26.1概率的预测
- 格式:ppt
- 大小:736.00 KB
- 文档页数:16
华师版初中数学教材总目录七年级上册第1章走进数学世界1.1 与数学交朋友 1.2 让我们来做数学第2章有理数2.1正数和负数 2.2数轴 2.3相反数 2.4绝对值2.5有理数的大小比较2.6有理数的加法 2.7有理数的减法2.8有理数的加减混合运算2.9 有理数的乘法2.10有理数的除法 2.11有理数的乘除混合运算2.12科学记数法 2.13有理数的混合运算2.14近似数和有效数字 2.15用计算器进行数的简单运算第3章整式的加减3.1列代数式 3.2代数式的值 3.3整式 3.4整式的加减第4章图形的初步认识4.1生活中的立体图形 4.2画立体图形4.3立体图形的表面展开图 4.4平面图形4.5最基本的图形——点和线 4.6角 4.7相交线 4.8平行线第5章数据的收集与表示5.1数据的收集 5.2数据的表示七年级下册第6章一元一次方程6.1从实际问题到方程 6.2解一元一次方程 6.3实践与探索第7章二元一次方程组7.1二元一次方程组和它的解 7.2二元一次方程组的解法7.3实践与探索第8章一元一次不等式8.1认识不等式 8.2解一元一次不等式 8.3一元一次不等式组第9章多边形9.1三角形 9.2多边形的内角和与外角和 9.3用正多边形拼地板第10章轴对称10.1生活中的轴对称 10.2轴对称的认识 10.3等腰三角形第11章体验不确定现象11.1可能还是确定 11.2机会的均等与不等11.3在反复实验中观察不确定现象八年级上册第12章数的开方12.1平方根与立方根 12.2实数与数轴第13章整式的乘除13.1幂的运算 13.2整式的乘法 13.3乘法公式13.4整式的除法 13.5因式分解第14章勾股定理14.1勾股定理 14.2勾股定理的应用第15章平移与旋转15.1平移 15.2旋转 15.3中心对称 15.4图形的全等第16章平行四边形的认识16.1平行四边形的性质 16.2矩形、菱形与正方形的性质16.3梯形的性质八年级下册第17章分式17.1分式及其基本性质 17.2分式的运算17.3可化为一元一次方程的分式方程 17.4零指数幂与负整指数幂第18章函数及其图象18.1变量与函数 18.2函数的图象 18.3一次函数 18.4反比例函数 18.5实践与探索第19章全等三角形19.1命题与定理 19.2全等三角形的判定19.3尺规作图 19.4逆命题与逆定理第20章平行四边形的判定20.1平行四边形的判定 20.2矩形的判定20.3菱形的判定 20.4正方形的判定20.5等腰梯形的判定第21章数据的整理与初步处理21.1算术平均数与加权平均数 21.2平均数、中位数和众数的选用21.3极差、方差与标准差九年级上册第22章二次根式22.1 二次根式阅读材料蚂蚁和大象一样重吗22.2 二次根式的乘除法1. 二次根式的乘法2. 积的算术平方根3. 二次根式的除法22.3 二次根式的加减法第23章一元二次方程23.1 一元二次方程23.2 一元二次方程的解法阅读材料一元二次方程根的判别式§23.3实践与探索第24章图形的相似24.1 相似的图形24.2 相似图形的性质1. 成比例线段2. 相似图形的性质阅读材料黄金分割24.3 相似三角形1. 相似三角形2. 相似三角形的判定3. 相似三角形的性质4. 相似三角形的应用阅读材料线段的等分相似三角形与全等三角形24.4 中位线24.5 画相似图形阅读材料数学与艺术的美妙结合-分形24.6 图形与坐标1. 用坐标确定位置2. 图形的变换与坐标第25章解直角三角形25.1 测量25.2 锐角三角函数1. 锐角三角函数2. 用计算器求锐角三角函数值25.3 解直角三角形阅读材料葭生池中课题学习高度的测量第26章随机事件的概率26.1 概率的预测1. 什么是概率2. 在复杂情况下列举所有机会均等的结果阅读材料电脑键盘上的字母为何不按顺序排列26.2 模拟实验1. 用替代物做模拟实验2. 用计算器做模拟实验课题学习通讯录的设计附表随机数表九年级下册第27章二次函数27.1 二次函数27.2 二次函数的图象与性质1. 二次函数的图象与性质2. 二次函数的图象与性质3. 求二次函数的关系式阅读材料生活中的抛物线27.3 实践与探索第28章圆28.1 圆的认识1. 圆的基本元素2. 圆的对称性3. 圆周角28.2 与圆有关的位置关系1. 点与圆的位置关系2. 直线与圆的位置关系3. 切线4. 圆与圆的位置关系阅读材料你能画吗28.3 圆中的计算问题1. 弧长和扇形的面积2. 圆锥的侧面积和全面积阅读材料古希腊人对大地的测量圆周率p课题学习硬币滚动中的数学第29章几何的回顾29.1 几何问题的处理方法29.2 反证法阅读材料《几何原本》课题学习中点四边形第30章样本与总体30.1 抽样调查的意义1. 人口普查和抽样调查2. 从部分看全体3. 这样选择样本合适吗阅读材料空气污染指数(API)30.2 用样本估计总体1. 简单的随机抽样2. 抽样调查可靠吗3. 用样本估计总体阅读材料漫谈收视率30.3 借助调查作决策1. 借助调查作决策2. 容易误导决策的统计图阅读材料标准分课题学习改进我们的课桌椅附表1 男同学身高、体重数据表附表2 女同学身高、体重数据表。
