镍镉电池充电器
- 格式:doc
- 大小:142.00 KB
- 文档页数:8
镍氢、镍镉电池充电常识◆1.2V充电池的电压只有1.2伏特,是否真的可以完全取代一次性电池?答:是的!其实在大部分情况下,1.2V充电电池均可以完全取代一次性电池,当中尤其是用于高耗电器材的时候,虽然碱性电池的额定电压为1.5伏特,但会于开始放电后电压会不断下降,综观整个放电过程,碱性电池的平均电压约为1.2伏特,与1.2V充电电池非常接近,主要差别在于碱性电池的电压于开始放电时为1.5伏特,最终下降至不足1.0伏特,而充电池则会于大部分时间保持约1.2伏特的电压。
◆为什么1.2V的充电电池有时候会显示不满格?答:有的产品是以1.5V为标准的,当电池电压≥1.5V 时,电池电量显示为满格;当电池电压≤1.5V时,电池电量空一格,镍氢/镍镉充电电池是1.2V,饱和电压在1.38V左右所以其电量显示不满格,和电池的容量没有关系。
◆电池充多长时间能充满?答:充电时间(小时)= 【电池容量(毫安时)】÷【充电电流(毫安)】×1.1≈1.5 新买的充电电池先要充好电再使用,(充满.用完)3到5次效果达到最佳,充电时间取决于充电器的输出电流mA。
具体来说,一般电池容量大小都在电池上注明,以毫安为单位,数值越大容量越大。
例如:1200mAh就是表示电池的容量是1200毫安。
同时,充电器一般也标有充电电流,同样以毫安为单位。
这样,电池充电时间长短可简单地按照以下方法计算:电池容量除以充电电流,再乘以系数1.2(或者1.1),时间单位为小时。
例如:电池容量为1200毫安,充电器充电电流为600毫安,充电时间即为(1200毫安/600毫安)×1.2=2.4小时,那么这块电池使用这个充电器的充电时间就为2.4小时。
以上计算方法不适用于新电池。
一般说来,新电池前三次充电时,尤其是镍镉电池和镍氢电池,使用标准充电器一般充电在15个小时左右(0.1C),这样才能使电池的使用时间达到最大值。
以后则可参照上面的方法计算电池充电时间。
镍镉电池充电方法首先,选择合适的充电器至关重要。
镍镉电池需要专门设计的充电器进行充电,通常称为镍镉电池充电器。
这种充电器能够根据镍镉电池的特性和充电需求进行恰当的充电控制,避免过充和过放,从而保证电池的安全性能和使用寿命。
其次,充电时需要注意电池的充电状态。
在充电之前,应该先检查电池的电量,确保其处于低电量状态。
然后将电池安装到充电器上,按照充电器的说明书操作,启动充电程序。
在充电过程中,要时刻关注电池的充电状态,以免出现过充的情况。
另外,充电时应该避免过度放电。
镍镉电池在长时间不使用或放置后会自行放电,导致电池电量减少。
因此,在充电之前,最好先将电池的电量用完,然后再进行充电。
这样可以避免过度放电对电池性能的影响,延长电池的使用寿命。
此外,充电时要选择合适的充电电流和充电时间。
镍镉电池的充电电流和充电时间是影响充电效果的关键因素。
一般来说,充电电流不宜过大,以免对电池造成损坏;充电时间也不宜过长,以免出现过充的情况。
因此,在选择充电电流和充电时间时,应该参考电池的规格和充电器的说明书,按照标准程序进行操作。
最后,充电完成后要及时拔掉充电器。
一旦电池充满电后继续充电,就会出现过充的情况,对电池的安全性能和使用寿命造成影响。
因此,在电池充满电后应该及时拔掉充电器,避免继续充电。
总之,正确的充电方法能够有效延长镍镉电池的使用寿命,保证其安全性能。
选择合适的充电器,注意电池的充电状态,避免过度放电,选择合适的充电电流和充电时间,及时拔掉充电器,都是保证镍镉电池充电效果的关键。
希望大家在使用镍镉电池时能够按照正确的充电方法进行操作,确保电池的安全和可靠性。
NE555脉冲式电路详解本文介绍的全自动充电器,可以一次对4节5号镍镉电池充电,电池充足电后,电路能自动停充。
电路原理全自动镍镉电池充电器的电路如下图所示,充电器主要由电源电路、电压比较器及指示电路等组成。
电路电源由变压器T降压、二极管VD1~VD4整流、三端稳压集成块A1稳压及电容C1、C2滤波后供给,电路通电后可输出稳定的9V直流电压供充电器使用。
