苏教版七年级数学下期中复习资料(很棒)
- 格式:doc
- 大小:184.52 KB
- 文档页数:8
2019-2020学年江苏省盐城市阜宁县七年级(下)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)2﹣1等于()A.2B.C.﹣2D.﹣2.(3分)如图所示,直线a,b被直线c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角3.(3分)下列计算正确的是()A.a3•a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a2)2=6a4 4.(3分)计算(﹣2a2)•3a的结果是()A.﹣6a2B.﹣6a3C.12a3D.6a35.(3分)以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm6.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 7.(3分)如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.8.(3分)下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.C.a2﹣4a﹣5=a(a﹣4)﹣5D.a2﹣b2=(a+b)(a﹣b)二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)等式a0=1成立的条件是.10.(3分)计算x12÷x6的结果为.11.(3分)直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是.12.(3分)多项式4xy2+12xyz的公因式是.13.(3分)最薄的金箔的厚度为0.000 000 09,这个数量用科学记数法可表示为.14.(3分)一个五边形所有内角都相等,它的每一个内角等于.15.(3分)如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC =.16.(3分)计算:(x﹣1)(x﹣2)=.三、解答题(共8小题,满分72分)17.(6分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.18.(8分)计算:(1)()0﹣3﹣2;(2)x4•x6+x5•x5.19.(16分)计算:(1)(2xy2)2•(3xy);(2)﹣3ab(2a2b+ab﹣1);(3)(3x+2y)(3x﹣2y);(4)(a+b+c)(a﹣b+c).20.(8分)因式分解:(1)16x2﹣9y2(2)(x2+y2)2﹣4x2y2.21.(8分)如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.22.(8分)观察下列等式,并回答有关问题:13+23=×22×32;13+23+33=×32×42;13+23+33+43=×42×52;…(1)若n为正整数,猜想13+23+33+…+n3=;(2)利用上题的结论比较13+23+33+…+1003与50552的大小.23.(8分)已知在△ABC中,试说明:∠A+∠B+∠C=180°.方法一:如图1,过点A作DE∥BC.则(填空)∠B=∠,∠C=∠,∵∠DAB+∠BAC+∠CAE=180°,∴∠A+∠B+∠C=180°.方法二:如图2,过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F.(补全说理过程)24.(10分)问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是.2019-2020学年江苏省盐城市阜宁县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)2﹣1等于()A.2B.C.﹣2D.﹣【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=,故选:B.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.2.(3分)如图所示,直线a,b被直线c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角【分析】根据同旁内角定义可得答案.【解答】解:∠1与∠2是同旁内角,故选:C.【点评】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.3.(3分)下列计算正确的是()A.a3•a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a2)2=6a4【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、a2+a4,无法合并,故此选项错误;C、(a3)2=a6,正确;D、(3a2)2=9a4,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)计算(﹣2a2)•3a的结果是()A.﹣6a2B.﹣6a3C.12a3D.6a3【分析】根据单项式的乘法法则计算.【解答】解:(﹣2a2)•3a,=(﹣2×3)×(a2•a),=﹣6a3.故选:B.【点评】本题考查了单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式.5.(3分)以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm【分析】根据三角形的三边关系即可作出判断.【解答】解:根据三角形的三边关系可知:A.1+2=3,不能构成三角形,不符合题意;B.3+3>4,能构成三角形,而且是等腰三角形,符合题意;C.1+1<3,不能构成三角形,不符合题意;D.2+2=4,不能构成三角形,不符合题意.故选:B.【点评】本题考查了等腰三角形的判定、三角形三边关系,解决本题的关键是掌握等腰三角形的判定.6.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.7.(3分)如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、△DEF由△ABC平移而成,故本选项正确;B、△DEF由△ABC对称而成,故本选项错误;C、△DEF由△ABC旋转而成,故本选项错误;D、△DEF由△ABC对称而成,故本选项错误.故选:A.【点评】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.(3分)下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.C.a2﹣4a﹣5=a(a﹣4)﹣5D.a2﹣b2=(a+b)(a﹣b)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式化为几个整式的积的形式,故B错误;C、没把一个多项式化为几个整式的积的形式,故C错误;D、把一个多项式化为几个整式的积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)等式a0=1成立的条件是a≠0.【分析】直接利用零指数幂的性质得出答案.【解答】解:等式a0=1成立的条件是:a≠0.故答案为:a≠0.【点评】此题主要考查了零指数幂的性质,正确把握相关定义是解题关键.10.(3分)计算x12÷x6的结果为x6.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x12÷x6=x6.故答案为:x6.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.11.(3分)直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是30°.【分析】较小的锐角为x,根据直角三角形的两锐角互余列式计算,得到答案.【解答】解:设较小的锐角为x,则较大的锐角为2x,则x+2x=90°,解得,x=30°,故答案为:30°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.12.(3分)多项式4xy2+12xyz的公因式是4xy.【分析】根据公因式的定义得出即可.【解答】解:多项式4xy2+12xyz的公因式是4xy,故答案为:4xy.【点评】本题考查了多项式,能熟记多项式的公因式的定义是解此题的关键.13.(3分)最薄的金箔的厚度为0.000 000 09,这个数量用科学记数法可表示为9×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 09=9×10﹣8.故答案是:9×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)一个五边形所有内角都相等,它的每一个内角等于108°.【分析】根据多边形的外角和是360°,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【解答】解:每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°﹣72°=108°.故答案为:108°.【点评】本题考查了多边形内角与外角.解题的关键是熟记多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.15.(3分)如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=115°.【分析】求出∠ABC+∠ACB=130°,根据角平分线定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB=×(∠ABC+∠ACB)=65°,根据三角形的内角和定理得出∠BOC=180°﹣(∠OBC+∠OCB),代入求出即可.【解答】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点评】本题考查了三角形的内角和定理和三角形的角平分线、高的定义等知识点,关键是求出∠OBC+∠OCB的度数.16.(3分)计算:(x﹣1)(x﹣2)=x2﹣3x+2.【分析】根据多项式乘以多项式的法则,分别进行计算,再合并同类项即可.【解答】解:(x﹣1)(x﹣2)=x2﹣2x﹣x+2=x2﹣3x+2;故答案为:x2﹣3x+2.【点评】本题主要考查多项式乘以多项式,熟记多项式乘以多项式的法则是解题的关键,注意不要漏项,漏字母,有同类项的合并同类项.三、解答题(共8小题,满分72分)17.(6分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.【分析】(1)根据平移的性质即可在图中画出平移后的△A′B′C′;(2)根据网格即可在图中画出△A′B′C′的高C′D′.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,高C′D′即为所求.【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.18.(8分)计算:(1)()0﹣3﹣2;(2)x4•x6+x5•x5.【分析】根据零指数幂、负整数指数幂合同底数幂运算法则计算即可.【解答】解:(1)()0﹣3﹣2=1﹣=;(2)x4•x6+x5•x5=x10+x10=2x10.【点评】本题考查了幂的运算,熟练运用公式是解题的关键.19.(16分)计算:(1)(2xy2)2•(3xy);(2)﹣3ab(2a2b+ab﹣1);(3)(3x+2y)(3x﹣2y);(4)(a+b+c)(a﹣b+c).【分析】(1)先根据积的乘方法则计算,再按单项式乘以单项式法则进行计算;(2)直接根据单项式乘多项式法则进行计算;(3)根据平方差公式计算;(4)先按平方差公式计算,再按完全平方公式计算.【解答】解:(1)(2xy2)2•(3xy)=4x2y4•3xy=12x3y5;(2)﹣3ab(2a2b+ab﹣1)=﹣6a3b2﹣3a2b2+3ab;(3)(3x+2y)(3x﹣2y)=(3x)2﹣(2y)2=9x2﹣4y2;(4)(a+b+c)(a﹣b+c)={(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2=a2+2ac+c2﹣b2.【点评】本题主要考查了积的乘方法则,单项式乘以单项式法则,单项式乘多项式法则,平方差公式,完全平方公式,关键是熟记这些公式与法则.20.(8分)因式分解:(1)16x2﹣9y2(2)(x2+y2)2﹣4x2y2.【分析】(1)将所求式子变形后利用平方差公式化简,即可得到结果;(2)利用平方差公式化简,再利用完全平方公式变形,即可得到结果.【解答】解:(1)原式=(4x)2﹣(3y)2=(4x+3y)(4x﹣3y);(2)原式=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式及平方差公式是解本题的关键.21.(8分)如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.【分析】利用两直线平行,内错角相等先求得∠ABC=∠BCD,已知∠1=∠2,可求得∠EBC=∠BCF,即可证得BE∥CF.【解答】证明:∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).【点评】此题主要考查了平行线的判定及性质,即内错角相等,两直线平行;两直线平行,内错角相等.22.(8分)观察下列等式,并回答有关问题:13+23=×22×32;13+23+33=×32×42;13+23+33+43=×42×52;…(1)若n为正整数,猜想13+23+33+…+n3=n2(n+1)2;(2)利用上题的结论比较13+23+33+…+1003与50552的大小.【分析】(1)由已知条件得出规律,利用规律填空即可;(2)有(1)中的规律即可得知问题的答案.【解答】解:(1)∵13+23=×22×32=×22×(2+1)213+23+33=×32×42=×32×(3+1)213+23+33+43=×42×52=×32×(3+1)2…因此当有n项相加时,13+23+33+…+n3=n2(n+1)2,故答案为:n2(n+1)2;(2)据规律可知13+23+33+…+1003=×1002×1012=5000×=25502500,50552=25553025,∴13+23+33+…+1003<(﹣5000)2.【点评】本题考查了有理数的乘方,解题的关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.23.(8分)已知在△ABC中,试说明:∠A+∠B+∠C=180°.方法一:如图1,过点A作DE∥BC.则(填空)∠B=∠DAB,∠C=∠EAC,∵∠DAB+∠BAC+∠CAE=180°,∴∠A+∠B+∠C=180°.方法二:如图2,过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F.(补全说理过程)【分析】解法一:利用平角的性质以及平行线的性质解决问题即可.解法二:利用平行线的性质以及平角的定义证明即可.【解答】解法一:如图1,过点A作DE∥BC.则(填空)∴∠B=∠DAB,∠C=∠EAC,∵∠DAB+∠BAC+∠CAE=180°,∴∠A+∠B+∠C=180°.故答案为DAB,EAC.解法二:如图2,过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F.∴∠A=∠BED=∠EDF,∠B=∠FDC,∠EDB=∠C,∵∠BDE+∠EDF+∠FDC=180°,∴∠A+∠B+∠C1=80°.【点评】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.24.(10分)问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是∠1=2∠A研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是∠1+∠2=2∠A 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是∠1+∠2=2(∠A+∠B)﹣360°.【分析】(1)根据折叠性质和三角形的外角定理得出结论;(2)先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠ADB和∠AEC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;(3)利用两次外角定理得出结论;(4)与(2)类似,先由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,再由两平角的和为360°得:∠1+∠2=360°﹣2∠BMN﹣2∠ANM,根据四边形的内角和得:∠BMN+∠ANM=360°﹣∠A﹣∠B,代入前式可得结论.【解答】解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.【点评】本题是折叠变换问题,思路分两类:①一类是利用外角定理得结论;②一类是利用平角定义和多边形内角和相结合得结论;字母书写要细心,角度比较复杂,是易错题.。
