计算机组成原理第五章 第4讲 微程序控制器
- 格式:ppt
- 大小:496.50 KB
- 文档页数:73
计算机组成原理课程设计:中央处理器-微程序控制器设计摘要本文档介绍了一个针对计算机组成原理课程的设计项目,即中央处理器的微程序控制器设计。
在设计中央处理器的微程序控制器时,我们将考虑指令的执行、数据的处理以及控制信号等关键方面。
通过这个设计项目,学生将深入了解计算机系统的核心组件并掌握微程序控制器的设计方法。
引言计算机组成原理课程旨在帮助学生理解计算机硬件系统的基本原理和组成部分。
其中,中央处理器是计算机系统中最核心的部分之一。
微程序控制器是中央处理器的关键组件,它通过微指令序列控制着处理器的各个部件。
本设计项目旨在实践计算机组成原理的理论知识和设计方法,使学生能够了解中央处理器的内部结构和工作原理,并掌握微程序控制器的设计技术。
设计目标本次设计的目标是: 1. 使用合适的指令集设计一个完整的微程序控制器。
2. 实现基本的指令执行功能,包括算术逻辑单元(ALU)操作、内存读写、条件分支和跳转等。
3. 考虑控制信号与数据通路之间的兼容性和时序关系。
4. 考虑指令的效率和性能,实现合理的指令编码和微指令生成策略。
设计内容1. 指令集设计在设计微程序控制器时,首先需要确定适合该设计的指令集。
指令集应该包括基本的算术、逻辑、移位和控制指令,以及内存读写指令。
根据实际需求,可以添加其他合适的指令。
2. 微指令设计为了实现指令集中的每个指令,需要设计相应的微指令。
微指令是一系列控制信号的序列,用于控制中央处理器中各个部件的操作。
每个微指令应该包含控制信号、操作码、寄存器的选择和数据通路的选择等信息。
3. 数据通路设计数据通路连接了CPU中各个部件,包括寄存器、ALU、控制器等。
在设计数据通路时,需要考虑指令的执行顺序、数据的传递和处理,以及控制信号的生成等。
数据通路应该支持指令的执行和数据操作。
4. 控制信号设计控制信号是微程序控制器中最关键的部分,它确定了中央处理器中各个部件的操作方式和时序。
在设计控制信号时,需要考虑不同指令的差异性和并行性,确保指令的正确执行。
“计算机组成原理”课程设计报告微程序控制器的设计一、设计思路按照要求设计指令系统,该指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、立即数寻址等五种寻址方式。
从而可以想到如下指令: (1)24位控制位分别介绍如下:位控制位分别介绍如下: XRD XRD :: 外部设备读信号,当给出了外设的地址后,输出此信号,从指定外设读数据。
定外设读数据。
EMWR EMWR:: 程序存储器EM 写信号。
写信号。
EMRD EMRD:: 程序存储器EM 读信号。
读信号。
PCOE PCOE:: 将程序计数器PC 的值送到地址总线ABUS 上。
上。
EMEN EMEN:: 将程序存储器EM 与数据总线DBUS 接通,由EMWR 和EMRD 决定是将DBUS 数据写到EM 中,还是从EM 读出数据送到DBUS DBUS。
IREN IREN:: 将程序存储器EM 读出的数据打入指令寄存器IR 和微指令计数器uPC uPC。
EINT EINT:: 中断返回时清除中断响应和中断请求标志,便于下次中断。
中断返回时清除中断响应和中断请求标志,便于下次中断。
ELP ELP:: PC 打入允许,与指令寄存器的IR3IR3、、IR2位结合,控制程序跳转。
转。
MAREN MAREN:将数据总线:将数据总线DBUS 上数据打入地址寄存器MAR MAR。
MAROE MAROE:将地址寄存器:将地址寄存器MAR 的值送到地址总线ABUS 上。
上。
OUTEN OUTEN:将数据总线:将数据总线DBUS 上数据送到输出端口寄存器OUT 里。
里。
STEN STEN:: 将数据总线DBUS 上数据存入堆栈寄存器ST 中。
中。
RRD RRD:: 读寄存器组读寄存器组R0-R3R0-R3,寄存器,寄存器R?R?的选择由指令的最低两位决定。
的选择由指令的最低两位决定。
的选择由指令的最低两位决定。