沪科版数学九年级下册《26.1 随机事件》教学设计3一. 教材分析沪科版数学九年级下册第26.1节“随机事件”是本册教材中的重要内容,主要让学生理解随机事件的定义、性质及随机事件的发生可能性。
本节内容是在学生已经掌握了概率的基本概念和事件的发生可能性基础上进行学习的,对于培养学生的逻辑思维能力、分析问题能力以及解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念和事件的发生可能性有一定的了解。
但是,对于随机事件的定义和性质,以及如何判断一个事件是随机事件还是必然事件或不可能事件,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例来理解和掌握随机事件的定义和性质,提高学生的数学思维能力。
三. 教学目标1.了解随机事件的定义、性质和判断方法。
2.能够运用随机事件的性质和判断方法解决实际问题。
3.培养学生的逻辑思维能力、分析问题能力和解决问题的能力。
四. 教学重难点1.随机事件的定义和性质。
2.如何判断一个事件是随机事件、必然事件或不可能事件。
五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握随机事件的定义和性质。
2.问题驱动法:通过提出问题,激发学生的思考,引导学生运用随机事件的性质和判断方法解决实际问题。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作意识和交流沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和问题。
2.实例材料:准备一些与生活相关的实例,用于教学演示和练习。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的随机事件,如抛硬币、抽奖等,引导学生思考什么是随机事件,随机事件的特点是什么。
2.呈现(10分钟)利用PPT呈现随机事件的定义和性质,让学生初步了解随机事件的判断方法。
3.操练(10分钟)让学生分组讨论,每组找一个实例,判断这个实例是随机事件、必然事件还是不可能事件,并说明判断的理由。
第26章 随机事件的概率26.1.1什么是概率 本章总第 1课时教学目标:1.理解概率的含义。
2.对于一些简单的问题,学会列出机会均等的结果以及其中所关注的结果,从而求出某一事件的概率。
3.培养实验操作能力。
教学重点、难点:1.某一具体事件的概率实验。
2.某一具体事件的概率值所表示的含义。
教学过程一、情境引入班级联欢会上举行抽奖活动:每个同学的名字都写在小纸条上投入抽奖箱,其中男生22名,女生20名。
老师闭上眼睛从搅匀的小纸条中抽出一张,恰好抽中男同学的概率大,还是抽中女同学的概率大?通过本节课的学习,相信你一定会做出判断的。
二、自学练习1.抛掷一枚硬币有 个可能的结果:“ ”和“ ”。
这两个结果出现的可能性 ,各占50% 的机会,50% 这个数表示事件“出现正面”发生的可能性的大小。
2.表示 ,叫做该事件的概率。
如,抛掷一枚硬币,“出现反面”的概率为21,可记为 =21 3.让我们一起回顾已经做过的几个实验及其结果,并完成课本表26.1.1,从中发现,几个动手实验观察到的频率值也可以开动脑筋分析出来,当然,最关键的有两点:(1)要清楚我们关注的是 结果;(2)要清楚 的结果。
4.(1)、(2)两种结果 就是关注的结果发生的概率,如p(掷得“6” )=61,读作:掷得 等于61. 5. 任意投掷均匀的骰子,4朝上的概率是_______三、合作交流1.掷得6的概率等于61表示什么意思?答 。
2.不是6(也就是1-5)的概率等于多少呢?这个概率值表示什么意思呢? 答 。
3.以下说法合理的是-------------------------------------( )A.小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率分别是30%B .抛掷一枚普通的正六面体骰子,出现点数6的概率是61的意思是每6次就有1次掷得6C.某彩票的中奖率是2%,那么如果买100张彩票一定会有2张中奖D.在一次实验中,甲、乙两组同学估计一枚硬币落地后,正面朝上的概率是0.48和0.514.气象台短期预报的准确率已达95%.现预报“明天本地阴转中雨”,那么说“明天下雨是必然事件”的是 的(填“对” 或“不对”),理由是 。