电压比较器由时基电路A2组成,在它的控制端5脚接有一个稳压二极管VS(稳定电压5.6V),所以将电路的复位电平定位在5.6V。
发光二极管VL为充电指示器。
1节5号镍镉电池正常工作电压为1.2V,充电终止电压为1.4V左右。
G为4节待充的镍镉电池,所以充电终止电压为4×1.4V=5.6V。
将电池装入充电支架后,合上电源开关S,便可开始充电。
电路工作过程:由于电容C3两端电压不能突变,刚通电时,A2的2脚为低电平,A2被触发置位,3脚输出高电平,此高电平经电位器RP、二极管VD5向电池G充电,改变RP值可以调节充电电流的大小。
此时A2的7脚被悬空,VL发光指示电路在充电。
随着充电不断进行,G两端电压逐渐升高,当升至5.6V时,A2复位,3脚输出低电平,充电自动终止,同时A2内部放电管导通,7脚输出低电平,VL熄灭表示充电结束。
元件选择A1选择LM7809型三端稳压集成块,应为其加装铝质散热片。
VD1~VD5选用IN4001型硅整流二极管。
VS选用5.6V、1/2W稳压二极管,如UZ-5.6B、IN5232型等。
VL选用普通红色发光二极管。
RP选用2W线绕电位器,R1~R4均选用1/8W碳膜电阻器。
C1选用CD11-25V型铝电解电容,C2、C3为CD11-16V型铝电解电容。
S选用普通1×1电源小开关。
T选用220V/12V、5V A小型优质电源变压器。
本文介绍的全自动充电器,可用于2~8节5号镍镉或镍氢电池充电。
充电时只要设定电池充电电压的上、下限,充电器便能自动给电池充电。
镉镍蓄电池工作原理
镉镍蓄电池是一种可充电电池,其工作原理主要包括以下几个步骤:
1. 充电:当外部直流电源连接到蓄电池时,正极的氢氧化镉(Cd(OH)2)会被还原成金属镉(Cd),同时负极的氢氧化镍(Ni(OH)2)会被氧化成氢氧化镍(NiOOH)。
2. 放电:当需要使用电能时,蓄电池会被连接到负荷电路,正负极之间产生电流。
在放电过程中,金属镉正极的镉被氧化成氢氧化镉,而氢氧化镍负极的氢氧化镍会被还原成氢氧化镍。
3. 反应:在充放电过程中,氢氧化镍和氢氧化镉之间的离子交换反应是主要的电化学反应。
在放电过程中,氢氧化镉负极释放氢离子(H+)到电解质中,同时氧化镍正极吸收电解质中的氢离子,并产生水。
在充电过程中,这些反应逆转,氢氧化镉正极吸收氢离子,氧化镍负极释放氢离子。
4. 电解质:电解质通常是氢氧化钠(NaOH)溶液,它提供了离子传输的媒介,同时参与了反应过程中的离子交换。
通过反复的充放电过程,镉镍蓄电池能够实现电能的储存与释放,以满足电力需求。
镍镉电池充电方法镍镉电池是一种常见的可充电电池,其充电方法对于延长电池使用寿命和保证充电效率非常重要。
下面将介绍镍镉电池的充电方法,希望能够对您有所帮助。
首先,选择合适的充电器非常重要。
镍镉电池需要采用恒流充电的方式,因此需要使用专门设计的镍镉电池充电器。
这种充电器能够提供恒定的充电电流,以确保电池能够充满电并且不会受到过充的影响。
其次,正确连接充电器也是至关重要的。
在连接充电器时,务必将正负极连接正确,否则可能会导致电池短路或者损坏。
一般来说,红色接正极,黑色接负极,务必按照说明书上的指示正确连接。
接下来,确定充电电流也是必不可少的。
不同容量的镍镉电池需要不同的充电电流,一般来说,充电电流应为电池容量的1/10,例如,容量为1000毫安时的电池,充电电流应为100毫安。
过大的充电电流可能会导致电池过热,损坏电池,因此务必根据电池容量来确定合适的充电电流。
然后,控制充电时间也是非常重要的。
一般来说,镍镉电池的充电时间应该控制在10-15小时,充电时间过长可能会导致电池过充,影响电池寿命,因此需要根据实际情况来确定合适的充电时间。
最后,充电完成后,及时拔掉充电器也是必须的。
一旦电池充满电,就应该及时拔掉充电器,以免过充导致电池损坏。
此外,充电完成后也需要等待一段时间,让电池中的化学物质稳定下来,再进行使用。
总的来说,镍镉电池的充电方法需要注意充电器的选择、连接方式、充电电流、充电时间以及拔掉充电器的时机。
只有正确的充电方法,才能够保证电池的使用寿命和充电效率。
希望以上内容能够对您有所帮助,谢谢阅读。