第二学期七年级数学期中试卷解析版一、填空题(每空2分,共28分)1 . 计算: _______43=⋅a a _______31-= 【考点】:幂的乘方【解析】:同底数的幂相乘,底数不变,指数相加,负指数幂,底数取倒指数取相反数。
【答案】: 743a a a =⋅3131-= 2 . 某病毒的直径大约0.00000051米,将0.00000051用科学计数法可表示为_____________.【考点】:科学计数法【解析】:把数表示成a (1≤a<10)与10的幂相乘的形式【答案】:0.00000051= 5.1 × 107- 3 . 若一个多边形每一个外角都是30°,则这个多边形的边数为 ______________.【考点】:多边形的外角和【解析】:多边形的外角和为360°,且多边形有多少条边就有多少个角【答案】:360°÷30°= 12 ∴ 这个多边形的边数为124 . 分解因式: ____________49,__________6322=-=-a x x 【考点】:因式分解【解析】:提公因式,常数项可以提取时也要提出来,平方差公式))((22b a b a b a -+=- 【答案】:)7)(7(49,236322-+=--=-a a a x x x x )( 5 . 已知_________,2,6===+n m n m x x x 则【考点】:幂的乘方【解析】:同底数的幂相乘,底数不变,指数相加【答案】:1226=⨯=•=+n m n m x x x6 . 若等腰三角形的两边长分别为4、5,则该三角形的周长是 _______________ .【考点】:等腰三角形的性质及三角形周长的计算【解析】:分等腰三角形的腰长为4和5两种情况讨论,分别算出其周长【答案】:①等腰三角形的三边长分别为4 、4 、5 ,则周长为13②等腰三角形的三边长分别为4 、5 、5 ,则周长为147. 若代数式942++ny y 是一个完全平方式,则常数n 的值为 _____________. 【考点】:完全平方公式【解析】:22)2(4y y =,239=,所以322⨯⨯±=y ny ,12±=n 【答案】:2223294++=++ny y ny y )( ,n = ± 2×2×3 = ±12 8. 如图,△DEF 平移得到△ABC,已知,∠D=55∘,∠ACB=75∘,则∠B= __________°.【考点】:两直线平行,同旁内角相等【解析】:因为△DEF 平移得到△ABC,所以AB//DE,AC//DF,∠ B =∠DEF,∠F=∠ACB所以∠ B =∠DEF= 180°-∠D-∠ACB【答案】:∠ B = 180°- 55°- 75°= 50°9. 如图,把长方形纸片ABCD 沿EF 对折,若∠1=52∘,则∠AEF=___.【考点】:两直线平行,内错角相等【解析】:∠AEF=∠EFC=1)1180(21∠+∠-︒ 【答案】:∠ BFE = ︒=︒-︒=∠-︒645218021118021)()( ∴ ∠ AEF = 180°- 64°= 116°第8题 第9题 第12题10 . 已知._________,813276==⋅-x x x 则【考点】:底数不同的幂转换成相同底数的幂,同底数的幂的乘法【解析】: 1,462381333332746263636-==+∴====⋅=⋅+-+--x x x x x x x x x Θ【答案】: -111 . 已知.________,102,62=+=--=+c ab c c ab b a 则 【考点】:【解析】:)2()6(2)6(2662222c c b b c c b b c c ab ba b a +---=---=---=∴=+又Θ8,3,6,1,3,0)1()3(0)12(9610)2()6(222222=+∴=∴=+-==∴=++-=++++-∴=+---c ab a b a c b c b c c b b c c b b 又)(,【答案】: 812 . 如图,四边形ABCD 中,O 是形内一点,M 、N 、P 、Q 依次是各边上一点,且.41,41,41,41DA DQ CD DP BC BN AB BM ====若四边形AMOQ 、四边形BMON 、四边形CNOP 的面积分别是14 、3、 10,则四边形DPOQ 的面积是 _____________.【考点】:三角形的面积,图形的分割【解析】:连接OA 、OB 、OC 、OD ,设x S BOM =△,∵AB BM 41=,AM BM 31=又∵求△AOM 和△BOM 时是等高的 ∴x S S BOM AOM 33==△△同理 x S S S AOM AMOQ AOQ 314-=-=△四边形△ ∴x x S S AOQ DOQ -=-==314331431△△ ∴ x S S S BOM BMON BON -=-=3△四边形△x x S S BON CON 39)3(33-=-==△△x x S S S CON CNOP COP 31)39(10+=--=-=△四边形△x x S S COP DOP +=+==3133131△△∴ 531314=++-=-=x x S S S DOP DOQ DPOQ △△△四边形 【答案】: 5二、选择题(每题3分,共计15分)13 . 下列计算正确的是 ( )A 、2243a a a =+B 、326a a a =÷C 、222b a ab =)(D 、532)(a a =【考点】:幂的乘方【解析】:相同的幂才能相加减;同底数的幂的乘(除)法,底数不变,指数相加(减);积的乘方,把每个因式乘方再相乘;幂的乘方,底数不变指数相乘。
第七章 平面图形的认识(二)一、知识点:1、“三线八角”① 如何由线找角:一看线,二看型。
同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型。
② 如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
34、图形平移的性质:图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a 、b 、c ,则b a c b a +<<-6、三角形中的主要线段:三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:n边形的内角和等于(n-2)•180°;任意多边形的外角和等于360°。
第八章幂的运算幂(power)指乘方运算的结果。
a n指将a自乘n次(n个a相乘)。
把a n看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有:am•a n=a m+n (同底数幂相乘,底数不变,指数相加)am÷a n=a m-n (同底数幂相除,底数不变,指数相减)(am)n=a mn (幂的乘方,底数不变,指数相乘)(ab)n=a n a n (积的乘方,把积的每一个因式乘方,再把所得的幂相乘)a0=1(a≠0) (任何不等于0的数的0次幂等于1)a-n=1/a n (a≠0) (任何不等于0 的数的-n次幂等于这个数的n次幂的倒数)科学记数法:把一个绝对值大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.复习知识点:1.乘方的概念:a中,a 叫做底数,求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
七年级苏教版数学复习要点考点专题一:有理数有关概念专题测试姓名:___________班级:___________一、选择题(共8小题,每题5分,共计40分)1.一袋面粉的质量标识为“1000.25±千克”,则下列面粉质量中合格的是( )A .100.30千克B .99.51千克C .99.80千克D .100.70千克【解答】解:“1000.25±千克”的意义为一袋面粉的质量在1000.2599.75-=千克与1000.25100.25+=千克之间均为合格的,故选:C .2.下列各数是无理数的是( )A .2-B .23C .0.010010001D .π【解答】解:A 、2-是有理数,不合题意;B 、23是有理数,不合题意; C 、0.010010001是有理数,不合题意;D 、π是无理数,符合题意;故选:D .3.无论x 取什么值,下列代数式中值一定是正数的是( )A .2(21)x +B .|21|x +C .221x +D .221x -【解答】解:2(21)0x +;|21|0x +;2211x +;2211x --;故选:C .4.如果||a a =,则( )A .a 是正数B .a 是负数C .a 是零D .a 是正数或零【解答】解:根据绝对值的意义,若一个数的绝对值等于它本身,则这个数是非负数,即a 是正数或零. 故选:D .5.若(3)a +的值与4互为相反数,则a 的值为( )A .7-B .72-C .5-D .12【解答】解:(3)a +的值与4互为相反数,340a ∴++=,解得:7a =-.故选:A .6.数轴上,点A 、B 分别表示1-、7,则线段AB 的中点C 表示的数是( )A .2B .3C .4D .5【解答】解:线段AB 的中点C 表示的数为:1732-+=,故选:B . 7.已知,a ,b 是不为0的有理数,且||a a =-,||b b =,||||a b >,那么用数轴上的点来表示a ,b 时,正确的是( )A .B .C .D .【解答】解:||a a =-,||b b =,0a ∴,0b ,||||a b >,∴表示数a 的点到原点的距离比b 到原点的距离大,故选:C .8.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且6a b c d +++=,则点D 表示的数为( )A .2-B .0C .3D .5【解答】解:设点D 表示的数为x ,则点C 表示的数为3x -,点B 表示的数为4x -,点A 表示的数为7x -, 由题意得,(3)(4)(7)6x x x x +-+-+-=,解得,5x =,故选:D .二、填空题(共6小题,每小题5分,共计30分)9.比较大小:(8)-+ |9|--; 23- 34-(填“>”、“ <”、或“=”符号). 【解答】解:①(8)8-+=-,|9|9-=-,89->-,(8)|9|∴-+>-; ②228||3312-==,339||4412-==,891212<,2334∴->-.故答案为:>;>. 10.绝对值不等于3的非负整数有 .【解答】解:根据绝对值的意义,绝对值不等于3的非负整数有0,1,2,以及大于4正整数. 故答案为:0,1,2,以及大于4正整数.11.如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A 点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A 到达点A '的位置,则点A '表示的数是 .【解答】解:半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,OA ∴'之间的距离为圆的周长2π=,A '点在2的左边,A ∴'点对应的数是22π-.故答案是:22π-.12.若||4a -=,则a = ;若x x -=,则x = .【解答】解:因为||4a -=,则4a =±;因为x x -=,则0x =;故答案为:4±;0.13.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简||||||b c c a b -+--的结果是 .【解答】解:根据题意得:0a b c <<<,0b c ∴-<,0c a ->,则原式2c b c a b c a =-+-+=-. 故答案为:2c a -.14.在数轴上,点A 表示的数是4x +,点B 表示的数是22x -,且A ,B 两点的距离为8,则x = . 【解答】解:由题意得:|4(22)|8x x +--=|23|8x ∴+=238x ∴+=-或238x +=103x ∴=-或2x =故答案为:103-或2. 三、解答题(共3小题,每小题10分,共计30分)15.把下列各数填入相应的括号内.0.1515515551⋯,0,20||3--,0.4,2π-,24-, 5.6-. 正数集合:{ };无理数集合:{ };负分数集合:{ }.【解答】解:正数集合:{0.1515515551⋯,0.4,;无理数集合:{0.1515515551⋯,}2π-; 负分数集合:20{||3--, 5.6}-. 故答案为:0.1515515551⋯,0.4,0.1515515551⋯,2π-;20||3--, 5.6-. 16.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果乙球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:):10m +,2-,5+,12+,6-,9-,4+,14-.(假定开始计时时,守门员正好在球门线上) (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10m (不包括10)m ,则对方球员挑射极可能造成破门.问:在这一时间段内,对方球员有几次挑射破门的机会?简述理由.【解答】解:(1)根据题意得:102512694140-++--+-=,则守门员最后能回到球门线上;(2)10251225-++=,则守门员离开球门线的最远距离达25米;(3)根据题意得:10,8,13,25,19,10,14,0,则对方球员有4次挑射破门的机会.17.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为1-,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为2-,点N所表示的数为4.①在点M和点N中间,数所表示的点是【M,N】的好点;②在数轴上,数和数所表示的点都是【N,M】的好点.【解答】解:①设所求数为x,由题意得--=-,解得2(2)2(4)x xx=;故答案为:2;②设所求的数是y,由题意得,2(2)4--=-,解得:0y=或8+=-或2(2)4y yy y-,故数0和数8-所表示的点都是【N,M】的好点.故答案为:0,8-.。
Unit 6 复习资料Welcome to the unit.1. Hurry up,Eddie.(快点,埃迪。
)Hurry up【动词】快点,赶快后面加副词或介词短语,但不接运动方向的词。
【名词】in a hurry 匆忙的2.I’m tired .This bag is too heavy .(我太累了。
这个包太重了。
)be tired3.You complian too much .The bag isn’t that heavy.(你真会抱怨,这个包没那么重。
)That 是副词,相当于so ,那样,那么。
The baby cannot walk that far.这个宝宝还走不了那么远。
向某人抱怨某事complain to sb about sth4.What outdoor activity would you like try?(你想尝试什么样的户外活动?)5.I want to go riding,(我想去骑马。
)6.L love gorses and I really want to ride one.(我喜欢骑马而且我真的想骑一次马。