第26章概率初步26.1 随机事件教学反思教学目标1.在实际情景中感受必然事件、不可能事件和随机事件的意义.2.会对随机事件发生的可能性大小的定性分析.3.从大量实例中理解概率的意义,了解概率与现实生活的联系,并会用符号表示概率.教学重难点重点:识别必然事件、不可能事件、随机事件;判断事件发生可能性的大小.难点:理解概率的意义.教学过程导入新课1.三人每次都能摸到红球吗?【尝试】学生根据生活经验回答.可能发生,也可能不发生,必然不会发生,必然会发生.问题:如图,重复抛掷一枚各面上点数分别是1,2,3,4,5,6的均匀骰子,记录每次抛掷后骰子向上一面的点数,回答以下问题:(1)可能出现哪些点数?(2)出现的点数小于7吗?(3)出现的点数会是8吗?(4)抛掷一次,出现的点数会是6吗?从抛掷结果可以发现:(1)每次抛掷的结果不一定相同,可能出现的点数共有6种,分别是1,2,3,4,5,6;(2)出现的点数一定小于7;(3)出现的点数一定不是8;(4)抛掷一次,出现的点数可能是6,也可能不是6,无法预先确定.探究新知1.事件的类型可以事先知道其一定会发生的事件叫做必然事件.一定不会发生的事件叫做不可能事件.⎫⎪⎬⎪⎭必然事件确定性事件不可能事件师生活动:(小组讨论)1.将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出1个球,恰好摸到的球是绿球,是 事件.2.将2个黑球,3个白球,4个红球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这个事件是 事件.答案:1.不可能 2.必然 师生活动:(小组讨论)下列事件一定能发生吗? (1)掷一枚硬币,有国徽的一面朝上. (2)买一张彩票,恰好中奖.(3)办公室老师从我们班选一个人去打水,你被选中. (4)守株待兔. 【归纳总结】(老师点评总结)无法事先确定在一次试验中会不会发生的事件叫做随机事件.确定性事件和随机事件统称为事件.事件一般用大写字母A ,B ,C ,…表示.例1 判断下列事件是必然事件、不可能事件还是随机事件: (1)乘公交车到十字路口,遇到红灯; (2)把铁块扔到水中,铁块浮起;(3)任选13个人,至少有两人的出生月份相同; (4)从上海到北京的D314次动车明天正点到达北京. 【解】(1)随机事件;(2)不可能事件;(3)必然事件;(4)随机事件. 2.随机事件发生的可能性问题:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出一个球.(1)这个球是白球还是黑球? (2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗? 【归纳总结】(老师点评总结)由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.【思考】随机事件发生的可能性的大小相同的条件在一定条件下,要使随机事件出现的可能性相同,则需要使机会均等.练一练:能否通过上题改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?可以.例如:白球个数不变,拿出2个黑球或黑球个数不变,加入2个白球. 【新知应用】例2 下列事件中,哪些事件发生的可能性是一样的?哪些不一样? (1)掷一枚均匀的骰子,出现2点朝上或6点朝上的可能性;(2)从装有4个红球,3个白球的袋中任取一球,取出红球或白球的可能性; (3)从一副扑克牌中任意取一张,取到小王或黑桃3的可能性. 【解】(1)出现2点朝上或6点朝上的可能性一样. (2)取出红球或白球的可能性不一样; 取出红球的可能性大于取出白球的可能性.教学反思(3)取到小王或黑桃3的可能性一样.问题:小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一枚骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?答案:6种;1 6 .【归纳总结】1.事先不能预料事件是否发生,即事件的发生具有不确定性;2.随机事件发生的可能性是有大小的.3.概率的定义一般地,表示一个随机事件A发生的可能性大小的数,叫做这个事件发生的概率,记作P(A).【归纳总结】试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.在这些试验中出现的事件为等可能事件.问题:任意取一枚均匀的硬币随机抛掷一次,观察落地时这枚硬币朝向的结果,正面向上的概率是多少?由于硬币是均匀的,出现正面向上或反面向上的可能性是完全相等的(各占一半),即等可能性,即正面或反面出现的可能性为一半.又因为正面向上的可能性是1种,正面向上的可能性占总可能性的比值为12,所以正面向上的概率为12,即P(正面)=12.【归纳总结】概率可以从数量上刻画一个随机事件发生的可能性大小;概率一般用某事件的可能性占总可能性的比值刻画.课堂练习1.下列语句描述的事件中,是随机事件的为()A.水到渠成B.只手遮天C.瓜熟蒂落D.心想事成2.如图,转动如图所示的一些可以自由转动的转盘,当转盘停止时,猜想指针落在黑色区域内的可能性大小,将转盘的序号按可能性从小到大的顺序排列为.第2题图3.下列结论:①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②某公司生产的降落伞合格率达99.9%,则使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1,2,3,4,5中任取一个数,是奇数的可能性要大于是偶数的可能性.其中,正确的结论是.(填序号)4.投掷一枚骰子,出现点数不超过4的概率约是.5.一次抽奖活动中,印发奖券10 000张,其中一等奖一名,奖金5 000元,那么第一位抽奖者,(仅买一张)中奖概率为.教学反思6.