镍镉镍氢电池充电知识镍镉镍氢电池充电知识镍镉电池的正常电压为1.2V,在充电过程中,电压会逐渐上升。
充满电时电压为1.42V。
只要在充电过程中电压达到1.42V,电池就充满电了。
自动断电的充电器就是根据这个原理设计的。
万用表自检电池充满与否。
一般镍氢电池在充电前,电压在1.2V 以下,充满后正常电压在1.4V左右。
大家以此判断,也就很容易判断电池的状态了。
充电器主要分为快充和慢充。
慢充电流小,通常在200mA左右,比如我们常见的充电电流是在160mA左右。
她的充电时间长,充电1800mAh的镍氢电池要16个小时左右。
时间虽然是慢了些,可是充电会充的很足,并且不伤电池。
快充电流通常都在400mA以上,充电时间明显减少很多,3-4个小时就可以搞定,也赢得了大家的喜爱。
快充种类很多,价格不一。
所以大家也常常有疑问,同是快充,价格为什么相差甚大呢?好的充电器特别是好的快充都带有防过度充电保护功能的,比方我们常见的松下极品充电器BQ 390在这方面表现尤为出色,优秀的芯片软件设计能力在对电池充电时,也把快充对电池的伤害降到了最低。
慢充不伤电池但是充电时间太长;快充可以节省时间,但对电池有伤害,即使是目前世面上最好的松下极品充电器BQ390也只能很好的降低伤害程度,但不可完全避免。
解决矛盾的方法就是要买一个快充和一个慢充。
用快充充一段时间,比方5、10次之后,改用慢充充电一两次。
这样就又把电池的性能恢复到最佳状态。
电池使用时一般都是电池组,就是4节或6节串联起来,这时候,保持每节电池的平衡就很重要了,否则因为其中的一节电池问题而影响整个电池组的工作。
首先要保证电池容量一致,最好选择相同牌子相同型号同时购买的电池。
然后,要保持电池内部的电量一致,简单的说,就是电池组的电要么都是满的,要么都是空的。
如果有比较多的电池组成若干组电池组,可以试着“精选”一下。
具体就是说,将容量、电压等参数相近的电池单体串联成一组电池组,由于条件不足,一般情况下测一下放完点后的电压和冲好电的电压就可以了。
镍镉电池怎么充电镍镉电池是靠化学物质的反应来动作,化学材料往往会自我消耗,在温度高的环境下自我消耗的情形会较严重,容量会降低,也可能会有漏液与生锈的情形,在高温下进行充放电更是会对电池造成破坏降低寿命。
镉镍电池可稳定工作的温度范围还算很广,充电约0~45℃,放电约-20~60℃,保存约-30~45℃,平常最好保存于较冷但不潮湿的地方。
温度对于电池的寿命以及充放电特性影响很大,充放电时若环境温度越高,则电池的材质受到破坏,极版之活性物质的功能降低使容量减小,阳极阴极隔离版间的隔离版绝缘降低造成短路,且温度升高电池之电压也变得较低,充放电效率降低了许多,电池的容量大大地减少。
因此除非使用的镍镉电池是耐热型的,否则充放电时应留意电池的温度,不要使用过大之电流充放电以免温度过高。
过度充电在充电过程中电池的电压会随着储存电量的增加而逐渐上升,当电池储存的电量达到饱和电极材料无法继续充电时,若继续充电则电解液会起电解,并且在阳极产生氧气,在阴极产生氢气,如此会在密封的电池内部造成内部压力上升,会对电池内部结构造成破坏。
像这种现象称之为过度充电。
为了避免过充电电池遭毁损,通常将阴极之容量制作得比阳极容量大,如此当过度充电时阳极会先达到饱和并产生氧气,而阴极却未饱和而不会产生氢气,阳极产生的氧气扩散到阴极之后会与充电产生的金属镉起化学反应吸收掉氧气,且此反应的速度与金属镉产生的速度平衡,因此可以有效地避免电池的压力上升。
但是若充电电流过大(使用快充时)就会失去平衡,电池的内压过大会将电池的安全阀推开,氢气和氧气会泄漏到电池外部,直到压力降低安全阀关闭电池才又再密封起来。
但是气体的泄漏已使得内部化学材料减少,造成电池寿命的缩短。
充电电压的变化电池过度充电时,因为阳极产生的氧气与阴极起化学反应会产生热,使得电池温度会上升外壳发烫。
由于温度越高电池的充电电压会变得比较低,因此充电时电池电压会持续上升直到过度充电时,电池温度会突然地快速上升,电压不再上升转而由峰值开始下降。