)7.What do you like about camping ?(你喜欢野营什么?)8.I like being outside ,near beautiful lakes and hills.(我喜欢在户外,近距离接触美丽的湖泊和丘陵)Reading9.One sunny day,Alice sat by a river with her sister .(一个晴朗的日子里,爱丽丝和她的妹妹坐在河边)sit by a river with sb.和某人坐在河边10.She looked up and saw a white rabbit in a coat passing by .(他抬起头看到一个穿着白色外套的兔子经过)look up (向上看,查阅查找)pass 【动词】经过后加名词或代词作宾语通过,度过传,递pass sb sth =pass sth to sb .see sb. doing (sth.) 看见某人正在做…pass by经过11.Then she heard a sound .(随后他听到一个声音。
苏教版数学七年级下册期中复习阶梯训练 二元一次方程组(优生加练)一、单选题1.若关于x 、y 的方程组 的解为整数,则满足条件的所有a 的值的和为( ){x +y =2ax +2y =8A .6B .9C .12D .162.自行车的轮胎安装在前轮上行驶3000千米后报废,安装在后轮上,只能行驶2000千米,为了行驶尽可能多的路程,采取在自行车行驶一定路程后,用前后轮调换使用的方法,那么安装在自行车上的这对轮胎最多可行驶多少千米?( )A .2300千米B .2400千米C .2500千米D .2600千米3.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.量的数据如图,则桌子的高度等于( )A .B .C .D .80cm 75cm 70cm 65cm4.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是面积为 的小正方形,则每个小长方形的面积为( ) 9cm 2A .135cm 2B .108cm 2C .68cm 2D .60cm 25.我国古代数学家张丘建在《张丘建算经)里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是( )A .87B .84C .81D .786.已知 和 的方程组 的解是,则 和 的方程组 x y {a 1x +b 1y =c 1a 2x +b 2y =c 2{x =3y =4x y的解是 {3a 1x +4b 1y =5c 13a 2x +4b 2y =5c 2()A .B .C .D .{x =3y =4{x =4y =3{x =1y =1{x =5y =57.如图,在一个大长方形中放入六个形状、大小相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是( )A .16B .44C .96D .1408.小江去商店购买签字笔和笔记本(签字笔的单价相同,笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱会不足25元;若购买19支签字笔和13本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱会不足95元B .他身上的钱会剩下95元C .他身上的钱会不足105元D .他身上的钱会剩下105元9.利用两块相同的长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .84cmB .85cmC .86cmD .87cm10.对于代数式ax 2﹣2bx﹣c ,当x 取﹣1时,代数式的值为2,当x 取0时,代数式的值为1,当x 取3时,代数式的值为2,则当x 取2时,代数式的值是( )A .1B .3C .4D .5二、填空题11.已知关于 , 的二元一次方程组 的解为 那么关于 、 的二元一x y {ax +by =5bx +ay =6{x =4y =6m n 次方程组 的解为 .{a(m +n)+b(m−n)=5b(m +n)+a(m−n)=612.若关于,的二元一次方程组与有相同的解,则这个x y {ax +by =m cx +dy =n {(a +1)x +(b +2)y =m +2(c +3)x +(d +4)y =n +5解是 .13.若方程组 的解是 ,则方程组 的解是,x = {a 1x +y =c 1a 2x +y =c 2{x =2y =3{a 1x +y =a 1−c 1a 2x +y =a 2−c 2,y = .14.为迎接建国70周年,某商店购进,,三种纪念品共若干件,且,,三种纪念品的数量A B C A B C 之比为8:7:9,一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且,,三种纪念品的比例为9:10:10,又一段时间后,根据销售情况,再次补充三种纪念品,A B C 库存总数景比第二次多170 件,且,,三种纪念品的比例为7: 6: 6,已知第一次三种纪念A B C 品总数盘不超过1000件,则第一次购进种纪念品 件.A 15.春节即将来临时,某商人抓住商机购进甲、乙、丙三种糖果,已知销售甲糖果的利润率为10%,乙糖果的利润率为20%,丙糖果的利润率为30%,当售出的甲、乙、丙糖果重量之比为 时,商人得到的总利润率为22%;当售出的甲、乙、丙糖果重量之比为 时,商1: 3: 13: 2: 1人得到的总利率为20%.那么当售出的甲、乙、丙糖果重量之比为 时,这个商人得到的总5: 1: 1利润率为 .16.课外活动中,80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,设5人一组的有x 组,7人一组的有y 组,8人一组的有z 组,有下列结论:① ;② ;③ ;④5人一组的最多有5组.{x +y +z =125x +7y +8z =80x =12z +2y =−32z +10其中正确的有 .(把正确结论的序号都填上)三、解答题17.某工厂的一条流水线匀速生产出产品,在有一些产品积压的情况下,经过试验,若安排9人包装,则5小时可以包装完所有产品;若安排6人包装,则需要10小时才能包装完所有产品.假设每个人的包装速度一样,现要在2小时内完成产品包装的任务,问至少需要安排多少人?18.甲、乙两人共同解方程组 .解题时由于甲看错了方程①中的a ,得到方程组{ax +5y =15①4x−by =−2②的解为 ;乙看错了方程②中的b ,得到方程组的 ,试计算a 2019+( b)2020的值. {x =−3y =−1{x =5y =4−11019.已知关于x 、y 的方程组 ,甲由于看错了方程①中的a ,得到方程组的解为{ax +y =5①4x−by =7② ;乙由于看错了方程②中的b ,得到方程组的解为.求原方程组的正确解. {x =3y =5{x =−1y =720.李老师让全班同学们解关于x 、y 的方程组 (其中a 和b 代表确定的数),甲、{2x +ay =1①bx−y =7②乙两人解错了,甲看错了方程①中的a ,解得 ,乙看错了②中的b ,解得 ,请{x =1y =−4{x =−1y =1你求出这个方程组的符合题意解.21.4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名 岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.22.解关于x 、y 的方程组 时,甲符合题意地解得方程组的解为 ,乙因为把{ax +by =93x−cy =−2{x =2y =4c 抄错了,在计算无误的情况下解得方程组的解为 ,求a 、b 、c 的值. {x =4y =−1四、综合题23.已知关于x ,y 的方程组的解是 {a 1x +b 1y =c 1a 2x +b 2y =c 2{x =4y =−6(1)若把x 换成m ,y 换成n ,得到的关于m ,n 的方程组为 ,则这个方程组{a 1m +b 1n =c 1a 2m +b 2n =c 2的解是 .{m =_______n =_______(2)若把x 换成2x ,y 换成3y ,得到方程组,则 ,所以这个{2a 1x +3b 1y =c 12a 2x +3b 2y =c 2{2x =_______3y =_______方程组的解是 .(3)根据以上的方法解方程组 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 224.规定:形如关于x ,y 的方程x+ky=b 与kx+y=b 的两个方程互为共轭二元一次方程,其中k≠1.由这两个方程组成的方程组 叫做共轭方程组.{x +ky =bkx +y =b (1)方程3x+y=5的共轭二元一次方程是 ;(2)若关于x ,y 的方程组 为共轭方程组,则a= ,b= .{x +(1−a)y =b +2(2a−2)x +y =4−b (3)若方程x+ky=b 中x ,y 的值满足下列表格: x-10y 02则这个方程的共轭二元一次方程是 .25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB=1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN= .(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM=BN ,MN= AM ,求m 和n 值.43答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】A5.【答案】A6.【答案】D7.【答案】B8.【答案】B9.【答案】B10.【答案】A11.【答案】{m =5n =−112.【答案】{x =1y =1213.【答案】-1;-314.【答案】32015.【答案】18%16.【答案】①②③④17.【答案】解:设原有产品m ,每个人的包装速度为x ,每小时流水线生产的产品为y. 则 ,解得: {5×9x =m +5y 10×6x =m +10y {y =3x m =30x若需要n 人刚好完成,则2nx=m+y ,n =m +2y 2x =30x +6x 2x =18∴至少需要18人18.【答案】解:将 代入方程组中的4x−by =−2得:−12+b =−2,即b =10;{x =−3y =−1将代入方程组中的ax +5y =15得:5a +20=15,即a =−1;{x =5y =4当a =−1,b =10时,a 2019+( b)2020=-1+1=0.−11019.【答案】解:由题意可得:把代入②得: {x =3y =512−5b =7解得: ,b =1把 代入①得: {x =−1y =7−a +7=5解得: a =2∴原方程组为,{2x +y =54x−y =7解这个方程组得:.{x =2y =120.【答案】解:由题意可知,把代入方程②中,得b+4=7,解得b=3;{x =1y =−4把 代入方程①中,得-2+a=1,解得a=3;{x =−1y =1把 代入方程组,可得 ,{a =3b =3{2x +3y =113x−y =72解得: ,{x =2y =−1∴原方程组的解应为.{x =2y =−121.【答案】解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据题意得:{x +y =163(x +2)+(y +2)=34+2解得:.{x =6y =10答:今年妹妹6岁,哥哥1022.【答案】解:把 代入方程 ,得:x =2,y =43x−cy =−2 ,6−4c =−2解得: .c =2把 分别代入方程 ,得:{x =2y =4,,,{x =4y =−1ax +by =9,{2a+4b =94a−b =9解得.∴{a =52b =1所以, .a =52,b =1,c =2故答案为: .a =52,b =1,c =223.【答案】(1){m =4n =−6(2); {2x =43y =−6{x =2y =−2(3)解:将方程组 ,变形为 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 2{25a 1x−15b 1y =c 125a 2x−25b 2y =c 2∴ ,解得 ,{25x =4−15y =−6{x =10y =30∴方程组的解为 {2a 1x−b 1y =5c 12a 2x−b 2y =5c 2{x =10y =3024.【答案】(1)x+3y=5(2)1;1(3) x+y=-1−1225.【答案】(1)n﹣m(2)解:分三种情况讨论:①M 是A 、N的中点,∴n+(-3)=2m ,∴n=2m+3;②A 是M 、N 点中点时,m+n=-3×2,∴n=﹣6﹣m;③N 是M 、A 的中点时,-3+m=2n ,∴n ;=−3+m2(3)解:∵AM=BN ,∴|m+3|=|n﹣1|.∵MN AM ,=43∴n﹣m |m+3|,=43∴ 或 或 或,{m +3=n−13n−3m =4m +12{m +3=n−13n−3m =−4m−12{m +3=−n−13n−3m =4m +12{m +3=−n−13n−3m =−4m−12∴ 或 或 或 .{m =0n =4{m =−6n =−2{m =−95n =−15{m =3n =−5∵n >m ,∴ 或 或 .{m =0n =4{m =−6n =−2{m =−95n =−15。
七年级苏教版数学复习要点考点专题二:整式化简求值及应用知识点一 整式化简求值1.求代数式的值的一般方法(1)直接代入法:直接将字母的值代入代数式进行计算.(2)间接代入法:先计算出对应的字母的值,再把求得的值代入代数式进行计算.(3)整体代入法:先求出含一个字母或多个字母的整体值,然后将代数式变形为含有此整体的代数式并进行计算.注意:化简求值的扩充方法 ①设k 法遇到连等式、连续比例式的题,解决这类题型的最佳方法是设k 法. ②赋值法在解题过程中,对于难以化简求值问题,我们也可以通过给未知数赋一些特殊值来解决问题. 例1(玄武区期中)已知223A x mx x =+-,21B x mx =-++,其中m 为常数,若2A B +的值与x 的取值无关,则m 的值为( ) A .0B .5C .15D .15-【解答】解:已知223A x mx x =+-,21B x mx =-++,222232(1)A B x mx x x mx +=+-+-++, 2223222x mx x x mx =+--++,52mx x =-+因为2A B +的值与x 的取值无关,所以510m -=解得15m =.故选:C . 例2(溧水区期中)已知代数式2x y +的值是2,则代数式124x y --的值是( ) A .1- B .3- C .5- D .8-【解答】解:根据题意得:22x y +=, 方程两边同时乘以2-得:244x y --=-,方程两边同时加上1得:124143x y --=-=-,故选:B .知识点二 整式运算应用一、常见找规律基本类型 1.等差型规律相邻两项之差(后减前)等于定值的数列.例如:4,10,16,22,28…,增幅是6,第一位数是4,所以,第n 位数为:()41662n n +-⨯=-. 2.等比型规律相邻两项之比(后比前)等于定值的数列.例如:3,6,12,24,48…,比值是2,第一位数是3,所以,第n 位数为:132n -⨯. 3.符号型规律符号型数列的特点是,正数与负数交替出现;解决方法:先不考虑符号,找到数列的规律,并用含n 的式子表示,然后再乘以()1n-或()11n +-.补充:①平方型规律;②求和型规律;③周期型规律二、定义新运算:是用某些特殊的符号,表示特定的意义,从而解答某些特殊算式的运算. 在定义新运算中的※,,∆……与+、-、⨯、÷是有严格区别的.解答定义新运算问题,必须先理解新定义的含义,遵循新定义的关系式把问题转化为一般的 +、-、⨯、÷运算问题.注意:①新的运算不一定符合运算规律,特别注意运算顺序.②每个新定义的运算符号只能在本题中使用.三、程序框图运算:程序框图运算是定义新运算中的一种特殊类型,解题的关键是要准确理解新程序的数学意义,进而转化为数学问题. 注意:程序框图中的运算是由前到后....依次进行的,不存在先乘除后加减的问题.例1(建邺区期中)一组有规律排列的数:1、3、7、______、31⋯⋯,在下列四个数中,填在横线上最合理的是( )A .9B .11C .13D .15 【解答】解:3121=⨯+,7321=⨯+,15721=⨯+,311521=⨯+, ∴后一个数是它前一个数的2倍加上1,故选:D . 例2(鼓楼区期末)小红在计算2320201111()()()4444+++⋯+时,拿出1张等边三角形纸片按如图所示方式进行操作.