在一个不透明的口袋中装有大小、外形一模一样的5是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任取5(4)从口袋中一次任意取出67.获胜;如果朝上的数字不是6,那么乙获胜.为什么?8.从6名男生和4名女生中选5名(n为正整数).(1)当n为何值时,女生中的小芳被选中是必然事件?(2)当n为何值时,女生中的小芳被选中是不可能事件?(3)当n为何值时,女生中的小芳被选中是随机事件?9.随意抛一粒豆子,恰好落在如图所示的圆内,在正方形里面的可能性大还是落在正方形外面的可能性大?参考答案1.D2.④①②③3.④4.235.1100006.解:(1)随机事件;(2)不可能事件;(3)随机事件;(4)随机事件.7.解:乙获胜的可能性大,因为骰子朝上的数字不是6可能性大.8.解:(1)当n=1时,女生中的小芳被选中是必然事件;(2)当n=5时,女生中的小芳被选中是不可能事件;(3)当n=2或3或4时,女生中的小芳被选中是随机事件.9.解:设圆的半径为1圆的面积为πr2=π,正方形的面积为22=,因为2>π-2,所以这粒豆子落在正方形里面的可能性大.课堂小结⎧⎧⎪⎪⎨⎪⎨⎩⎪⎩必然事件(一定会发生)确定性事件事件不可能事件(一定不会发生)随机事件(发生的可能性有大有小)根据随机事件发生的可能性大小,帮助我们做出合理的决策.特别注意:不可能事件是确定性事件.概率可以从数量上刻画一个随机事件发生的可能性大小;概率一般用某事件的可能性占总可能性的比值刻画.布置作业教材第93页习题26.1板书设计26.1随机事件1.⎧⎧⎪⎪⎨⎪⎨⎩⎪⎩必然事件:可以事先知道其一定会发生的事件.确定性事件事件不可能事件:在一定条件下,一定不会发生的事件.随机事件:无法事先确定在一次试验中会不会发生的事件.2.随机事件发生的可能性是有大小的.3.一般地,表示一个随机事件A发生的可能性大小的数,叫做这个随机事件发生的概率,记作P(A).教学反思。
洛阳市劳动技术大赛教案[第52号]
课题:§26.1概率的预测--在复杂情况下列举所有机会均等的结果
一. 教学目标
●知识与技能目标:
使学生会用树状图不重不漏地求出所有等可能的结果,从而正确地计算问题的概率。
●过程与方法目标:
让学生经历画树状图的过程,来列出复杂事件所有等可能的结果,并用计算的方法预测概率。
●情感与态度目标:
在教学中寓教于乐,让学生积极参与数学活动,提高学生学习的兴趣,感受数学与生活的密
切联系,体会数学来源于生活服务于生活,提高学习数学的兴趣和自信。
二. 教学重点、难点
●教学重点:用画树状图的方法计算复杂随机事件发生的概率。
●教学难点:正确画出树状图。
三.教学手段
利用游戏创设教学情境,引导学生自主探索、合作交流.
在图中,从上至下每一条路径就是一种可能的结果。
而且每种结果发生的机会相等,也就
五、板书设计。
第26章随机事件的概率单元要点分析教学内容本单元主要学习随机事件的概率,主要分为简单的古典概率,理论上容易求出来的概率;以及通过实验模拟来获得其估计值.学生对随机事件及发生的概率的认识是一个较长的认知进程,义务教育阶段学生可以掌握的有关概率模型大致分为三类:第一类问题没有理论概率,只能借助实验模拟获得其估计值,一般而言,它是纯粹的现实问题;第二类问题虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生认知水平,学生只能借助实验模拟获得其估计值;第三类问题则是简单的古典概率,理论上容易求出其概率.对于第三类问题,其繁简程度又有所不同,如随意掷一枚均匀的骰子,朝上点数为6的概率;连续掷两次均匀的骰子,两次骰子的点数和为6的概率等等.本单元介绍计算其概率的两种方法,一是树状图,二是列表法.本单元还同时将研究上述第一、二两类问题,用实验方法估计随机事件发生的概率,探索理论概率与实验结果之间的辩证关系,进一步加深学生对概率的理解.知识结构:三维目标1.知识与技能.会知道事件发生的可能性是有大有小的,能求出一些简单事件发生的概率以及做出描述;通过实验等活动,理解事件发生的概率,能用实验的方法估计一些复杂的随机事件发生的概率.2.过程与方法.经历实验、统计等活动,在活动中进一步发展学生合作交流的意识和能力.3.情感、态度与价值观.结合具体情境,初步感受到统计推断的合理性,以及在实际生活中的应用价值.教学重点理解理论概率与实验结果之间的关系,掌握其规律.教学难点在解决理论概率中树状图、列表法的应用,体会实验模拟获得的估计值逐渐趋于理论概率这一规律.教学关键要积极参与实验,从中收集数据,逐步计算一个随机事件发生的实验结果.课时划分§26.1概率的预测 4课时§26.2模拟实验 2课时复习与小结 1课时§26.1.1什么是概率(1)教学内容本节课主要学习概率的定义和通过列表法解决理论概率问题,从实验中寻找规律.教学目标1.知识与技能:通过实验,理解事件发生的可能性问题,感受理论概率的意义.2.过程与方法:经历实验等活动过程,学会用列表法估计某一事件发生的概率.3.情感、态度与价值观:发展学生合作交流的意识和能力.重难点、关键1.重点:运用列表法计算简单事件发生的概率. 2.难点:对概率的理解. 3.关键:在实验中寻找规律. 教学准备1.教师准备:骰子、扑克牌、硬币. 2.