隨著筆記型電腦(Note Book Personal Computer;以下簡稱為NB-PC)與各種可攜式電子產品的普及化與高性能化,使得二次電池大容量化的需求日益高漲,相對的高性能快速充電器成為無法欠缺的關鍵性附屬配備,因此接著要介紹幾種有關鎳氫/鎳鎘電池充電器電路,分別是利用0.5~1C充電電流作1~2小時的快速充電電路,以及另一種是可作鋰離子電池充電之switching方式高效率CVCC充電電路。
快速充電電路【基本結構與功能】圖1是典型的鎳氫電池快速充電器電路方塊圖,由圖可知它是由輸出值為0.5~1C的定電流電路、檢測電路、檢測電路、Timer電路所構成。
(a)有關檢測電路圖2是鎳氫電池快速充電時的電池電壓特性,如圖所示當電池為滿充電狀態時鎳氫池電壓的下降比鎳鎘電池小,鎳氫電池電壓的下降大約是10mV左右,充電電流越低,電壓的下降幅度也越少,除此之外電壓的下降幅度,會隨著電池溫度改變不斷變化。
(b)有關檢測電路圖3是鎳氫電池快速充電時的電池溫度特性。
通常電池溫度達到時就被視為滿充電,為了要正確量測電池溫度,因此溫度感應器必需密貼於電池。
(c)有關保護電路檢測電路或是檢測電路未動作時,快速充電電路必需設置保護Timer、定電流電路、檢測電路、檢測電路的功能,避免充電電路發生過充電,如果充電異常時還可自動切斷(shut down)電源。
(d)有關溫度檢測電路對快速充電的二次電池而言,電池充電時的電池溫度管理非常的重要,一般認為最佳充電效率時的周圍溫度約為。
如果連續過充電時電池的溫度會升高,溫度檢測電路會偵測異常溫度並切斷電源。
值得一提的是快速充電時,必需在電池廠商提供的cut off溫度範圍內停止快速充電,(e)有關過電壓保護電路快速充電器除了Timer電路與溫度檢測電路之外,還需要監控電池的電壓,隨時檢測異常電壓。
雖然鎳氫電池的公稱電壓為1.2V,不過充電時電池的電壓可高達1.8V/ cell遠比公稱電壓還高,因此當電池呈現異常狀態時由於內部阻抗增加,電池的電壓會上升至2.0V,此時必需將它視為異常電池立即停止快速充電。
B6充电器使用说明书—中文版IMAX B6,是可以相信的一款B6充电器。
充电器参数:-电压值:DC11。
0-18.0V AC100—240,—50/60HZ—最大充电功率50W—最大放电功率5W—充电电流值:0。
1-5。
0A—放电电流值:0.1-1.0A—单个电池的电流:300mah/cell—镍氢/镍镉电池个数:1—15cell—锂离子/聚合物级数:1-6节(注:支持Li—Fe 电池,即A123)—PB电池电压:2—20V—重量:580g—尺寸:133*87*33mmB6如何外接电源?就将跟充电器的的夹子夹到大功率的稳压电源或者开关电源上面,红色为正极,黑色为负极,电压允许范围:11~18v,电流要求5A以上,官方要求最低12v5a***不要问12v10a会不会烧坏充电器,答案是肯定不会的,就像你200W的主机用500W的电源不会因为电源功率大而烧掉一样道理B6原配一堆充电线材,充电前,先将长的那根蕉插(公)以及T插(公)线接到充电器右侧的母蕉插里面(红正黑负),然后根据自己要冲的电池类型选择合适的适配线,再将适配线的T插(母)插到刚才那根长线的T插(母)上,最好接上要充的电池上面就可以了。
举例图:冲接受电:按键功能Batt. TypeStop 按钮:电池种类以及停止按钮,接电后即可使用该按钮在主菜单中进行切换,充电时可随时按此键停止;Dec. / Inc.〈Status 〉按钮:减小以及增加按钮,设置各种数值时Dec.是减小,Inc。
是增加,充电时按这两个按钮以浏览电池不同信息; StartEnter 按钮:开始以及确定按钮。
接通电源,即显示主菜单此时可以按Batt. Type / Stop 按钮,在主要的几个菜单中进行切换,它们是:Program SelectLiPo BATT对锂电系列进行充电的主菜单Program SelectMiMH BATT对镍氢电进行充电的主菜单Program SelectNiCd BATT对镍镉电进行充电的主菜单Program SelectPb BATT充Pb电的主菜单Program SelectSave Data保存设定数据菜单Program SelectLoad Data加载数据菜单User SetProgram-〉使用者设定菜单1. 锂电1.) 充电开机后显示主菜单:Program SelectLiPo BATT按Start / Enter按钮确定屏幕显示LiPo CHARGE*。