①如图1,把1个等边三角形等分成4个完全相同的等边三角形,完成第1次操作;②如图2,再把①中最上面的三角形等分成4个完全相同的等边三角形,完成第2次操作;③如图3,再把②中最上面的三角形等分成4个完全相同的等边三角形,⋯依次重复上述操作.可得2320201111()()()4444+++⋯+的值最接近的数是( )A .13B .12C .23D .1【解答】解:设2320201111()()()4444S =+++⋯+,则232019111141()()()4444S =++++⋯+, 2020141()4S S -=-,2020131()4S =-,202011()1433S -=≈,故选:A . 例3(建邺区期中)有一列数1a ,2a ,3a ,4a ,5a ,n a ⋯,从第二个数开始,等于1与它前面的那个数的差的倒数,若13a =,则2019a 为( )A.2019B.23C.12-D.3【解答】解:依题意得:13a=,211132a==--,3121312a==+,413213a==-;∴周期为3;20193673÷=所以2019323a a==.故选:B.例4(溧水区期中)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是4个边长为bm的小正方形组成的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果40a m=,20b m=,求整个长方形运动场的面积.【解答】解:(1)2[()()]2()4()a b a b a b a b a m++-=++-=(2)2[()()]2()8()a ab a a b a a b a a b a m++++-=++++-=(3)解:(22)(22)4()()S a b a b a b a b=-⨯+=+-m,当40a=,20b=时原式4(4020)(4020)4800=+-=m,答:整个长方形运动场的面积为4800 m.【提优训练】一、单选题(共6小题)1.(苍溪县期末)已知一个多项式与239x x+的和等于2341x x+-,则此多项式是() A.2651x x---B.51x--C.2651x x-++D.51x-+【解答】解:由题意得:22341(39)x x x x+--+,2234139x x x x=+---,51x=--.故选:B.2.(常熟市期中)已知代数式2245x x-+的值为9,则272x x-+的值为()A.5B.6C.7D.8【解答】解:根据题意得:22459x x-+=,方程两边同时减去5得:2244x x-=,方程两边同时乘以12-得:222x x-+=-,方程两边同时加上7得:272725x x-+=-=,故选:A.3.(江阴市期中)已知2a b-=,2d b-=-,则2()a d-的值为()A.2B.4C.9D.16【解答】解:2a b-=,2d b-=-,()()4a b d b∴---=,则4a b d b--+=,4a d-=,2()16a d∴-=.故选:D.4.(姑苏区期末)如果a 和14b -互为相反数,那么多项式2(210)7(23)b a a b -++--的值是( ) A .4- B .2- C .2 D .4【解答】解:由题意可知:140a b +-=,41a b ∴-=-,∴原式242071421b a a b =-++-- 3121a b =--3(4)1a b =--31=--4=-,故选:A .5.(路北区三模)完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6()m n -B .3()m n +C .4nD .4m 【解答】解:设小矩形的长为a ,宽为()b a b >,则3a b n +=,阴影部分的周长为22()2(3)222264224n m a m b n m a m b m n n m +-+-=+-+-=+-=,故选:D . 6.(宿豫区期中)下列图形都是由同样大小〇的按一定的规律组成的,其中第1个图形一共有4个〇,第2个图形一共有9个〇,第3个图形一共有15个〇,⋯则第70个图形中〇的个数为( )A .280B .349C .2485D .2695【解答】解:第①个图形中基本图形的个数1(11)4312⨯+=⨯+, 第②个图形中基本图形的个数2(21)8322⨯+=⨯+, 第③个图形中基本图形的个数3(31)11332⨯+=⨯+, ⋯∴第n 个图形中基本图形的个数为(1)32n n n ++当70n =时,707137026952⨯⨯+=,故选:D .二、填空题(共5小题)7.(海州区期中)如果23x x -的值是1-,则代数式2396x x -+-的值是 . 【解答】解:根据题意得:231x x -=-, 方程两边同时乘以3-得:393x x -+=,方程两边同时减去6得:396363x x -+-=-=-,故答案为:3-. 8.(邗江区一模)若1m n -=-,则2()22m n m n --+= .【解答】解:1m n -=-,2()22m n m n ∴--+2()2()m n m n =---2(1)2(1)=--⨯-12=+3=.9.(无锡期末)若代数式22x x -的值为5,则代数式2363x x --的值为 . 【解答】解:2363x x --23(2)3x x =--225x x -=,∴原式353=⨯-12=.故答案为:1210.(凤山县期末)如图所示的运算程序中,若开始输入的x 值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,⋯,则第2019次输出的结果为 .【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1⋯,发现从8开始循环.则201942015-=,201545033÷=⋯,故第2019次输出的结果是2.故答案为:2 11.(秦淮区期中)如图所示的数表是由从1开始的连续自然数组成的.观察数表特征,第n 行最中间的数可以表示为 .(用含n 的代数式表示)【解答】解:由图中的数字可知,第n 行第一个数字是2(1)1n -+,最后一个数字是2n ,则第n 行最中间的数可以表示为:222(1)112n n n n -++=-+,故答案为:21n n -+.三、解答题(共2小题)12.(海州区期中)化简或求值 (1)化简:3(2)2(3)a b a b --+(2)先化简,再求值:22225(3)4(3)a b ab ab a b --+;其中1a =,12b =-.【解答】解:(1)原式(63)(26)632649a b a b a b a b a b =--+=---=-;(2)原式22222215541239a b ab ab a b a b ab =---=-,当1a =,12b =-时,原式3915244=--=-.13.(玄武区期中)如图是小江家的住房户型结构图.根据结构图提供的信息,解答下列问题: (1)用含a 、b 的代数式表示小江家的住房总面积S ;(2)小江家准备给房间重新铺设地砖.若卧室所用的地砖价格为每平方米50元;卫生间、厨房和客厅所用的地砖价格为每平方米40元.请用含a 、b 的代数式表示铺设地砖的总费用W ; (3)在(2)的条件下,当6a =,4b =时,求W 的值.【解答】解:(1)小江家的住房总面积:83S a b =-;(2)3(8)508(3)40W b a =-⨯+-⨯1200150320960b a =-+-320150240a b =-+; (3)当6a =,4b =时32061504240W =⨯-⨯+1920600240=-+1560=.。
七年级数学期中复习《选择题》专练一.选择题(共30小题)1.过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.42.小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm3.下列从左到右的变形,属于因式分解的是()A.(a+4)(a﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1C.8m2n3=2m2•4n2D.m2﹣2m+1=(m﹣1)24.如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个5.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠B=∠D D.∠1=∠26.如图,AB∥CD.一副三角尺按如图所示放置,∠AEG=20度,则∠HFD为()A.25°B.35°C.55°D.45°7.如图,直线AB∥CD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为()A.26°B.32°C.36°D.42°8.下列说法,其中错误的有()①相等的两个角是对顶角②若∠1+∠2=180°,则∠1与∠2互为邻补角③同位角相等④垂线段最短⑤同一平面内,两条直线的位置关系有:相交、平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个9.以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠210.要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.11.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A∠B∠C;④∠A=∠B=2∠C;⑤∠A=∠B∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个13.如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为()A.42°B.40°C.30°D.24°14.若2x=3,4y=5,则2x+2y的值为()A.15 B.﹣2 C.D.15.如果a=(﹣2019)0,b=(﹣0.1)﹣1,c=()﹣2,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a16.人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A.0.77×10﹣6B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣717.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.418.下列运算正确的是()A.3x3•5x2=15x6 B.(﹣3x)2•4x3=﹣12x5C.4y•(﹣2xy2)=﹣8xy3 D.(﹣2a)3•(﹣3a)2=﹣54a519.长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2 20.计算(﹣4m2)•(3m+2)的结果是()A.﹣12m3+8m2B.12m3﹣8m2C.﹣12m3﹣8m2D.12m3+8m2 21.等式(x﹣2)0=1成立的条件是()A.x≠﹣2 B.x≠2 C.x≤﹣2 D.x≥﹣222.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2 B.3 C.4 D.523.如图,用代数式表示阴影部分面积为()A.ac+(b﹣c)c B.(a﹣c)(b﹣c)C.ac+bc D.a+b+2c(a﹣c)+(b﹣c)24.若4a2+12ab+m是关于a,b的完全平方式,则m等于()A.3b2B.9b2C.36b2D.9b425.下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)26.杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是()A.36 B.45 C.55 D.6627.数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a﹣b)=a2﹣ab D.(a﹣b)2=a2﹣b228.从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b229.已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9 B.18 C.20 D.2430.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.3 B.2 C.1 D.0答案与解析一.选择题(共30小题)1.(2019秋•江岸区期中)过五边形的一个顶点的对角线共有()条.A.1 B.2 C.3 D.4【分析】直接利用多边形的性质画出对角线,即可求解.【解析】如图所示:过五边形的一个顶点可作2条对角线.故选:B.2.(2019春•铜山区期中)小晶有两根长度为5cm、8cm的木条,她想钉一个三角形的木框,现在有长度分别为2cm、3cm、8cm、15cm的木条供她选择,那她第三根应选择()A.2cm B.3cm C.8cm D.15cm【分析】设第三根木条的长度为xcm,再由三角形的三边关系即可得出结论.【解析】设第三根木条的长度为xcm,则8﹣5<x<8+5,即3<x<13.故选:C.3.(2019春•高邮市期中)下列从左到右的变形,属于因式分解的是()A.(a+4)(a﹣4)=a2﹣16 B.a2﹣2a﹣1=a(a﹣2)﹣1C.8m2n3=2m2•4n2D.m2﹣2m+1=(m﹣1)2【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【解析】A、是整式乘法,不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.4.(2019春•徐州期中)如图,下列条件中:(1)∠B+∠BAD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5;能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定定理,(3)(4)能判定AB∥CD.【解析】(1)∠B+∠BCD=180°,能判定AD∥BC,则不能判定AB∥CD;(2)∠1=∠2,能判定AD∥BC,所不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(3),(4).故选:B.5.(2019春•秦淮区校级期中)如图,点E在BC的延长线上,下列条件中能判断AB∥CD 的是()A.∠3=∠4 B.∠D=∠DCE C.∠B=∠D D.∠1=∠2【分析】根据平行线的判定定理对四个选项进行逐一分析即可.【解析】A、由∠3=∠4可以判定AD∥BC,不能判断AB∥CD,故本选项错误;B、由∠D=∠DCE可以判定AD∥BC,不能判断AB∥CD,故本选项错误;C、由∠B=∠D不能判断AB∥CD,故本选项错误;D、由∠1=∠2可以判定AB∥CD,依据是“内错角相等,两直线平行”,故本选项正确;故选:D.6.(2019春•如皋市期中)如图,AB∥CD.一副三角尺按如图所示放置,∠AEG=20度,则∠HFD为()A.25°B.35°C.55°D.45°【分析】过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.【解析】过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°﹣∠GFC﹣∠GFP﹣∠EFH=35°.故选:B.7.(2019春•相城区期中)如图,直线AB∥CD,点E在CD上,点O、点F在AB上,∠EOF的角平分线OG交CD于点G,过点F作FH⊥OE于点H,已知∠OGD=148°,则∠OFH的度数为()A.26°B.32°C.36°D.42°【分析】依据平行线的性质即可得到∠GOB的度数,再根据角平分线即可得出∠HOF的度数,依据三角形内角和定理即可得到∠OFH的度数.【解析】∵AB∥CD,∠OGD=148°,∴∠GOF=32°,又∵GO平分∠EOF,∴∠HOF=2∠GOB=64°,∵FH⊥OE于点H,∴∠OFH=90°﹣64°=26°,故选:A.8.(2019春•海安县期中)下列说法,其中错误的有()①相等的两个角是对顶角②若∠1+∠2=180°,则∠1与∠2互为邻补角③同位角相等④垂线段最短⑤同一平面内,两条直线的位置关系有:相交、平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】根据对顶角,同位角,邻补角定义,垂线的性质,平行公理逐个判断即可.