2.1.1曲线与方程教案
- 格式:docx
- 大小:162.73 KB
- 文档页数:4
§曲线与方程授课教师:王爽●教学目标一知识教学点:使学生了解曲线上的点与方程的解之间的一一对应关系,初步领会“曲线的方程”与“方程的曲线”的概念,从而为求已知曲线的方程奠定理论基础.二能力训练点:在形成曲线和方程概念的过程中,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法.三学科渗透点:从形数结合中受到辩证唯物主义的思想教育.●教学重点“曲线的方程”与“方程的曲线”的概念.解决办法:通过例子,揭内涵;讨论归纳,得出定义;变换表达,强化理解;初步运用,巩固提高;给出推论,升华定义.●教学难点难点在于对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延.据此可用举反例的方法来突破难点,促使学生对概念表述的严密性进行探索,自然地得出定义.●教学过程Ⅰ知识引入:和学生共同探讨圆锥曲线的形成过程以及如何研究圆锥曲线的性质。
由此提出用代数方法即方程的思想研究曲线问题,引出曲线和方程的关系。
Ⅱ讲授新课1.曲线与方程关系举例:(由最简单,学生最熟悉的直线和圆作为引例来研究)师:我们知道,两坐标轴所成的角位于第一、三象限的平分线的方程是-=0这就是说,如果点M(0,0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即0=0,那么它的坐标(0,0)是方程-=0的解;反过来,如果(0,0)是方程-=0的解,即0=0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上(如左图有)一、三象限的平分线上的点(0,0)−−→←−−0=0−−→←−−(0,0)是方程-=0的解引例2:以坐标原点为圆心,半径等于1的圆的方程22 = 1由学生解释2.曲线与方程概念一般地,在直角坐标系中,如果其曲线c上的点与一个二元方程f,=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线3.引用实例,加深认识下列各题中,图所示的曲线C 的方程为所列方程,对吗?如果不对,是不符合关系⑴还是关系⑵? 曲线C 为△ABC 为中线AO,方程:X=0 曲线C 是过点(4,1)的反比例曲线图像4.例题讲解:例1 证明与两条坐标轴的距离之积是常数)0(>k k 的点的轨迹方程是k xy ±=。
2.1.1曲线与方程教学目标 知识与技能1、 了解曲线上的点与方程的解之间的一一对应关系,2、 领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理; 过程与方法1.在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法;2.体会研究解析几何的基本思想和解决解析几何问题的方法. 情感态度与价值观培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神教学重点:理解曲线与方程的有关概念与相互联系 教学难点:定义中规定两个关系(纯粹性和完备性) 课前准备:多媒体、实物投影仪 教学过程设计: 1、问题: (1)求如图所示的直线的方程,并说明曲线上的点与方程之间的关系;观察、思考,求得方程为引导学生分析:(1)如果点是这条直线上的任意一点,则它到两坐标轴的距离相等,即,那么它的坐标是方程的解.x y =00(,)M x y 00x y =00(,)x y x y =(2) 仿照(1)说明:以为圆心,以r 为半径的圆与方程的关系⑴ 设M (x o ,y o )是圆上任一点,则它到圆心的距离等于 半径 ,即,即:,这就是说,(x o ,y o )是此方程的解;⑵ 如果(x o ,y o )是方程的解,则可以推得,即点M (x o ,y o )到圆心的距离等于半径 ,点M 在圆上.1.在直角坐标系中,如果某曲线C 上的点与一个二元方程(,)a b 222()()x a y b r -+-=2200()()x a y b r -+-=222()()x a y b r -+-=222()()x a y b r -+-=2200()()x a y b r -+-=即:3.练习:下列方程表示如图所示的直线C ,对吗?为什么? (1);(2); (3)|x |-y =0.上题供学生思考,口答.解:方程(1)、(2)、(3)都不是表示曲线C 的方程. 第(1)题中曲线C 上的点不全都是方程的解,如点(-1,-1)等,即不符合“曲线上的点的坐标都是方程的解”这一结论;第(2)题中,尽管“曲线C 上的坐标都是方程的解”,但以方程的解为坐标的点不全在曲线C 上,如点(2,-2)等,即不符合“以方程的解为坐标的点都在曲线上”这一结论; 第(3)题中,类似(1)(2)得出不符合“曲线上的点的坐标都是方程的解”,“以方程的解为坐标的点都在曲线上”.