简易7.2V镍氢电池充电器
松下摄像机原配7.2V、1400mAh的锂电池,容量太小,于是改为配7.2V、2700mAh的镍氢电池(6节串联),还为其专门制作了一个充电器。
该充电器电路虽然简单,却有恒流充电、电流可调、可大电流快速充电、充满自动转入涓流充电等功能,适合外出旅游携带。
现介绍如下:
电路见图。
接通电源后及充电过程中,均为红色LED亮。
W1、R2、R3、R4、BG1组成可调恒流源,BG1采用达林顿管,调节W1可使充电电流从0~1A连续可调,由1A电流表指示。
R6、W2、R7、C2、BG2和J组成电压检测电路,在充电过程中当电池电压逐渐升高达到设定值时,BG2饱和导通,J得电吸合。
触点
JK1转换位置,使BG1失去偏压而截止,绿色LED点亮,指示已充满电。
同时接点JK2也转换位置,使R5被接入充电回路对电池组进行约
100mA左右的涓流充电。
改变R5的阻值就可调整涓流电流的大小,镍氢电池的涓流充电电流一般为其容量的1/50。
镍镉电池一般为其额定容量的1/16。
本机装后需要调整的只是检测部分的自停电压。
方法很简单,如规定电池的终止电压为1.5×6=9.0V,可将开关K断开,在A、B两点之间接入一只可调稳压电源,把电压调整到9.0V,再调W2使J刚好吸合即可。
另外,为电池组充电所需的直流供电电压可按公式“电压(V)=1.5×电池节数+4”来计算。
还应注意快充时电池温度不超过60℃,否则,应适当减小充电电流。
镍镉/镍氢电池的原理及充电方法镍镉/镍氢电池的发展1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。
遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。
后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。
其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。
他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。
镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。
在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。
密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。
密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。
随着空间技术的发展,人们对电源的要求越来越高。
70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。
它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。
近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。
镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。
1992年,日本三洋公司每月可生产200万只镍氢电池。
目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。
蓄电池参数蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。
电池的容量通常用Ah(安时)表示,1Ah就是能在1A的电流下放电1小时。
单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用的材料和体积决定,因此,通常电池体积越大,容量越高。