学生准备:骰子、扑克牌、硬币. 教学过程一、合作实验,寻找规律 1.实验感知.教师活动:拿出一枚硬币抛掷,提出:结果有几种情况?学生活动:拿出一枚硬币抛掷发现结果只有两种情况:“出现正面”和“出现反面”.而且发生的可能性均等. 教师引入:表示一个事件发生的可能性大小的这个数,叫做该事件的概率.学生联想:抛掷一枚硬币出现正面的概率是12,出现反面的概率是12. 教师引导:可记作P (发现正面)=12;P (出现反面)=12.2.问题提出.投掷一枚普通的六面体骰子,“出现数字为5”的概率为多少? 学生回答:16,可记作P (出现数字5)=16. 教师师述:上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的.请看下面一个例子:见课本P106表26.1.1.学生活动:对表26.1.1中的问题进行实验.思路点拨:(1)关注的是发生哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的比就是所关注的结果发生的概率.教师活动:引导学生在实验中寻找方法. 二、范例学习,应用所学1.问题情境1:如图是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在什么颜色区域的概率大?师生交流:教师动手操作,在实验中发现红色区域的面积最大,因此,当转盘停止转动时,指针落在红色区域的概率大,P (红色区域)=38. 2.问题情境2:见课本P107问题1.学生活动:分四人小组展开对“问题1”的实验,•并从中得到规律:如果掷的次数很多,实验的频率渐趋稳定,平均每6次就有1次掷出“6”.评析:通过实验,让学生逐步计算一个随机事件发生的实验频率,并观察其中的规律性,从而归纳出实验概率趋于理论概率这一规律.3.问题情境3:课本P108思考.师生活动:在教师的引导下,理解“思考”中的问题,提出自己的观点.思路点拨:只要是均匀的骰子,掷得任何一面(1~5)的概率都是一样的.这个概率表示“均等”,也就是掷骰子,六个面出现的概率是均等的.对于第二个问题的提出,结果是不矛盾的,因为实验频率是趋于理论概率的,实验往往是估计值,是一个趋向.评析:一个人的实验数据相差可能较大,但是随着实验次数的增大,实验频率也就比较稳定了. 例:见课本P109例1.思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P (抽到男同学名字)22114221;P (抽到女同学名字)201011422121=<,得出结论为抽到男同学名字的概率大. 教师活动:讲述例题,让学生感受到古典概率的内涵以及计算方式. 学生活动:参与到例题的学习中去,体会概率的意义. 拓展延伸:课本P109“思考”.师生交流:分四人小组进行讨论,然后再在全班进行发言. 教学形式:互动交流. 三、随堂练习,巩固深化 1.课本P109练习. 2.探研时空.袋中有6个红球,4个白球,2个黄球和1个蓝球,这些球除了颜色外完全相同,小红认为袋中共有四种不同颜色的球,所以从袋中任意摸出一个球,摸到红球、白球、黄球的概率一样,你认为呢?思路点拨:小红的看法是不正确的,因为四种颜色的球的只数是不尽相同的,•因此,摸到它们的概率也不一样. 四、课堂总结,提高认识 教师提问: 1.什么叫概率?2.本节中的实验结果所产生的趋势与理论概率之间有什么关系? 3.实验次数的大小与所得的“估计值”有什么关系? 4.谈谈你对概率的理解和体会. 五、布置作业,专题突破1.课本P114习题26.1第1、2题. 2.选用课时作业设计.第一课时作业设计1.任意投掷均匀的骰子,4朝上的概率是________.2.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,•从袋中任意摸出红球的概率是_______. 3.某彩票中奖率是2%,买2张一定不会中奖,买1000张一定会中奖,这种说法是否正确?答_______. 4.一副扑克牌(去掉大王和小王),随机抽取一张,抽到红桃的概率是______. 5.下列说法正确的是( )A .小李喝了冰水才感冒的B .投掷一枚均匀的骰子,每个点数小现的概率相同C .转盘A 大,转盘B 大,颜色和图案都一样的情况下,用转盘A 实验成功的概率大D .明天一定会下雨6.如图,有一个被等分为8个角形的转盘,转动转盘,指针落在白色区域的概率是( ) A .1 B .13 C .58 D .387.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球: (1)摸到红球的概率是多少? (2)摸到白球的概率是多少? (3)摸到黄球的概率是多少? (4)哪一个概率大?参考答案1.16 2.613 3.不正确 4.13525.B 6.D 7.(1)19(2)39(3)59(4)黄球 六、课后反思§26.1.1什么是概率(2)教学内容本节课继续上一节的内容,学习概率的应用.教学目标1.知识与技能:通过第一课时问题的变式推广,掌握并运用列表法计算简单事件发生的概率.2.过程与方法:经历实验、统计等活动过程,在活动中进一步发展合作交流意识,学会求简单事件的概率的方法.3.