【解析】相等的两个角不一定是对顶角,如图:∠1=∠2,但不是对顶角;故①错误;若∠1+∠2=180°,则∠1与∠2不一定是邻补角,如图:∠A+∠B=180°,但∠A和∠B不是邻补角,故②错误;同位角不一定相等,如图:∠1和∠2是同位角,但是∠1和∠2不相等,故③错误;垂线段最短,故④正确;同一平面内,两条直线的位置关系有:相交和平行,故⑤错误;过直线外一点,有且只有一条直线与这条直线平行,故⑥正确;即错误的有4个,故选:D.9.(2019春•吴江区期中)以下四种沿AB折叠的方法中,由相应条件不一定能判定纸带两条边线a,b互相平行的是()A.展开后测得∠1=∠2B.展开后测得∠1=∠2且∠3=∠4C.测得∠1=∠2D.测得∠1=∠2【分析】根据平行线的判定定理,进行分析,即可解答.【解析】A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确.故选:C.10.(2019春•大丰区期中)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解析】过点C作AB边的垂线,正确的是C.故选:C.11.(2019春•徐州期中)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF =2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【解析】∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC∠EAC,∠DCA∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°(∠EAC+∠ACF)=180°(∠ABC+∠ACB+∠ABC+∠BAC)=180°(180°+∠ABC)=90°∠ABC,∴④正确;∠BDC=∠DCF﹣∠DBF∠ACF∠ABC∠BAC,∴⑤正确,故选:D.12.(2019春•常州期中)下列条件:①∠A﹣∠B=∠C;②∠A:∠B:∠C=2:3:5;③∠A∠B∠C;④∠A=∠B=2∠C;⑤∠A=∠B∠C,其中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【分析】根据三角形内角和定理、直角三角形的定义解答.【解析】①∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∴∠A=90°,即△ABC为直角三角形;②设∠A、∠B、∠C分别为2x、3x、5x,由三角形内角和定理得,2x+3x+5x=180°,解得,x=18°,∠C=5x=90°,即△ABC为直角三角形;③∠A∠B∠C,则∠C=3∠A,∠B=2∠A,由三角形内角和定理得,∠A+2∠A+3∠A=180°,解得,∠A=30°,∴∠C=3∠A=90°,即△ABC为直角三角形;④∠A=∠B=2∠C,由三角形内角和定理得,2∠C+2∠C+∠C=180°,解得,∠C=36°,∠A=∠B=2∠C=72°,即△ABC不是直角三角形;⑤∠A=∠B∠C,由三角形内角和定理得,∠C∠C+∠C=180°,解得,∠C=90°,即△ABC是直角三角形;故选:C.13.(2019春•江阴市期中)如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为()A.42°B.40°C.30°D.24°【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CB′D的度数,再由三角形外角的性质即可得出结论.【解析】∵在Rt△ACB中,∠ACB=90°,∠A=24°,∴∠B=90°﹣24°=66°,∵△CDB′由△CDB折叠而成,∴∠CB′D=∠B=66°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=66°﹣24°=42°.故选:A.14.(2019秋•崇川区校级期中)若2x=3,4y=5,则2x+2y的值为()A.15 B.﹣2 C.D.【分析】根据幂的乘方与同底数幂的乘法法则解答即可.【解析】∵2x=3,4y=22y=5,∴2x+2y=2x•22y=3×5=15.故选:A.15.(2019春•天宁区校级期中)如果a=(﹣2019)0,b=(﹣0.1)﹣1,c=()﹣2,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【分析】将三个数化简后即可求出答案.【解析】a=1,b=()﹣1=﹣10,c=()2,∴a>c>b,故选:C.16.(2019春•玄武区期中)人体中红细胞的直径约为0.0000077m,用科学记数法表示该数据为()A.0.77×10﹣6B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】0.0000077=7.7×10﹣6.故选:C.17.(2019春•秦淮区期中)如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解析】当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∴x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选:C.18.(2019春•淮安期中)下列运算正确的是()A.3x3•5x2=15x6 B.(﹣3x)2•4x3=﹣12x5C.4y•(﹣2xy2)=﹣8xy3 D.(﹣2a)3•(﹣3a)2=﹣54a5【分析】根据单项式乘单项式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解析】A、结果是15x5,故本选项错误;B、结果是36x5,故本选项错误;C、结果是﹣8xy3 ,故本选项正确;D、结果是﹣72a5,故本选项错误;故选:C.19.(2019春•东台市期中)长方形的长是1.6×103cm,宽是5×102cm,则它的面积是()A.8×104cm2B.8×106cm2C.8×105cm2D.8×107cm2【分析】根据长方形的长是1.6×103cm,宽是5×102cm,根据面积=长×宽列式,然后利用单项式的乘法法则和同底数幂的乘法的性质计算.【解析】(1.6×103)×(5×102)=(1.6×5)×(103×102)=8×105(cm2).故选:C.20.(2019秋•崇川区校级期中)计算(﹣4m2)•(3m+2)的结果是()A.﹣12m3+8m2B.12m3﹣8m2C.﹣12m3﹣8m2D.12m3+8m2【分析】直接利用单项式乘以多项式运算法则求出即可.【解析】(﹣4m2)•(3m+2)=﹣12m3﹣8m2.故选:C.21.(2020春•亭湖区校级期中)等式(x﹣2)0=1成立的条件是()A.x≠﹣2 B.x≠2 C.x≤﹣2 D.x≥﹣2【分析】根据零指数幂的概念列出不等式,解不等式即可.【解析】由题意得,x﹣2≠0,解得,x≠2,故选:B.22.(2019春•沭阳县期中)如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(2a+b)的大长方形,则需要C类卡片张数为()A.2 B.3 C.4 D.5【分析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【解析】大长方形面积=(a+2b)•(2a+b)=2a2+5ab+2b2所以大长方形是由2个A类正方形、5个C类长方形、2个B类正方形组成,故选:D.23.(2018秋•崇川区校级期中)如图,用代数式表示阴影部分面积为()A.ac+(b﹣c)c B.(a﹣c)(b﹣c)C.ac+bc D.a+b+2c(a﹣c)+(b﹣c)【分析】先表示出阴影部分的面积,再根据整式的运算法则进行化简,最后判断即可.【解析】阴影部分的面积是ac+bc﹣c2,A、ac+(b﹣c)c=ac+bc﹣c2,故本选项符合题意;B、(a﹣c)(b﹣c)是空白部分的面积,不是阴影部分的面积,故本选项不符合题意;C、ac+bc不是阴影部分的面积,故班选项不符合题意;D、a+b+2c(a﹣c)+b﹣c=a+2b﹣2c2﹣c不能阴影部分的面积,故本选项不符合题意;故选:A.24.(2019秋•崇川区校级期中)若4a2+12ab+m是关于a,b的完全平方式,则m等于()A.3b2B.9b2C.36b2D.9b4【分析】利用完全平方公式的结构特征判断即可求出m的值.【解析】∵4a2+12ab+m是关于a,b的完全平方式,∴m=9b2,故选:B.25.(2019秋•海安市期中)下列乘法中,能应用平方差公式的是()A.(﹣x+y)(x﹣y)B.(a2+x)(a﹣x)C.(a2﹣1)(﹣a2﹣1)D.(﹣a2﹣b2)(a2+b2)【分析】利用平方差公式的结构特征判断即可.【解析】能用平方差公式计算的是(a2﹣1)(﹣a2﹣1)=﹣(a2﹣1)(a2+1),相同项是a2,相反项是1.故选:C.26.(2019秋•江都区期中)杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想(a+b)10展开式的第三项的系数是()A.36 B.45 C.55 D.66【分析】从第3行开始依次确定第三个数,即是完全平方公式中的第三项的系数,找到规律即可.【解析】依据规律可得到:(a+n)10的展开式的系数是杨辉三角第11行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第11行第三个数为:1+2+3+ (9)故选:B.27.(2019秋•崇川区校级期中)数形结合是初中数学重要的思想方法,下图就是用几何图形描述了一个重要的数学公式,这个公式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.a(a﹣b)=a2﹣ab D.(a﹣b)2=a2﹣b2【分析】分别表示出图1和图2中的阴影面积,二者相等,比较各选项,即可得答案.【解析】图1中阴影部分面积等于大正方形的面积a2,减去小正方形的面积b2,即a2﹣b2;图2中阴影部分为长等于(a+b),宽等于(a﹣b)的长方形,其面积等于(a+b)(a﹣b),二者面积相等,则有a2﹣b2=(a+b)(a﹣b).比较各选项,可知只有A符合题意.故选:A.28.(2019秋•岳麓区校级期中)从边长为a的大正方形纸板挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b2【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【解析】图甲中阴影部分的面积为:a2﹣b2,图乙中阴影部分的面积为:(a+b)(a﹣b)∵甲乙两图中阴影部分的面积相等∴a2﹣b2=(a+b)(a﹣b)∴可以验证成立的公式为(a+b)(a﹣b)=a2﹣b2故选:D.29.(2019春•金坛区期中)已知x﹣y=3,y﹣z=2,x+z=4,则代数式x2﹣z2的值是()A.9 B.18 C.20 D.24【分析】直接利用平方差公式将原式变形得出答案.【解析】∵x﹣y=3,y﹣z=2,x+z=4,∴x﹣y+y﹣z=5,∴x﹣z=5,∴x2﹣z2=(x﹣z)(x+z)=20.故选:C.30.(2019春•东台市期中)已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.3 B.2 C.1 D.0【分析】根据a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,可以求得a﹣b、b ﹣c、a﹣c的值,然后将所求式子变形再因式分解即可解答本题.【解析】∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca=3,故选:A.21。
OAB (第6题) C最新苏教版七年级下册数学期中试卷1(含答案)数学试题一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 、152OE DCBA(第1题) (第5题) 2.下列各式中,分式的个数为:( )3x y -,21a x -,1x π+,3a b -,12x y +,12x y +,2123x x =-+; A 、5个; B 、4个; C 、3个; D 、2个; 3.有理式①2x ,②5x y +,③12a -,④1xπ-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④4.已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .abC . a b -D .a b + 5.如图,Rt ABC ∆绕O 点逆时针旋转︒90得Rt BDE ∆,其中∠ABD =∠ACB =∠BED =︒90,AC =3,DE =5,则OC 的长为( )225+24 C. 3+22 D. 4+3 6.如图,O 为△ABC 中线的交点,则OBC ABC S S 三角形三角形:的值为( )A.23B.2C.3D.4 7.如图:一只船以每小时20千米的速度向正东航行,起初船在A 处看见一灯塔B 在船的北偏东60°,2小时后,船在C 处看见这个灯塔在船的北偏东45°,则灯塔B 到船的航海线AC 的距离是 [ ]千米.A. 18163+B. 19183+C. 20203+D. 21223+(第7题) (第8题) (第11题)8.如图,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°, AC =4cm ,将△ABC 绕顶点C 顺时针旋转至△A /B /C 的位置,且A ,C ,B /三点在同一条直线上,则点A 经过的路径的长度是 ( )A .8cmB .43cmC .32π3cmD .8π3cm 二、填空题9.4的平方根是 ;94的算术平方根是 ; 的立方根为-2. 10.若点(2,1)在双曲线ky x=上,则k 的值为_______。
七年级苏教版数学复习要点考点专题二:整式化简求值及应用专题测试姓名:___________班级:___________一、选择题(共8小题,每题5分,共计40分)1.(睢宁县期中)下列计算中,正确的是( ) A .235m n mn +=B .22423x x x +=C .3()3a b a b +=+D .220a b ba -+=【解答】解:A 选项不能合并,不符合题意;B 选项合并得23x ,不符合题意; C 选项去括号得33a b +,不符合题意;D 选项正确.故选:D .2.(临沭县期末)若222A x xy y =-+,222B x xy y =++,则下列各式运算结果等于4xy 的是( ) A .A B + B .A B -C .A B -+D .A B --【解答】解:222A x xy y =-+,222B x xy y =++,222A x xy y ∴-=-+-,222222A B x xy y x xy y ∴-+=-+-+++4xy =,∴运算结果等于4xy 的是:A B -+;故选:C .3.(建邺区期中)对于代数式222(41)(33)(2)xyz yx xy z yx xyz xy --+-+--+的值的描述,下列说法正确的是( )A .与x 、y 、z 的取值都有关B .与x 的取值有关,而与y 、z 的取值无关C .与x 、y 的取值有关,而与z 的取值无关D .与x 、y 、z 的取值均无关【解答】解:原式2224133254xyz yx xy z yx xyz xy xy =---+---=--, 则代数式的值与x 、y 的取值有关,而与z 的取值无关.故选:C . 4.(琅琊区期末)已知3a b +=,12b c -=,则2a b c +-的值为( ) A .15B .9C .15-D .9-【解答】解:3a b +=,12b c -=,∴原式a b b c =++-312=+15=,故选:A . 5.(海陵区校级期末)已知145a b +=-,那么代数式9(2)2(2)a b a b +--的值是( )A .15-B .1-C .15D .1【解答】解:当145a b +=-,9(2)2(2)a b a b +--520a b =+5(4)a b =+15()5=⨯-1=-,故选:B .6.