镍镉电池充电方法
镍镉(Ni-Cd)电池是一种可充电电池,目前被广泛应用于手机、汽车电池、无线电和许多其他应用中。
正确使用镍镉电池可以获得更长的使用寿命,下面介绍正确充电镍镉电池的方法。
首先,应该先对镍镉电池进行检查,以确保电池没有损坏或漏电,否则会给人带来安全问题。
其次,使用正确的充电器充电,一般选择有效的1.4伏电池充电器,引脚接口接触良好,并以正确的顺序连接。
再次,应注意选择充电时间,通常建议最长不超过16小时,建议在7-11小时的充电时间内。
一旦满足条件,可以进行充电,不能超过推荐时间。
最后,重复充放电可以获得更好的使用效果,也可以维护电池的使用性能。
重复充放电前,应确保电池没有损坏,并准备一个专业的测试仪器来测量电池剩余电量。
此外,镍镉电池也应放置在限定的温度范围内,长期放置在高温或低温环境下会影响电池的正常使用,因此应尽量避免长时间放置高温低温的环境中。
正确使用镍镉电池完全取决于使用者的良好习惯,只要遵循上述方法即可正确使用,从而获得更长的使用寿命。
镍镉/镍氢电池的原理及充电方法镍镉/镍氢电池的发展1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。
遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。
后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。
其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。
他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。
镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。
在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。
密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。
密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。
随着空间技术的发展,人们对电源的要求越来越高。
70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。
它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。
近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。
镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。
1992年,日本三洋公司每月可生产200万只镍氢电池。
目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。
蓄电池参数蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。
电池的容量通常用Ah(安时)表示,1Ah就是能在1A的电流下放电1小时。
单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用的材料和体积决定,因此,通常电池体积越大,容量越高。
关键字:锂电池;镍镉电池;充电器
引言
鉴于市场上镍镉电池和锂电池共存的局面,本文设计的充电器可以对这两种电池进行充电,对镍镉电池组采用脉冲充电方式,对锂电池组采用恒流充电方式,这是依据电池的不同机理而设计的,真正做到了一机两用,此为该充电器的创新点,也是设计的难点。
充电器的宽屏LCD可以同时显示4组充电器的充电状态,也可单独显示一组充电器上电池的各项参数,做到了对电池充电过程的实时监测。
系统整体设计
系统设计目标是:
1.可同时对4组8.4V的锂离子电池或9.2V的镍镉电池进行充放电。