事实上,(1)(2)(3)中各方程表示的曲线应该是下图的三种情况:F C C F F C =⇔⎭⎬⎫⊆⊆)2()1(0=-y x 022=-y x 0=-y x 022=-y x (1)x-y=0011-1xyy x-1110(2)x 2-y 2=0yx-1110(3)|x|-y=01.例1:证明与两条坐标轴的距离的积是常数的点的轨迹方程是证明:(1)如图,设是轨迹上的任意一点,因为点M 与x 轴的距离为,与y 轴的距离为,所以:,即是方程的根;(2)设点的坐标是方程的根,则:,即 ,而、是点到横轴、纵轴的距离,因此点到这两条直线的距离的积是常数k ,点是曲线上的点.由(1)(2)可知,是与两条坐标轴的距离的积为常数的点的轨迹方程.1.教科书练习1、2. 练习与测试:1.如果曲线C 上的点满足方程F (x ,y )=0,则以下说法正确的是( )A.曲线C 的方程是F (x ,y )=0B.方程F (x ,y )=0的曲线是CC.坐标满足方程F (x ,y )=0的点在曲线C 上(0)k k >xy k =±00(,)M x y 0||y 0||x 00||||x y k ⋅=00(,)x y xy k =±1M 11(,)x y xy k =±11x y k =±11||||x y k ⋅=1||y 1||x 1M 1M 1M xy k =±(0)k k >D.坐标不满足方程F (x ,y )=0的点不在曲线C 上【解析】判定曲线和方程的对应关系,必须注意两点:(1)曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”称为纯粹性;(2)以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称为完备性,只有点和解一一对应,才能说曲线的方程,方程和曲线【答案】D2.判断下列结论的正误,并说明理由.(1)过点A (3,0)且垂直于x 轴的直线的方程为x =0; (2)到x 轴距离为2的点的直线方程为y =-2;(3)到两坐标轴的距离乘积等于1的点的轨迹方程为xy =1;(4)△ABC 的顶点A (0,-3),B (1,0),C (-1,0),D 为BC 中点,则中线AD 的方程为x =0解:(1)满足曲线方程的定义.∴结论正确(2)因到x 轴距离为2的点的直线方程还有一个;y =2,即不具备完备性. ∴结论错误.(3)到两坐标轴的距离的乘积等于1的点的轨迹方程应为|x |·|y |=1,即xy =±1. ∴所给问题不具备完备性∴结论错误(4)中线AD 是一条线段,而不是直线, ∴x =0(-3≤y ≤0),∴所给问题不具备纯粹性. ∴结论错误.3.方程(3x -4y -12)·[log 2(x +2y )-3]=0的曲线经过点A (0,-3)、B (0,4)、C ()、D (4,0)中的( )A.0个B.1个C.2个D.3个【解析】方程表示的两条直线3x -4y -12=0和x +2y -9=0,但应注意对数的真数大于0,∴x +2y >0解:由对数的真数大于0,得x +2y >0.47,35∴A (0,-3)、C ()不合要求 将B (0,4)代入方程检验,不合要求. 将D (4,0)代入方程检验,合乎要求. 【答案】B.4.已知点A (-3,0),B (0,),C (4,-),D (3sec θ, tan θ),其中在曲线上的点的个数为( )A.1B.2C.3D.4【解析】由曲线上的点与方程的解的关系,只要把点的坐标代入方程,若满足这个方程,说明这是这个方程的解,这个点就在该方程表示的曲线上.将点A (-3,0)、B (0,)、C(4,-)、D (3sec θ, tan θ)代入方程检验,只有点A 和点B 满足方程. 【答案】B.5.如果两条曲线的方程F 1(x ,y )=0和F 2(x ,y )=0,它们的交点M (x 0,y 0),求证:方程F 1(x ,y )+λF 2(x ,y )=0表示的曲线也经过M 点.(λ为任意常数) 证明:∵M (x 0,y 0)是曲线F 1(x ,y )=0和F 2(x ,y )=0的交点, ∴F 1(x 0,y 0)=0,F 2(x 0,y 0)=0. ∴F 1(x 0,y 0)+λF 2(x 0,y 0)=0(λ∈R )∴M (x 0,y 0)在方程F 1(x ,y )+λF 2(x ,y )=0所表示的曲线上.47,35-53355459522=-y x 53355459522=-y x 459522=-y x。
2.1.1曲线与方程一、教学目标:1.了解平面直角坐标中“曲线的方程”和“方程的曲线”的含义及其对应关系,感受数形结合的基本思想;2.根据曲线方程的概念解决一些简单问题.二、教学重点,难点:教学重点:曲线方程的概念 ;教学难点:曲线方程概念的理解.三、教学方法:探析归纳,讲练结合四、教学过程(一).问题情境1.情境: 在学习圆的方程时,有这样的叙述:“以(,)C a b 为圆心,r 为半径的圆的方程是222()()x a y b r -+-=”.2.问题: 怎样理解这个表述?(二).学生活动在学习圆的方程时,有这样的叙述:“以(,)C a b 为圆心,r 为半径的圆的方程是222()()x a y b r -+-=”.