情感、态度与价值观:培养应用概率解决问题的能力,感受其实际价值.重难点、关键1.重点:掌握列表法树状图来计算简单事件发生的概率.2.难点:理解概率的内涵.3.关键:运用实验的方法获取数据,列成表格或树状图,•直观地求出事件的概率.教学准备1.教师准备:投影仪、扑克牌.2.学生准备:扑克牌、两个转秀.教学过程一、创设情境,感知轻重1.问题牵引.有两组牌是相同的,如果每组3张牌,它们牌面数字分别是1,2,3,•那么从每组中各摸出一张牌,两张牌的牌面数字和为几的概率最大?•两张牌的牌面数字和等于4的概率是多少?思路点拨:方法一是采用树状图来解决;方法二是借助列表.因为两次出现1,•2,3点的可能性相同,因而共有9种可能,而符合条件的有(1,3),(2,2),(3,1)三种可能,所以牌面数字之和为4的概率等于39即13.教师活动:提出问题,适时引导.学生活动:四组合作,尝试求解这个问题.教学方法:实验、交流、探索.评析:安排此问题的目的在于引导学生对所研究的问题、所用的方法进行反思和拓展,用列表法求概率时应注意各种情况出现的可能性务必相同.2.拓展.对上述问题的结论改为:(1)求两张牌的牌面数字和为奇数的概率.(4 9)(2)求两张牌的牌面数字和大于3的概率.(2 3)(3)求两张牌的牍面数字和为3的概率.(2 9)二、范例学习,应用所学1.例1:见课本P110例2.思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=824=13,黑球16只,P(取出黑球)=1624=23,也可以这样计算黑球:P(取出黑球)=1-P(取出红球)=1-13=23.2.例2:见课本P110例3.思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率.P甲(取出黑球)=843015=,P乙(取出黑球)=80882902930=>,•所以应选乙袋成功机会大.教师活动:参与分析例2、例3,并讲解求解的方法.学生活动:参与分析例2、例3,从中认识理论概率的运算方法. 三、继续探究,实验牵引 1.课堂演练. 用列表法求概率:(1)将一枚均匀的硬币掷两次,两次都是正面朝上的概率是多少?(2)游戏者同时转动如下图(甲)、(乙)•中两个转盘进行“配紫色”游戏,求游戏者获胜的概率.教师活动:提出问题,引导学生掌握列表求解概率的具体步骤.学生活动:书面练习,同桌交流.[拿出制作的学具,如上图(甲)、(乙)] 2.思路点拨.(1)掷两次硬币,两次都是正面朝上的概率是14,所列表格可以是:(2)游戏者获胜的概率等于,所列表格可以是:四、随堂练习,巩固深化 1.课本P111练习. 2.探研时空.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是多少? 思路点拨:运用树状图分析如下:总共有4种结果,每种结果出现的可能性相同,•而至少有一次正面朝上的结果有3次:(正,正),(正,反),(反,正),所以至少有一次正面朝上的概率为34,•本题也可用列表法. 五、课堂总结,提高认识本节课主要学习列表法、树状图法求概率,在学习中要领会概率与统计之间的内在联系,学会多样思维. 六、布置作业,专题突破1.课本P115习题26.1第3题. 2.选用课时作业设计.第二课时作业设计1.如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面的数字不同的概率你能求得出来吗?与同伴交流.2.如果有两组同样的牌,每组3张,它们的牌面数字分别是3、4、5,•那么从每组牌中各摸出一张牌,两张牌面数字和为几的概率最大?•两张牌面数字和等于8的概率是多少?答案:1.提示:由实验的方法进行 2.提示:用实验的方法进行 七、课后反思§26.1.2在复杂情况下列举所有机会均等的结果(2)教学内容本节课继续学习复杂情况下机会均等的事件结果问题. 教学目标1.知识与技能:能利用实验的方法估计一些复杂的随机事件发生的概率;形成对某一事件发生的概率的较为全面的理解.2.过程与方法:经历实验、统计等活动的过程,在活动中进一步发展学生合作交流的意识和能力,初步形成随机观念. 3.情感、态度与价值观:发展学生初步的辩证思维能力,感受概率的应用价值. 重难点、关键1.重点:学会,应用实验的方法估计随机事件的概率. 2.难点:理解概率的内涵;对模拟实验的了解.3.关键:概率的实验估算、•理论计算以及频率的偏差等应是理解概率的一个关键. 教学准备1.教师准备:投影仪、12生肖邮票制成投影仪、编球号1~12号、布口袋、计算器. 2.学生准备:计算器. 教学过程一、问题牵引,小组交流 1.思考:课本P112问题2.教师活动:组织学生分成四人小组,讨论“问题2”. 教具配合:用球和布袋为教具,辅助学生进行直观认识.学生活动:动手操作,感知问题的内涵.部分学生在黑板上画出实验思想,用树状图表示.2.辨析理解:课本P113思考.评析:让学生通过比较,能真正领会“问题2”的本质特征. 3.继续探究:课本P113问题3.师生活动:教师引导学生应用列表法,解决“问题3”.评析:上述两个问题主要是巩固画树状图法和列表法解决概率问题. 二、合作探究,方案设计1.问题提出:通过调查,我们估计了6个人中有2个人生肖相同的概率.