(江阴市期中)长方形的一边长是4x y +,另一边比它小x y -,则长方形的周长是( ) A .7x y +B .73x y +C .142x y +D .146x y +【解答】解:长方形的一边长是4x y +,另一边比它小x y -,∴另一边长为:4()32x y x y x y +--=+,∴长方形的周长是:2(432)146x y x y x y +++=+.故选:D .7.(青羊区校级自主招生)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为1a ,第2幅图形中“●”的个数为2a ,第3幅图形中“●”的个数为3a ,⋯,以此类推,则123201111a a a a +++⋯+的值为( )A.2122B .2144C .419924D .325462【解答】解:1313a ==⨯,2824a ==⨯,31535a ==⨯,42446a ==⨯,⋯,(2)n a n n =+;∴123201111a a a a +++⋯+11111324352022=+++⋯+⨯⨯⨯⨯11111111(1)2324352022=⨯-+-+-+⋯+- 1111(1)222122=⨯+--16502462=⨯325462=,故选:D . 8.(江都区期中)杨辉三角形,又称贾宪三角形帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律观察下列各式及其展开式:请你猜想10()a b +展开式的第三项的系数是( ) A .36B .45C .55D .66【解答】解:依据规律可得到:10()a n +的展开式的系数是杨辉三角第11行的数, 第3行第三个数为1, 第4行第三个数为312=+, 第5行第三个数为6123=++,⋯第11行第三个数为:9(19)1239452++++⋯+==.故选:B . 二、填空题(共6小题,每小题5分,共计30分)9.(江都区期中)已知32x -=,则代数式2(3)2(3)1x x ---+的值为 . 【解答】解:32x -=,∴代数式22(3)2(3)1(31)x x x ---+=--2(21)=-1=.故答案为:1.10.(新北区期中)已知22x y -=-,则324x y -+的值是 . 【解答】解:324x y -+32(2)x y =--32(2)=-⨯-7=.故答案为7.11.(苏州期末)若232a b -=,则2622020b a -+= .【解答】解:由于232a b -=,∴原式22(3)2020a b =--+2016=,故答案为:2016. 12.(建邺区期末)若2214x x -++=,则2247x x -+的值是 .【解答】解:2214x x -++=,223x x ∴-=-,222472(2)72(3)71x x x x ∴-+=-+=⨯-+=.故答案为1. 13.(溧水区期中)如图是一个简单的数值运算程序,当输入n 的值为3-时,则输出的结果为 .【解答】解:3n =-,22(3)(3)931228n n ∴-=---=+=<,∴令12n =,22121213228n n ∴-=-=>,∴输出结果132,故答案为132.14.(玄武区期中)如图,在直角三角形ABC 中,C ∠是直角,AC a =,BC b =.分别以直角边AC 和BC 为直径画半圆,则阴影部分的面积是 .(用含有a 、b 的代数式表示且结果保留)π【解答】解:设各个部分的面积为:1S 、2S 、3S 、4S 、5S ,如图所示,两个半圆的面积和是:154234S S S S S S +++++,ABC ∆的面积是345S S S ++,阴影部分的面积是:124S S S ++,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积22221111()()22222882a b a b ab ab ππππ=⨯+⨯-=+-.故答案是:221882a b ab ππ+-.三、解答题(共3小题,每小题10分,共计30分)15.(江阴市期中)先化简,再求值:(1)22222()3(1)2(1)a b ab a b ab +---+,其中1a =-,2b = (2)已知:234A a ab =-,22B a ab =+①求2A B -;②若2|1|(2)0a b -++=,求2A B -的值;【解答】解:(1)原式222222233221a b ab a b a b a b =+-+--=-+, 当1a =-,2b =时,原式2(1)211=--⨯+=-;(2)①222222(34)2(2)34248A B a ab a ab a ab a ab a ab -=--+=---=-, ②由2|1|(2)0a b -++=得:1a =-,2b =,则原式2(1)8(1)211617=--⨯-⨯=+=. 16.(建邺区校级期中)已知:22321A a ab a =+--,21B a ab =-+- (1)求36A B +.(2)若36A B +的值与a 的取值无关,求b 的值. 【解答】解:(1)22321A a ab a =+--,21B a ab =-+-22363(2321)6(1)A B a ab a a ab ∴+=⨯+--+⨯-+-,226963666a ab a a ab =+---+-,1569ab a =--; (2)361569(156)9A B ab a a b +=--=--,36A B +的值与a 的取值无关, 156b ∴=,25b ∴=; 17.(宿豫区期中)探究规律:(1)在一组有理数a ,3,b ,c ,d 中,若其中任意两个相邻数之和都是5,则b = c = ; (2)在一组有理数a ,9-,b ,5,c ,d ,e 中,若其中任意三个相邻数之和都是6-,求a b c d e +--+的值;(3)在一组有理数1a ,2a ,3a ,⋯,n a 中,若其中任意四个相邻数之和都是27,已知22a x =-,775a x =+,11526a x =-,66912a =,求2020a 的值.【解答】解:(1)在一组有理数a ,3,b ,c ,d 中,其中任意两个相邻数之和都是5, 35b ∴+=,5b c +=,解得,2b =,3c =,故答案为:2b =,3c =;(2)在一组有理数a ,9-,b ,5,c ,d ,e 中,其中任意三个相邻数之和都是6-, 99555a b b b c c d c d e ∴-+=-++=++=++=++,956b -++=-,解得,5a =,2b =-,9c =-,2d =-,5e =,a b c d e ∴+--+5(2)(9)(2)5=+-----+ 5(2)925=+-+++19=;(3)在一组有理数1a ,2a ,3a ,⋯,n a 中,其中任意四个相邻数之和都是27,∴这组数是1a ,2a ,3a ,4a 四个数循环得到,22a x =-,775a x =+,11526a x =-,66912a =,1775a a x ∴==+,311526a a x ==-,166912a a ==;512x ∴+=,解得,7x =,2725a ∴=-=,32768a =⨯-=,123427a a a a +++=, 42a ∴=,20204505÷=,202042a a ∴==,即2020a 的值是2.。
七年级苏教版数学复习要点考点专题四:立体图形及三视图知识点一常见立体图形1.立体图形与平面图形①有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形.②有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形.3.常见立体图形的分类曲面体圆柱、圆锥、球体按是否有顶点是棱柱、棱锥、圆锥否圆柱、球体总结:在对几何体分类时首先确定分类的标准,分类标准不同,结果也就不同,不论选择哪种分类标准,都要做到不重、不漏.4、点、线、面、体体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是几何体,几何体也称体.面:包围着体的是面.面有平面和曲面两种.线:面和面相交的地方形成线.点:线和线相交的地方是点.用运动的观点来看:点动成线、线动成面、面动成体.例1(中山区期末)三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.【解答】解:由图形的旋转性质,可知ABC旋转后的图形为C,故选:C.例2(邳州市期末)如图,在下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.【解答】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选:A.例3(皇姑区期末)下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.知识点二几何体的表面展开图1.展开图:有些几何体的表面可以展开成平面图形,这个平面图形称为相应几何体的表面展开图.2.常见立体图形的平面展开图(1)圆柱的表面展开图是两个相同的圆面和一个长方形组成的;(2)圆锥的表面展开图是由一个圆面和一个扇形组成的;(3)棱柱的表面展开图是由两个相同的多边形和一个长方形组成的,侧面展开图是一个长方形。
2020-2021学年度第二学期初一数学期中复习错题集(1)一.选择题(共11小题)1.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1B.2C.3D.42.如图,在五边形ABCDE中,∠A+∠B+∠E=α,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.α﹣90°B.90°C.D.540°3.如图,在△ABC中,AD、BE分别是BC、AC边上的高,AF、BG分别是△ABC中∠BAC,∠ABC的角平分线,∠C=50°,给出如下四个结论:①∠3=50°,②∠4=115°,③∠1=∠2,④,其中正确的结论是()A.①②③④B.②③④C.①③④D.①②④4.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.75.下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2=;⑤(xy2)3=x3y6;⑥22+23=25,其中做对的题有()A.1道B.2道C.3道D.4道6.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个7.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③8.如图(1)所示为长方形纸带,将纸带沿EF折叠成图;(2)再沿BF折叠成图;(3)继续沿EF折叠成图(4)按此操作,最后一次折叠后恰好完全盖住∠EFG,整个过程共折叠了9次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°9.如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M表示其底面积与侧面积的差,则M可因式分解为()A.(b﹣6a)(b﹣2a)B.(b﹣3a)(b﹣2a)C.(b﹣5a)(b﹣a)D.(b﹣2a)210.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054B.255064C.250554D.25502411.如图,将四边形纸片ABCD沿MN折叠,若∠1+∠2=130°,则∠B+∠C=()A.115°B.130°C.135°D.150°二.填空题(共12小题)12.如图△ABC中,将边BC沿虚线翻折,若∠1+∠2=102°,则∠A的度数是.13.若m、n为整数,且(x+m)(x+n)=x2+ax+12,则a的取值有种情况.14.使等式(2x+3)x+2020=1成立的x的值为.15.如图,已知AB∥CD,E是直线AB上方一点,G为直线AB下方一点,F为直线CD上一点,∠EAF=148°,∠BAF=3∠BAG,∠DCE=3∠DCG,则∠E和∠G的数量关系为.16.如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B、C为直线l上两点,点A在直线l外,且∠ABC=45°.若P是l上一点,且△ABP是“准直角三角形”,则∠APB的所有可能的度数为.17.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.18.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以1cm/s的速度沿A→C运动,然后以2cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=时,△APE的面积等于6cm2.19.如果多项式6x2﹣kx﹣2因式分解后有一个因式为3x﹣2,则k=.20.如图,已知在△ABC中,AD⊥BC,垂足为D,AB=13,AC=15,BD=5,CD=9,AD=12.点P从点B出发沿线段BA﹣AC的方向,以1个单位/秒的速度运动到点C停止,当t=秒时,△ADP与△BDP的面积相等.21.如图,在△ABC中,AD是中线,点E在AB上,且BE=2AE,连接CE交AD于点O.连接BO,若△ABC的面积为1,则四边形BDOE的面积为.22.在△ABC中,AD是高,∠BAD=60°,∠CAD=20°,AE平分∠BAC,则∠EAD的度数为.23.如图,AD,CE是△ABC的两条高,它们相交于点P,已知∠BAC的度数为α,∠BCA 的度数为β,则∠APC的度数是.三.解答题(共14小题)24.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.25.如图,A,B两点同时从原点O出发,点A以每秒a个单位长度沿x轴的负方向运动,点B以每秒b个单位长度沿y轴的正方向运动.(1)如图1,若|a+2b﹣5|+(2a﹣b)2=0,试分别求出1秒钟后,A,B两点的坐标;(2)如图2,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC,∠FCA,∠ABC的平分线交于点G,过点G作BE的垂线,垂足为H,试问∠AGH,∠BGC的大小关系如何?请写出你的结论并证明;(3)如图3,过A,O两点的直线相交于点N,AB的延长线交ON于点M,若∠MAN=∠NOB,∠BAO﹣∠N=m°,试求∠AMO的度数.26.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36°,则∠OGA=°.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36°,则∠OGA=°.(3)将(2)中的“∠OBA=36°”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:4两部分,∠GAD═∠BAD,∠ABO=α(18°<α<90°),求∠OGA的度数.(用含α的代数式表示)27.如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=,(4,1)=(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.28.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.29.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.30.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.杨辉法则:如图,两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1、3、3、1,恰好对应(a+b)3=a3+3a2b+3ab2+b3展开式中的系数.(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:(﹣3)5+5×(﹣3)4+10×(﹣3)3+10×(﹣3)2+5×(﹣3)+1.31.先阅读下面的内容,再解决问题:问题:对于形如x2+2xa+a2,这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa﹣3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa﹣3a2=(x2+2xa+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:a2﹣8a+15;(2)若a2+b2﹣14a﹣8b+65+|m﹣n|=0①当a,b,m满足条件:2a×4b=8m时,求m的值;②若△ABC的三边长是a,b,c,且c边的长为奇数,求△ABC的周长.32.如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D,且∠CBD=60°.(1)求∠A的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.33.【生活常识】射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.【现象解释】如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.已知:∠1=55°,求∠4的度数.【尝试探究】如图3,有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,若∠MON=46°,求∠CEB的度数.【深入思考】如图4,有两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果)34.如图,平面内,四条线段AB、BC、CD、DA首尾顺次相接,∠ABC=20°,∠ADC=40°.(1)如图1,∠BAD和∠BCD的角平分线交于点M,求∠AMC的大小;(2)如图2,点E在BA的延长线上,∠DAE的平分线和∠BCD的平分线交于点N,求∠ANC度数;(3)如图3,点E在BA的延长线上,点F在BC的延长线上,∠DAE的平分线和∠DCF 的平分线交于点P,请直接写出∠APC的度数.35.如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).36.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:=+;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.37.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)(1)如图①,当AE⊥BC时,求证:DE∥AC;(2)若∠C﹣∠B=10°,∠BAD=x°.①如图②,当DE⊥BC时,求x的值;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.。