2.可与电池组中的芯片通信,判断电池的化学性质。
3.对于不同化学性质的电池,将采用相应的充电方式。
4.可与电池组中的芯片通信,得到该电池组的电压、充电电流、容量等参数。
5.充电器带有LCD,可显示电池的各项数据。
该充电器的功能框图如图1所示。
图1 系统整体设计结构图
系统硬件设计
总控单元的设计与实现
总控单元是由微控制器PIC16F873和键盘控制芯片ZLG7289A构成的。
主要任务是负责与各个充电单元通信,并处理用户输入与LCD显示信息。
键盘控制芯片在这里负责6个按键和12个LED的控制。
ZLG7289A与微控制器之间通过SPI总线进行双向通信。
主控单元每秒查询一次各个充电单元,获取当前充电单元的信息,如有无电池、电池性质、电池电压等。
之后由LCD 模块向用户显示。
充电单元的设计与实现
LTC4002锂离子电池
充电控制芯片
LTC4002是一款高效独立开关模式锂离子电池充电控制器。
该控制器有4.2V和8.4V 两个版本。
LTC4002-8.4 具有 500kHz 开关频率,是高效电流模式的 PWM 控制器。
通过驱动一个外部 P 沟道 MOSFET,它可以提供 4A 的充电电流,而效率可高达 90%。
输出电压设置为 8.4V,最终浮动电压并具1% 的精度,而充电准确度为5%。
此外,该器件可在9V~22V范围内的多种墙上适配器上运行。
与迟滞拓扑结构充电器相比,LTC4002-8.4 的快速运行频率与电流模式架构使之能够使用小型电感器和电容器。
锂离子/镍镉电池两用
充电单元的总体设计
从前面对LTC4002的分析可知,该芯片是针对锂离子电池的充电控制器,要实现对镍镉电池充电需要解决以下问题:首先,LTC4002对电池电压进行监测,保证电池电压不超过8.4V。
但对于镍镉电池组,充电截止电压可以达到9.2V。
其次,镍镉电池充电即将结束时,需要对电池进行以正常电流30%和10%的涓流充电。
所以,第二个需要解决的问题是如何控制恒流充电的电流大小。
此外,对镍镉电池充电应使用脉冲充电方式。
即以1s为周期,95%的时间用来充电,1%的时间用来放电,其余时间不充电也不放电。
最后,如何判断某一个电池是锂离子电池还是镍镉电池,因为若把锂离子电池误判为镍镉电池,会使充电电压高于8.4V,这对锂离子电池是十分危险的,而将镍镉电池误判为锂离子电池,则可能造成电池充电不足。
因此,必须保证极低的误判率。
本部分根据LTC4002的工作原理,设计了既可以对锂离子电池进行恒流-恒压充电,又可以对镍镉电池进行脉冲式充电的电路。
充电单元的总体功能框图如图2所示。
其中,信号调理电路使充电器既可以对8.4V的锂电池充电,又可以对9.2V的镍镉电池充电,同时也起到控制充电电流大小的作用。
图2 充电单元的总体功能框图
利用微控制器控制LTC4002的工作状态,配合放电电路使充电器可以对镍镉电池进行脉冲方式充电。
微控制器通过一定的通信协议(HDQ16)与智能电池通信,确定其容量、化学性质等关键参数。
信号调理电路的设计
为了使LTC4002可对高于8.4V的电池进行恒流充电,并可调节充电电流,在LTC4002的BAT和SENSE端与采样电阻之间加入一级信号调理电路。
该电路的主要功能是对采样电阻两端的信号进行运算,针对不同化学性质的电池,将相应的信号送给LTC4002。
该信号调理电路如图3所示。
图3 信号调理电路的功能图
这里定义采样电阻两端的电压值是VBAT和Vsense,那么充电电流在采样电阻上的压降VRS为:VRS=Vsense-VBAT,该信号为减法器的输出。
设乘法器的乘系数为K,那么乘法器的输出为KVRS。
对于锂子电池,二选一开关将选通电池电压VBAT;对于镍镉电池,二选一开关将选通7V恒定电压。
这里设二选一模拟开关的输出为V1,那么加法器的输出Vs应为:Vs=KVRS+V1,这样一来,送到LTC4002的BAT和SENSE两端的电压之差应为KVRS。
只要正确控制K值,就可以使充电电流为正常充电电流的1/K。
因此,可以通过二选一开关控制电流为恒流充电时的10%或30% 。
对于LTC4002的BAT端输入值,当开关选通锂离子电池时,BAT的输入即是电池电压。