•要想使这种估计尽可能精确,就需要尽可能321多地增加调查对象,而这样做既费时又费力.•请同学们想一想,能不能不用调查即可估计出这一概率呢?请你设计出具体的实验方案.教师活动:操作投影仪,提出问题.巡视、关注小组学生的设计方案,适时引导.学生活动:分四人小组探究问题的结论,设计解决问题的实验方案,而后小组汇报各自的方案.媒体使用:投影显示问题情境,合作探究,师生互动.评析:教学中,教师先提出问题,组织学生分小组进行充分的交流.引导学生思考具体方案.学生的方案多种多样,只要合理就可以肯定和鼓励.教师在提出问题前,通过投影仪显示12生肖图片等,激发学生的兴趣.2.参考答案:(1)用扑克牌,从扑克牌中选出梅花色12张,分别为1~10,J(11)Q(12).每个生肖都对应着一张扑克牌.(2)用12枚一元钱的硬币,一面贴上1~12号,每个生肖都对应着一枚钱币.3.阅读比较:有人说:可以用12个编有号码的、大小相同的球代替12种不同的生肖,这种每个人的生肖都对应着一个球,6个人中有2个人生肖相同,就意味着6个球中有2个球的号码相同,因此,可在口袋中放入这样的12个球,从中摸了1个球,记下它的号码,放回去,再从中摸出1个球,记下它的号码,放回去;……,直至摸出1个球,记下第6个号码,为一次实验,重复多次实验,即可估计6个人中有2个人生肖相同的概率.想一想:(1)你认为这样说法有道理吗?(2)为什么每次摸出球后都要放回去?概念:上面的方法是用摸球实验代替实际调查,类似这样的实验为模拟实验.教师活动:指导阅读,可以采用实物演示,帮助理解.学生活动:与自己设计的方案进行比较,从中比较其合理性.三、随堂练习,巩固深化1.课本P114练习第1、2题.2.探研时空.探索:(1)从去掉大小王牌的一副扑克牌中随意抽出一张,抽到黑桃偶数(Q•为偶数)的概率是多少?(2)设计一种摸球游戏,使摸到黄球的概率与(1)中的概率相同,最少要用多少个球?其中要用多少个黄球?说说你的设计理由.四、课堂总结,提高认识1.学习本节课内容,结合具体情况,请你谈一谈它们的实际意义.2.本节小组交流,你在哪些能力上有提高?•你的同伴中哪些人表现出良好的观察和分析能力.五、布置作业,专题突破1.课本P175第6、7题.2.选用课时作业设计.第四课时作业设计1.小芳随意买了一张足球赛门票,座号是2的倍数和座号是9•的倍数的概率哪个大?答:________.2.一个转盘中,红色占12,黑色占310,白色占15,转动转盘,转盘停止后,指针落在____区域的概率最大.3.数字11444114411111444411144444中,1和4出现的频率分别_____.4.小明和小颖按如下规则的游戏:桌上有5支铅笔,每次取出1支或2支,由小明先取,最后取完铅笔者获胜,如果小明获胜的概率为1,那么小明第一次应取走_____支.5.一个均匀的立方体的六个面上,分别标有数1,2,3,4,5,6.如下左图,是这个立方体表面积的展开图.抛掷这个立方体,则朝上一面的数恰好等于朝下一面上的数的12的概率是______.6.一副扑克牌(去掉大王、小王)任意抽取其中一张,抽到黑球的概率是( ) A .1 B .12 C .14D .以上结论都不对 7.口袋里有相同的6个红球,4个白球和2个黑球,从口袋里摸出了2个球.•若两个都是红色,则甲胜;若两个都是黑色球,则乙胜.请你猜一猜,谁获胜的概率大?( )A .甲大B .乙大C .甲,乙一样大D .无法判定8.盒中有红球,白球,黑球各1粒,从盒中第一次取1粒然后放回盒中,每二次再取1粒然后再放回盒中,则这个实验可能出现的情况有( )A .9种B .6种C .3种D .以上结论都不对9.一只小鸟飞翔在空中,然后随意落在如上右图所示的某个格子中(每个格子除颜色外完全相同),则小鸟落在白色格子中的机会是( ).A .16 B .13 C .23 D .5610.有五粒完全相同的白球,它们上面分别标有4,5,5,5,6,6,7,7.每粒球只标一个数,现将它们放入不透明的布袋中,小明从中任意摸出一粒球.(1)摸出标有5与6的球的概率相同吗?为什么?(2)摸到标有奇数的球的概率大还是摸到标有偶数的球的概率大? 答案:1.座号2 2.红色 3.1214 4.2 5.166.C 7.A 8.B 9.C 10.(1)不同•(2)奇数 六、课后反思§26.2.1用替代物做模拟实验教学内容本节课主要学习的内容是如何应用替代物进行模拟实验. 教学目标1.知识与技能:学会应用替代物进行模拟实验的方法,感受其应用内涵. 2.过程与方法:结合具体情境,初步感受随机事件中的实验思想. 3.情感、态度与价值观:培养良好的推断思维,体会概率的应用价值. 重难点、关键1.重点:认识用替代物进行模拟实验的本质.2.难点:怎样选择替代物,怎样进行实验并得出估计值.3.关键:通过具体实验领会一些事件发生的概率,•揭示概率与统计之间的内在联系. 教学准备1.教师准备:制作投影片.2.学生准备:围棋子、布袋、硬币等.教学过程一、问题牵引,引入新知1.问题提出:(1)在一个摸球实验中,假设没有白球和黑球,该怎么办?学生活动:思考后回答,可以用围棋中白子和黑子,还可以用……(2)在“投掷一颗均匀的骰子”的实验中,如果没有骰子,又该怎么办?学生活动:想出多种替代方法.