2022年苏教版七年级数学下册期中测试卷(精品) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2< D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.下列各式﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,1y 中,整式有( )A .3 个B .4 个C .6 个D .7 个6.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.若()2320m n -++=,则m+2n 的值是________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5x +2=3(x +2) (2)341125x x -+-=2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.将一幅三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F ,(1)求证:CF ∥AB ,(2)求∠DFC 的度数.4.如图,已知直线EF 分别交AB,CD 于点E,F,且∠AEF =66°,∠BEF 的平分线与∠DFE 的平分线相交于点P.(1)求∠PEF 的度数;(2)若已知直线AB ∥CD,求∠P 的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、C5、C6、A7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、20°.3、<4、-15、246、5三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)x=﹣9.2、a=3,b=﹣1,c=3.3、(1)证明见解析;(2)105°4、(1)∠PEF=57°;(2)∠EPF=90°.5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。
苏教版七年级数学增补习题答案(上放学期 )( 上下册 )2015 详尽版七年级上册七年级下册第一版社:江苏凤凰科学技术版次:( 2015.6 重印)每日更新,请您关注七年级上册数学增补习题答案第 1 页苏教版七年级上册数学增补习题答案第 2 页七上数学增补习题答案第 3 页苏科版七年级上册数学增补习题答案第 4 页苏科版七年级上册数学增补习题答案第 5 页苏科版七年级上册数学增补习题答案第 6 页苏科版初一七年级上册数学增补习题答案第 7 页苏科版初一七年级上册数学增补习题答案第8 页苏科版初一七年级上册数学增补习题答案第9 页苏科版初一七年级上册数学增补习题答案第10 页苏科版初一七年级上册数学增补习题答案第11 页苏科版初一七年级上册数学补充习题答案第 12 页苏科版初一七年级上册数学增补习题答案第 13 页苏科版初一七年级上册数学增补习题答案第14 页苏科版初一七年级上册数学增补习题答案第15 页苏科版初一七年级上册数学增补习题答案第16 页苏科版初一七年级上册数学增补习题答案第17 页苏科版初一七年级上册数学增补习题答案第18 页苏科版初一七年级上册数学增补习题答案第 19 页苏科版初一七年级上册数学增补习题答案第20页苏科版初一七年级上册数学增补习题答案第21 页苏科版初一七年级上册数学增补习题答案第22 页苏科版初一七年级上册数学增补习题答案第23 页苏科版初一七年级上册数学增补习题答案第24 页苏科版初一七年级上册数学增补习题答案第 25 页苏科版初一七年级上册数学增补习题答案第26 页苏科版初一七年级上册数学增补习题答案第27 页苏科版初一七年级上册数学增补习题答案第28 页苏科版初一七年级上册数学增补习题答案第29 页苏科版初一七年级上册数学增补习题答案第 30 页苏教版七年级上册数学增补习题答案第 31 页苏教版七年级上册数学增补习题答案第32 页苏教版七年级上册数学增补习题答案第33 页苏教版七年级上册数学增补习题答案第34 页苏教版七年级上册数学增补习题答案第 35 页苏教版七年级上册数学增补习题答案第36 页苏教版七年级上册数学增补习题答案第37 页苏教版七年级上册数学增补习题答案第38 页苏教版七年级上册数学增补习题答案第 39 页苏教版七年级上册数学增补习题答案第40页苏教版七年级上册数学增补习题答案第41 页苏教版七年级上册数学增补习题答案第42 页苏教版七年级上册数学补充习题答案第 43 页苏教版七年级上册数学增补习题答案第44 页苏教版七年级上册数学增补习题答案第45 页苏教版七年级上册数学增补习题答案第46 页苏教版七年级上册数学第 48 页苏教版七年级上册数学增补习题答案第49 页苏教版七年级上册数学增补习题答案第50 页苏教版七年级上册数学增补习题答案第 51 页苏教版七年级上册数学增补习题答案第 52 页苏教版七年级上册数学增补习题答案第53 页苏教版七年级上册数学增补习题答案第54 页苏教版七年级上册数学增补习题答案第 55 页苏教版七年级上册数学增补习题答案第 56 页苏教版七年级上册数学增补习题答案第57 页苏教版七年级上册数学增补习题答案第58 页苏教版七年级上册数学增补习题答案第59 页苏教版七年级上册数学增补习题答案第 60 页苏教版七年级上册数学增补习题答案第61 页苏教版七年级上册数学增补习题答案第62 页苏教版七年级上册数学增补习题答案第63 页苏教版七年级上册数学增补习题答案第 64 页苏教版七年级上册数学增补习题答案第65页苏教版七年级上册数学增补习题答案第66 页苏教版七年级上册数学增补习题答案第67 页苏教版七年级上册数学补充习题答案第 68 页苏教版七年级上册数学增补习题答案第69 页苏教版七年级上册数学增补习题答案第70 页苏教版七年级上册数学增补习题答案第71页苏教版七年级上册数学增补习题答案第 72 页苏教版七年级上册数学增补习题答案第 73 页苏教版七年级上册数学增补习题答案第74 页苏教版七年级上册数学增补习题答案第75 页苏教版七年级上册数案第 77 页苏教版七年级上册数学增补习题答案第78 页苏教版七年级上册数学增补习题答案第79 页苏教版七年级上册数学增补习题答案第 80 页苏教版七年级上册数学增补习题答案第 81 页苏教版七年级上册数学增补习题答案第82 页苏教版七年级上册数学增补习题答案第83 页苏教版七年级上册数学增补习题答案第84 页苏教版七年级上册数学增补习题答案第 85 页苏教版七年级上册数学增补习题答案第86 页苏教版七年级上册数学增补习题答案第87 页苏教版七年级上册数学增补习题答案第88 页苏教版七年级上册数学增补习题答案第 89 页苏教版七年级上册数学增补习题答案第90页苏教版七年级上册数学增补习题答案第91 页苏教版七年级上册数学增补习题答案第92 页苏教版七年级上册数学补充习题答案第 93 页苏教版七年级上册数学增补习题答案第94 页苏教版七年级上册数学增补习题答案第95 页苏教版七年级上册数学增补习题答案第96页苏教版七年级上册数学增补习题答案第 97 页苏教版七年级上册数学增补习题答案第 98 页苏教版七年级上册数学增补习题答案第99 页苏教版七年级上册数学增补习题答案第100 页苏教版七年级上册数学增补习题答案第 101 页苏教版七年级上册数学增补习题答案第 102 页苏教版七年级上册数学增补习题答案第103 页苏教版七年级上册数学增补习题答案第104 页苏教版七年级上题答案第 106 页苏教版七年级上册数学增补习题答案第107页苏教版七年级上册数学增补习题答案第108 页苏教版七年级上册数学增补习题答案第109 页苏教版七年级上册数学补充习题答案第110 页第一版社:江苏凤凰科学技术版次:( 2015.12 重印)每日更新,请您关注七年级下册数学增补习题答案第 1 页苏科版七年级下册数学增补习题答案第 2 页七年级下册数学增补习题答案第 3 页七年级下册数学增补习题答案第 4 页苏科版七年级下册数学增补习题答案第 5 页苏科版七年级下册数学增补习题答案第6 页苏科版七年级下册数学增补习题答案第 7 页苏科版七年级下册数学增补习题答案第 8 页苏科版七年级下册数学增补习题答案第 9 页苏科版七年级(初一)下册数学增补习题答案第 10 页苏科版七年级(初一)下册数学增补习题答案第 11 页苏科版七年级(初一)下册数学增补习题答案第 12 页苏科版七年级(初一)下册数学增补习题答案第 13 页苏科版七年级(初一)下册数学增补习题答案第 14页苏科版七年级(初一)下册数学增补习题答案第15 页苏科版七年级(初一)下册数学增补习题答案第16 页苏科版七年级(初一)下册数学增补习题答案第17 页苏科版七年级(初一)下册数学增补习题答案第18 页苏科版七年级(初一)下册数学增补习题答案第 19 页苏科版七年级(初一)下册数学增补习题答案第 20 页苏科版七年级(初一)下册数学增补习题答案第 21 页苏科版七年级(初一)下册数学增补习题答案第 22 页苏科版七年级(初一)下册数学增补习题答案第 23 页苏科版七年级(初一)下册数学增补习题答案第 24 页苏科版七年级(初一)下册数学增补习题答案第 25 页苏科版七年级(初一)下册数学增补习题答案第26 页苏科版七年级(初一)下册数学增补习题答案第 27 页苏科版七年级(初一)下册数学增补习题答案第28页苏科版七年级(初一)下册数学增补习题答案第29页苏科版七年级(初一)下册数学增补习题答案第30 页苏科版七年级(初一)下册数学增补习题答案第31 页苏科版七年级(初一)下册数学增补习题答案第32 页苏科版七年级(初一)下册数学增补习题答案第33页苏科版七年级(初一)下册数学增补习题答案第34 页苏科版七年级(初一)下册数学增补习题答案第 35 页苏科版七年级(初一)下册数学增补习题答案第 36 页苏科版七年级(初一)下册数学增补习题答案第 37 页苏科版七年级(初一)下册数学增补习题答案第 38 页苏科版七年级(初一)下册数学增补习题答案第 39 页苏科版七年级(初一)下册数学增补习题答案第40页苏科版七年级(初一)下册数学增补习题答案第41页苏科版七年级(初一)下册数学增补习题答案第42 页苏科版七年级(初一)下册数学增补习题答案第 43 页苏科版七年级(初一)下册数学增补习题答案第 44 页苏科版七年级(初一)下册数学增补习题答案第 45 页苏科版七年级(初一)下册数学增补习题答案第 46 页苏科版七年级(初一)下册数学增补习题答案第 47 页苏科版七年级(初一)下册数学增补习题答案第 48 页苏科版七年级(初一)下册数学增补习题答案第 49 页苏科版七年级(初一)下册数学增补习题答案第50 页苏科版七年级(初一)下册数学增补习题答案第 51 页苏科版七年级(初一)下册数学增补习题答案第52页苏科版七年级(初一)下册数学增补习题答案第53页苏科版七年级(初一)下册数学增补习题答案第54 页苏科版七年级(初一)下册数学增补习题答案第55 页苏科版七年级(初一)下册数学增补习题答案第56 页苏科版七年级(初一)下册数学增补习题答案第57页苏科版七年级(初一)下册数学增补习题答案第58 页苏科版七年级(初一)下册数学增补习题答案第 59 页苏科版七年级(初一)下册数学增补习题答案第 60 页苏科版七年级(初一)下册数学增补习题答案第 61 页苏科版七年级(初一)下册数学增补习题答案第 62 页苏科版七年级(初一)下册数学增补习题答案第 63 页苏科版七年级(初一)下册数学增补习题答案第64页苏科版七年级(初一)下册数学增补习题答案第65页苏科版七年级(初一)下册数学增补习题答案第66 页苏科版七年级(初一)下册数学增补习题答案第 67 页苏科版七年级(初一)下册数学增补习题答案第 68 页苏科版七年级(初一)下册数学增补习题答案第 69 页苏科版七年级(初一)下册数学增补习题答案第 70 页苏科版七年级(初一)下册数学增补习题答案第 71 页苏科版七年级(初一)下册数学增补习题答案第 72 页苏科版七年级(初一)下册数学增补习题答案第 73 页苏科版七年级(初一)下册数学增补习题答案第74 页苏科版七年级(初一)下册数学增补习题答案第 75 页苏科版七年级(初一)下册数学增补习题答案第76页苏科版七年级(初一)下册数学增补习题答案第77页苏科版七年级(初一)下册数学增补习题答案第78 页苏科版七年级(初一)下册数学增补习题答案第79 页苏科版七年级(初一)下册数学增补习题答案第80 页苏科版七年级(初一)下册数学增补习题答案第81页苏科版七年级(初一)下册数学增补习题答案第82 页苏科版七年级(初一)下册数学增补习题答案第 83 页苏科版七年级(初一)下册数学增补习题答案第 84 页苏科版七年级(初一)下册数学增补习题答案第 85 页苏科版七年级(初一)下册数学增补习题答案第 86 页苏科版七年级(初一)下册数学增补习题答案第 87 页苏科版七年级(初一)下册数学增补习题答案第88页苏科版七年级(初一)下册数学增补习题答案第89页苏科版七年级(初一)下册数学增补习题答案第90 页苏科版七年级(初一)下册数学增补习题答案第 91 页苏科版七年级(初一)下册数学增补习题答案第 92 页苏科版七年级(初一)下册数学增补习题答案第 93 页苏科版七年级(初一)下册数学增补习题答案第 94 页苏科版七年级(初一)下册数学增补习题答案第 95 页苏科版七年级(初一)下册数学增补习题答案第 96 页苏科版七年级(初一)下册数学增补习题答案第 97 页苏科版七年级(初一)下册数学增补习题答案第98 页苏科版七年级(初一)下册数学增补习题答案第 99 页苏科版七年级(初一)下册数学增补习题答案第100页苏科版七年级(初一)下册数学增补习题答案第101 页苏科版七年级(初一)下册数学增补习题答案第102 页苏科版七年级(初一)下册数学增补习题答案第103 页苏科版七年级(初一)下册数学增补习题答案第104 页苏科版七年级(初一)下册数学增补习题答案第105 页苏科版七年级(初一)下册数学增补习题答案第106 页。