此时,LTC4002可以控制整个锂离子的充电过程。
不需任何外界的干预。
当开关选通了7V恒定电压后,BAT端的输入恒定为7V,此时,LTC4002无法知道电池的真实电压,只认为电池电压为7V。
所以,尽管电池电压高于8.4V,仍会以恒定电流对电池进行充电。
在这种情况下,需要微控制器的干预,否则,会造成电池的过充。
由于微控制器内部带有ADC,可以监测电池电压的变化。
当电池电压达到指定值时,减小充电电流,直至电池充满。
这样就可以对9.2V的镍镉电池进行充电了。
脉冲充放电电路的设计
由于LTC4002是恒流充电控制芯片,因此,必须使用微控制器控制其充电使能引脚COMP。
当需要LTC4002输出充电脉冲时,使控制COMP引脚的端口变为高阻态,使COMP引脚自行升至360mV以上时,便有充电电流输出。
放电时,必须将COMP引脚拉低,使LTC4002关断充电电流。
之后,再打开放电电路。
微控制器选用PIC16F873,它是一款基于Flash的8位微控制器。
内部有定时器、看门狗电路、10位ADC等模块。
图4 充电单元主程序流程图
微控制器以1s为周期对镍镉电池进行脉冲充放电。
系统软件设计
系统软件总体设计
充电单元中的微控制器主要负责充电过程的控制和与总控板的通信,程序流程如图4所示。
充电单元首先判断是否有电池,如果有电池放入,则判断充放电状态,默认是充电状态,该状态可由总控单元改变。
若充电单元处于充电状态,则继续判断电池的化学性质,针
对不同的电池采用不同的充电方式。
若处于放电状态,则对电池组进行放电,直到电池电压低于阈值电压后,转为充电状态。
除主程序外,总控单元与充电单元的通信是在中断服务程序中实现的。
当充电单元收到总控单元的指令后,进入中断。
若指令是查询数据指令,则向总控单元发送需要的数据。
若是充电状态设置指令,则依据指令设置充电单元的充电状态。
通信协议的实现
通过与电池组中电能计量芯片通信的方法来判断电池的性质。
本系统可以与遵循HDQ16接口协议的智能电池组进行通信,除了电池组的化学性质外,还可以将电池组的容量、电压、充电电流、编号等数据一并读取,供充电器显示之用。
充电单元可以通过HDQ总线对智能电池进行读操作。
HDQ16接口协议是基于指令的协议。
一个处理器发送8位指令码给智能电池,这个8位的指令码由两部分组成,7位HDQ16指令码(位0~6)和1位读/写指令。
读/写指令指示智能电池存储接下来的16位数据到一个指定的寄存器,或者从指定的寄存器输出16位数据。
在HDQ16里,数据字节(指令)或者字(数据)的最不重要的位会优先传输。
一个块的传输包括三个不同的部分。
第一部分经由主机或者智能电池把HDQ16引脚置逻辑低状态一个tSTRH:B时间后开始发送。
接下来的部分是真正的数据传输,数据位在tDSU:B时间间隔里是有效的,负边界用来开始通信。
数据位被保持一个tDH:DV时间间隔,以便允许主机或智能电池采样数据位。
在负边界开始通信后,最后一部分通过返回给HDQ16引脚一个逻辑高状态,至少保持tSSU:B时间间隔来停止传输。
最后一个逻辑高状态必须保持一个tCYCH:B时间间隔,以便有时间让块传输完全停止。
如果发生通信错误(e.g.,tCYCB>250ms),主机就发送给智能电池一个BREAK信号,让其控制串行接口。
当HDQ16引脚在一个时间间隔,或者更长时间里为逻辑低状态时,智能
电池就会侦测BREAK。
然后,HDQ16引脚回到其正常预设高逻辑状态一个tBR时间间隔。
然后,智能电池就准备从主机那里接收指令。
HDQ16引脚是开漏的,需要一个外部的上拉电阻。
图5是用逻辑分析仪显示的一次HDQ总线上的通信波形。
图5 一次HDQ总线通信波形
结语
本文提出的充电系统从技术上很好地解决了上述问题,通过LCD显示屏可以清晰便捷地读出电源的剩余容量、已有充放电次数、充电及放电电流、电池电压、容量统计和电池特性等重要内容,并且通过设定,可以判断电源是否达到报废标准,及时提醒操作者更新电源。
为电源维护保养工作提供明确的参考数据,降低了对操作人员专业技术水平的要求,保证了列车尾部电源的安全使用。