(3)在“抛掷一枚均匀的硬币”的实验中,如果没有硬币,怎么办?学生活动:思考后回答:可以用两张扑克牌或瓶子盖等.(4)抽屉里有尺码相同的3双黑袜子和1双白袜子,混放在一起,•在夜晚不开灯的情况下,你随意拿出2只,如何用实验估计它们恰好是一双的概率.•你打算怎样实验?如果手边没有袜子应该怎么办?学生活动:填写课本P118表26.2.1.2.教师再次进行用替代物进行模拟实验的讲解.二、实验操作,迁移探究1.问题提出:一个口袋中有8个黑色的球和若干个白色的球,若不许将球倒出来,•则应如何估计出其中的白球数呢?实验替代物:白色、黑色围棋子.教师活动:分四人小组进行讨论,设计一个方案,并开展活动.评析:教学中给予学生较大的空间,采用分四人小组合作交流,而后再小组汇报的教学活动方式,让学生上讲台陈述自己的方案.应该注意的是:学生的方案结果只是一个估计值,比较粗略,不要过多苛求,只是让学生知道这些是现实生活中常用的估计方法.2.参考思路:(1)思路1:从口袋中随机摸出一球,记下其颜色,再把它放回袋中,不断重复上述过程,共摸了200次,其中有57次摸到黑球,因此我们估计口袋中大约有20•个白球.建构方法:假设口袋中有x个白球,通过多次实验,•可估计出从口袋中随机摸出一球,它为黑球的概率;另一方面这个概率又应等于88x+,据此可估计出白球数x.(2)思路2:利用抽样调查方法,从口袋中一次摸出10个球,•求出其中黑球数与10的比值,再把球放回口袋中,不断重复上述过程,总共摸了20次,黑球数与10的比值的平均数为0.25,因此,估计口袋中大约有24个白球.建构方法:假设口袋中有x个白球,通过多次抽样调查,求出样本中黑球数与总球数的比值的“平均水平”,这个“平均水平”应近似于88x+.据此,可以估计出x的值.三、分组讨论,合作探究1.活动方案:在每个小组的口袋中放入已知个数的黑球和若干个白球.(1)分别利用上述两种方法估计口袋中所放的白球数.(2)打开口袋,数一数口袋中白球的个数,你们的估计值和实际情况一致吗?•为什么?(3)全班交流,看看各组的估计结果是否一致,•各组结果与实际情况的差别有多大?(4)将各组的数据汇总,并根据这个数估计一个口袋中的白球数,•看一看估计结果又如何?(5)为了使估计结果较为准确,应该注意些什么?教师活动:提出方案,组织学生分组讨论,巡视,关注学生的思维.学生活动:分四人小组进行实验活动,记录数据,小组汇报交流.评析:在实验的具体操作中,学生的实验结果与实验数据会存在偏差,个别小组的结果还可能差异较大,但是将各组数据汇总,由于实验的次数累加后增大,此时估计值和实际情况差别较小.在具体操作中,可以用大小相似的不同颜色的豆子代替白球和黑球,也可用围棋代替.2.活动反思:上述的两种方法各有所长,从理论上讲,如果实际实验次数是够多,那么思路1的方法应当是比较准确的,但这种方法的现实意义一般不大.而思路2的方法具有现实意义,若总数较小时,用思路2的方法估计,精确度较差,但是,•对于许多实际问题(其总数往往较大),这种精确度是允许的,而且方便可行.教师活动:积极地鼓励学生说出他们的想法.学生活动:相互探讨,发表自己的看法.四、课堂总结,提高认识本节课的模型选择,注意了模型的递进性,现实性和趣味性,激发学生的学习兴趣,学习中应注意思维多样性,培养学生主动交流的意识.五、布置作业,专题突破1.课本P117练习,习题26.2第1、2、8、9、10题.2.选用课时作业设计.第一课时作业设计1.口袋里有10个形状完全相同的球,其中5个红球,3个黑球,2个白球,•下列事件中必然事件是()A.拿出一个球是红球 B.拿出2个球是白球C.拿出5个球是2个白球,3个红球 D.拿出6个球总有一个是红球2.掷一枚均匀的骰子,1朝上的概率为()A.0.25 B.0.2 C.16D.133.一副扑克牌(54张),去掉大、小王,从中任意抽取一张,抽到“3”的概率为()A.1135 (13265254)B C D4.从一黑色箱子内,摸出红球的概率为15,已知箱子里的红球个数为2,则箱子里共有球().A.15个 B.10个 C.8个 D.5个5.甲、乙两种饮料在一次抽样检查中,乙的合格率为85%,乙的合格率为92%,•你认为买哪一种对人体健康更好?说一说你的想法.6.有十张形状相同的卡片,每张卡片上分别写有1,2,3,4,5,6,7,8,9,10,从中任意抽取一张,问抽到数字5的卡片的概率是多少?抽到数字是2的倍数的卡片的概率是多少?是3的倍数的卡片概率是多少?是5的倍数的卡片的概率是多少?7.法国巴黎是欧洲一个美丽的城市,•某研究员为了估计巴黎这一座美丽而古老的古城中的鸽子的数量,设计了多种多样的方法,你能设计一个方案吗?答案:1.D 2.C 3.A 4.B 5.乙理由略 6.11012310157.略六、课后反思§26.2.2用计算器做模拟实验教学内容本节课主要学习用计算器做模拟实验.教学目标1.知识与技能:能用计算器或计算机等进行模拟实验,估计一些复杂的随机事件发生的概率.2.过程与方法:经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3.情感、态度与价值观:形成对某一事件发生的概率的较为全面的理解,初步形成随机观念,发展学生初步的辩证思维能力.。