2018-2019学年第一学期七年级数学期中复习每天一练4班级: 姓名: 学号: 成绩: 日期:一.选择题1.2的相反数是………………………………………………………………………( )A . 2B .-2C .12D .-122.某种面粉包装袋上的质量标识为“25±0.5kg ”,则下列四袋面粉中不合格的是( )A . 25.5kgB .26.1C . 24.8kgD . 24.5kg3.下列各数:-6,-3.14,π,13,0,0.212121,其中分数的个数有…………( )A .1个B .2个C .3个D .4个4.下列运算正确的是…………………………………………………………………( )A .2x +3y =5xyB .5x 3-3x =2x 2C .7y 2-5y 2=2D .9a 2b -4ba 2=5a 2b5. 在代数式12m ,0,1-3a ,2x ,a +b π,a -b a +b中,整式有…………………………( ) A .3个B .4个 C .5个 D .6个6.若x 表示一个两位数,y 也表示一个两位数,小明想用x 、y 来组成一个四位数,且把x放在y 的右边,你认为下列表达式中正确的是…………………………………( )A .yxB .x +yC .100x +yD .100y +x7. 非零有理数a 、b 、c 满足a +b +c =0,则a ||a +b ||b +c ||c +abc ||abc 所有可能的值为( ) A .0 B .1或-1 C .2或-2 D .0或-28.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a 、b 满足( )A .a =3bB .a =2.5bC .a =3.5bD .a =4b二.解答题:9.(1)如图,两个圈分别表示负数集和分数集,请将3,0,12,-103,-5,-3.4中,符合要求的数填入相应的圈中;(2)在数轴上表示下列四个数-2,||-2.5,0,-114,并把它们用“<”号连接起来.负数集 分数集10.(12分)计算:① (-3)+(―4)―(+8)―(―9); ②―22―2×(―3)+||2-5―(―1)2015;③-81÷94×49÷(-16); ④-19×23-0.23×25-13×19×(-1)4+0.23×35×(-1)3.11. 化简:①x -2[y +2x ―(3x ―y )]; ② 12m ―2(m ―13n 2)―(32m ―13n 2);③ 先化简,再求值:2(a 2b +ab 2)―3(a 2b ―1)―2ab 2―4,其中a =2014,b =12014.12.(1)若a 与2b 互为倒数,-c 与d 2互为相反数,||x =3,求2ab -2c +d +x 3的值.(2)已知当x =2时,代数式ax 3-bx +1的值为-17,求当x =-1时,代数式12ax -3bx 3-5的值是多少?参考答案练习4.1—8. B B C D B D A A9.(1)略…(2分,全对全错)(2)略…(画数轴3分,连接1分,酌情分步给分)10. 略…………………………………………………………………(每小题3分,全对全错)11.略…………………………………(第①②小题3分,第③小题4分,酌情分步给分)12. (1)由题意,2ab =1,-c +d 2=0,……………………………………………(2分)当x =±3时,原式=1+x 3=2或0. ………………………………………(4分)(2)当x =2时,ax 3-bx +1=8a -2b +1=-17,得4a -b =-9……………(6分) 当x =-1时,12ax -3bx 3-5=-12a +3b -5=-3(4a -b )-5=27-5=22(8分)。
2022年苏教版七年级数学下册期中试卷(下载)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-32.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°4.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.已知x是整数,当30x取最小值时,x的值是( ) A.5 B.6 C.7 D.8 6.如图,若AB∥CD,CD∥EF,那么∠BCE=()A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°10.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .6二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =________度.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若()2320m n -++=,则m+2n 的值是________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x米的两条互相垂直的小路,余下的部分作为耕地,如果要在耕地上铺上草皮,选用草皮的价格是每平米a元,(1)求买草皮至少需要多少元?(用含a,x的式子表示)(2)计算a=40,x=2时,草皮的费用.CD=,4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3m ⊥,13mAD DCAB=,12mBC=,求这块地的面积.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、D5、A6、D7、A8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、803、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、40°6、PN, 垂线段最短三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x=.2、(x﹣y)2;1.3、(1)(640-52x+ x2)a;(2)21600元.4、224cm.5、(1)作图见解析;(2)120.6、生产圆形铁片的有24人,生产长方形铁片的有18人.。
苏教版七年级下数学期中复习复习因式分解和乘法公式1.把下列各式分解因式:(1)(x +1)2﹣; (2)3ax 2+6axy +3ay 2.2.若x +y =3,且(x +2)(y +2)=12.(1)求xy 的值; (2)求x 2+3xy +y 2的值.3.当我们利用2种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图1,可得等式:(a +2b )(a +b )=a 2+3ab +2b 2.(1)由图2,可得等式: .(2)利用(1)中所得到的结论,解决下面的问题: 已知 a +b +c =11,ab +bc +ac =38,求a 2+b 2+c 2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式: 2a 2+5ab +2b 2=(2a +b )(a +2b );(4)小明用2 张边长为a 的正方形,3 张边长为b 的正方形,5 张边长分别为a 、b 的长方形纸片重新拼出一个长方形,那么该长方形较长的一条边长为 .4.若x ,y ,z 满足(x -y)2+(z -y)2+2y 2-2(x +z)y +2xz =0,且x ,y ,z 是周长为48的一个三角形的三条边长,求y 的长.5. 若多项式()16322+-+x m x 能够用完全平方公式分解因式,则m 的值为 .6、不论x 、y 为何有理数,x 2 +y 2-10x+8y+45的值均为 ( )A .正数B .零C .负数D .非负数7.现有纸片:4张边长为a 的正方形,3张边长为b 的正方形,8张宽为a 、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为 ( ) A .2a +3b B .2a +b C .a +3b D .无法确定 8.若M =3a 2-a -1,N =-a 2+3a -2,则M 、N 的大小关系为 ( ) A .M>N B .M<N C .M ≤N D .M ≥N9、(1)计算:832+83×34+172=________. (2)①a 2-4a+4,②a 2+a+14,③4a 2-a+14,④4a 2+4a+1,以上各式中属于完全平方式的有______ (填序号)10.如果有理数a 、b 同时满足(2a +2b +3)(2a +2b -3)=55,那么a +b 的值为_______. 11.若m ﹣n=6,且mn+a 2+4a+13=0,则(2m+n )a 等于 . 12.若代数式x 2-6x +m 可化为(x 一n )2+1,则m -n =13、若是xy m x 822++一个完全平方式,则m =__________.14、 若代数式()(3)x m x ++的展开式中不含x 得一次项,则m 的值为________. 15、已知a 2+a -3=0,那么a 2(a +4)的值是复习平行线和三角形的相关知识1.如图,矩形纸片按图(1)中的虚线第一次折叠得图(2),折痕与矩形一边的形成的∠1=65°,再按图(2)中的虚线进行第二折叠得到图(3),则∠2的度数为( ) A .20° B .25° C .30° D .35°2.已知三角形的两边分别为a 和b (a >b ),三角形的第三边x 的范围是 2<x <6,则b a = . 3.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB ∥CD .则∠1+∠2= . 4.【课本引申】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?【尝试探究】 (1) 如图1,∠DBC 与∠ECB 分别为△ABC 的两个外角,试探究∠A 与∠DBC +∠ECB 之间存在怎样的数量关系?为什么? 【初步应用】(2) 如图2,在△ABC 纸片中剪去△CED ,得到四边形ABDE ,若∠1+∠2=230°, 则剪掉的∠C =_________;(3) 小明联想到了曾经解决的一个问题:如图3,在△ABC 中,BP 、CP 分别平分外角∠DBC 、∠ECB ,∠P 与∠A 有何数量关系?请直接写出答案_ . 【拓展提升】图2A BC D E(图1) ABCD E 1 2(图2)ABC D EP (图3)BADC21 (第3题)(4) 如图4,在四边形ABCD 中,BP 、CP 分别平分外角∠EBC 、∠FCB ,∠P 与∠A 、∠D 有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)5.如图1,一副三角板的两个直角重叠在一起,∠A =30°,∠C =45°△COD 固定不动,△AOB 绕着O 点顺时针旋转α°(0°< α <180° )(1)若△AOB 绕着O 点旋转图2的位置,若∠BOD =60°,则∠AOC =________;(2)若0°<α<90°,在旋转的过程中∠BOD +∠AOC 的值会发生变化吗?若不变化,请求出这个定值; (3)若90°< α <180° ,问题(2)中的结论还成立吗?说明理由;(4)将△AOB 绕点O 逆时针旋转α度(0°< α <180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).6. 如图,BC⊥ED 于O ,∠A=45°,∠D=20°,则∠B=________°.7.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.8.如图,△ABC 中,∠A =35°,沿BE 将此三角形对折,又沿BA' 再一次对折,点C 落在BE 上的C'处,此时∠C'DB =85°,则原三角形的∠ABC 的度数为 .9.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 . 10.已知AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿AD 所在直线对折,点C 落在点E 的位置(如图),则∠EBC 等于 度.11.如图,AB =a ,P 是线段AB 上任意一点(点P 不与A 、B 重合),分别以AP ,BP 为边作正方形APEF 、A B C D EFP(图4) 图1 ABDC图2BDCAOO第6题第7题 第8题正方形PBCD ,点E 在边PD 上.设AP =x . (1)求两个正方形的面积之和S ;(2)分别连接AE 、CE 、AC ,计算△AEC 的面积,并在图中找出一对面积相等的三角形(等腰直角三角形除外).12.(10分)概念学习在平面中,我们把大于180°且小于360°的角称为优角.如果两个角相加等于360°,那么称这两个角互为组角,简称互组.(1)若∠1、∠2互为组角,且∠1=135°,则∠2= ▲ °理解应用习惯上,我们把有一个内角大于180°的四边形俗称为镖形. (2)如图①,在镖形ABCD 中,优角∠BCD 与钝角∠BCD 互为组角,试探索内角∠A 、∠B 、∠D 与钝角∠BCD之间的数量关系,并说明理由. 拓展延伸(3)如图②,已知四边形ABCD 中,延长AD 、BC 交于点Q ,延长AB 、DC 交于P ,∠APD 、∠AQB 的平分线交于点M ,∠A +∠QCP =180°.①写出图中一对互组的角 ▲ (两个平角除外);②直接运用(2)中的结论,试说明:PM ⊥QM .13.平面内的两条直线有相交和平行两种位置关系.(1)AB 平行于CD ,如图①,点P 在AB 、CD 外部时,由AB ∥CD ,有∠B =∠BOD ,又∠BOD 是△POD 的外角,故∠BOD =∠BPD +∠D ,得∠BPD =∠B -∠D .如图②,将点P 移到AB 、CD 内部,以上结论是否成立?若不成立,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;(2)在图②中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图③,则∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?(不需证明)C DBA图①QMDC BA图② (第11题)FE D CPB AG(3)根据(2)的结论求图④中∠4+∠B +∠C +∠D +∠E +∠F 的度数.14、如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O ,∠EOD=21∠AOC ,则∠BOC=( ) A .150° B .140° C .130° D .120° 第5题15、一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为________. 16.如图,ABCDE 是封闭折线,则∠A 十∠B +∠C +∠D +∠E 为_______度.17.如图,△ABE 和△ACD 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠BAC =150°,则∠θ的度数是_______.18.如图,△ABC 中,AB=AC ,∠BAC=54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为 度.19.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小. (2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,直接写出∠ABO的度数=.20.我们知道,等腰三角形的两个底角相等,即在△ABC中,∵AB=AC,∴∠B=∠C(如图①所示).请根据上述内容探究下面问题:(1)如图②,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=90°,动点D在BC边上运动,试证明CD=BE且CD⊥BE.(2)如图③,在(1)的条件下,若动点D在CB的延长线上运动,则CD与BE垂直吗?请在横线上直接写出结论,不必给出证明,答:.(3)如图④,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=90°,动点D在△ABC 内运动,试问CD⊥BE还成立吗?若成立,请给出证明过程.(4)如图④,已知在△ABC和△ADE中,AB=AC,AD=AE,∠CAB=∠DAE=x°(90<x<180),点D在△ABC内,请在横线上直接写出直线CD与直线BE相交所成的锐角(用x的代数式表示).答:直线CD与直线BE相交所成的锐角.复习不等式中的几种题型1、若()23280m m x y--++=是关于x ,y 的二元一次方程,=m ________.。