ;无线局域网(WLAN )、蓝牙、ZigBee 的无线网络均可以工作在该频段上。
cst教程CST教程第一部分:电磁场模拟1. 引言2. 电磁场基础知识3. CST软件介绍4. 创建新项目5. 建立导体和介质模型6. 设定求解器参数7. 模拟电磁场分布8. 解析和优化结果第二部分:天线设计1. 引言2. 天线基础知识3. CST软件介绍4. 创建新项目5. 设计天线结构6. 优化天线性能7. 评估天线辐射特性8. 结果分析和调整第三部分:微波器件仿真1. 引言2. 微波器件基础知识3. CST软件介绍4. 创建新项目5. 设计微波器件结构6. 优化器件性能7. 评估器件特性8. 结果分析和调整第四部分:电磁兼容性仿真1. 引言2. 电磁兼容性基础知识3. CST软件介绍4. 创建新项目5. 建立电路模型6. 模拟电磁辐射和耦合7. 分析兼容性问题8. 解决和优化结果第五部分:电磁传感器仿真1. 引言2. 电磁传感器基础知识3. CST软件介绍4. 创建新项目5. 建立传感器结构6. 优化传感器性能7. 评估传感器响应8. 结果分析和调整第六部分:电磁波传播仿真1. 引言2. 电磁波传播基础知识3. CST软件介绍4. 创建新项目5. 设定传播环境参数6. 模拟电磁波传播7. 评估信号强度和传输损耗8. 结果分析和优化第七部分:电磁隐身仿真1. 引言2. 电磁隐身基础知识3. CST软件介绍4. 创建新项目5. 设计隐身结构6. 优化隐身性能7. 评估隐身特性8. 结果分析和调整请注意,上述内容仅为示例,具体的CST教程内容可能根据实际编写需求进行调整和修改。
基于cst的仿真课程设计一、课程目标知识目标:1. 学生能够理解CST软件的基本原理和使用方法,掌握仿真实验的基本流程。
2. 学生能够运用CST软件进行简单的电磁场仿真,并分析仿真结果。
3. 学生能够了解CST软件在工程实践中的应用,如天线设计、微波器件等领域。
技能目标:1. 学生能够独立操作CST软件,进行仿真实验的设置和运行。
2. 学生能够运用CST软件解决实际问题,如优化天线性能、分析微波器件特性等。
3. 学生能够通过CST仿真实验,提高实际动手能力和问题解决能力。
情感态度价值观目标:1. 学生能够认识到仿真技术在现代工程领域的重要性,增强学习兴趣。
2. 学生能够通过团队协作完成仿真实验,培养团队合作精神和沟通能力。
3. 学生能够遵循实验规范,养成良好的实验习惯,树立正确的科学态度。
课程性质:本课程为选修课,旨在提高学生对仿真技术的认识和实际操作能力。
学生特点:学生为高年级本科生,具备一定的专业基础知识和动手能力。
教学要求:结合课本内容,注重实践操作,培养学生的实际应用能力和创新精神。
通过本课程的学习,使学生在知识、技能和情感态度价值观方面得到全面提升。
教学设计和评估将围绕课程目标展开,确保学生能够达到预期学习成果。
二、教学内容本课程教学内容主要包括以下三个方面:1. CST软件基础操作与原理:- 教材章节:第一章 软件概述与基本操作- 内容:CST软件简介、安装与启动、界面与工具栏、基本操作流程。
2. 电磁场仿真实验:- 教材章节:第二章 电磁场仿真原理与实验- 内容:电磁场理论基础、仿真实验设置、边界条件与激励源、网格划分、仿真结果分析。
3. CST软件在实际工程中的应用:- 教材章节:第三章 工程应用案例- 内容:天线设计、微波器件分析、电磁兼容性研究等实际应用案例解析。
教学大纲安排如下:第一周:CST软件概述与基本操作第二周:电磁场理论基础与仿真实验设置第三周:边界条件与激励源设置、网格划分第四周:仿真结果分析与应用案例学习第五周:综合实验与团队协作项目教学内容注重科学性和系统性,结合课本章节和实际应用,使学生能够掌握CST软件的操作和电磁场仿真实验,培养实际工程应用能力。