这句话的含义是,圆C 上的点的坐标(,)x y 都是方程222()()x a y b r -+-=的解,且以方程222()()x a y b r -+-=的解为坐标的点都在圆C 上.(三).新知探究1、圆的方程及其意义2、两坐标轴所成的角位于第一、三象限的平分线的方程是x -y =0.这就是说,如果点M (x 0,y 0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即x 0=y 0,那么它的坐标(x 0,y 0)是方程x -y=0的解;反过来,如果(x 0,y 0)是方程x -y =0的解,即x 0=y 0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上.3、函数y =x 2的图象是关于y 轴对称的抛物线.这条抛物线是所有以方程y =x 2的解为坐标的点组成的.这就是说,如果M (x 0,y 0)是抛物线上的点,那么(x 0,y 0)一定是这个方程的解;反过来,如果(x 0,y 0)是方程y =x 2的解,那么以它为坐标的点一定在这条抛物线上,这样,我们就说y =x 2是这条抛物线的方程.4、在直角坐标系中,如果其曲线c 上的点与一个方程F (x ,y )=0的实数解建立了如下的关系:(1)曲线c 上的点的坐标都是方程F (x ,y )=0的解;(2)以方程F (x ,y )=0的解为坐标的点都是曲线c 上的点那么,方程F (x ,y )=0叫做曲线c 的方程;曲线c 叫做方程F (x ,y )=0的曲线.5.从集合的角度看,曲线c 上所有点组成的集合记作A ;B 是所有以方程F (x ,y )=0的实数解为坐标的点组成的集合关系(1)指集合A 是集合B 的子集,关系(2)指集合B 是集合A 的子集.这样根据集合的性质,可以用集合相等的概念来定义“曲线的方程”与“方程的曲线”,即:B A A B B A =⇔⎭⎬⎫⊆⊆)2()1( 一般地,如果曲线C 上点的坐标(,)x y 都是方程(,)0f x y =的解且以方程(,)0f x y =的解(,)x y 为坐标的点都在曲线C 上,那么方程(,)0f x y =叫做曲线C 的方程,曲线C 叫做方程(,)0f x y =的曲线.(四).知识运用例1.判断点(2,,(3,1)是否是圆2216x y +=上.【解析】判断点是否在曲线上,就看该点的坐标是否是这个曲线方程的解,即点坐标是否满足曲线方程.【答案】解:∵22241216+=+=,即点(2,的坐标是方程2216x y +=的解, 所以该点在圆上.∵22311016+=≠,即点(3,1)的坐标不是圆方程2216x y +=的解,所以该点不在这个圆上.例2.已知一座圆拱桥的跨度是36m ,圆拱高为6m ,以圆拱所对的弦AB 所在的直线为x 轴,AB 的垂直平分线为y 轴,建立直角坐标系xOy (如图所示),求圆拱的方程.【答案】解:依据题意,圆拱桥所在圆的圆心在y 轴上,可设为1(0,)O b ,设圆拱所在圆的半径为r ,那么圆上任意一点(,)P x y 应满足1O P r =,即22(0)()x y b r -+-=即222(0)()x y b r -+-=∵点(18,0),(0,6)B C 的圆上,∴222222(180)(0)(00)(6)b r b r ⎧-+-=⎪⎨-+-=⎪⎩解得2430b r =-⎧⎨=⎩ 由于圆拱只是它所在的圆位于x 轴上方的一部分(包括x 轴上的点),所以,圆拱的方程是222(24)30(06)x y y ++=≤≤例3.画出方程的曲线:0log log =-x y y x . 【答案】解:由0log log =-x y y x ,得:⎪⎩⎪⎨⎧≠≠±=11lg lg y x x y ,即原方程的曲线等价于)1,0(1≠>=x x xy 或)1,0(≠>=x x x y ,(图略). 说明:(1)围绕曲线的方程和方程的曲线说明;(2)方程的变形要做到同解变形。
课题:2.1.1曲线与方程(第1课时)(人教A版普通高中课程标准实验教科书数学选修2—1第二章第一节) 一、内容和内容解析1.教学内容《曲线与方程》共分两小节,第一小节主要内容是曲线的方程、方程的曲线的概念;第二小节内容是如何求曲线的方程.本课时为第一小节内容.2.地位与作用本小节内容揭示了几何中的“形”与代数中的“数”相统一的关系,体现了解析几何这门课的基本思想——数形结合思想,对解析几何教学有着指导性的意义.其中,对曲线的方程和方程的曲线从概念上进行明确界定,是解析几何中数与形互化的理论基础和操作依据.《曲线与方程》作为《圆锥曲线与方程》的第一节,一方面,该部分内容是建立在学生学习了直线的方程和圆的方程的基础上对曲线与方程关系认识的一次飞跃;另一方面,它也为下一步学习圆锥曲线方程奠定了模型的基础.因此,它在高中解析几何学习中起着承前启后的关键作用.二、目标和目标解析本课时的教学目标是结合已学曲线及其方程的实例,了解曲线与方程的对应关系,进一步理解数形结合的基本思想.具体目标如下:1.通过探究“以方程的解为坐标的点”汇集的图形,感知并归纳概括曲线与方程的对应关系;2.初步理解方程的曲线与曲线的方程的含义;3.通过经历曲线与方程的对应关系的探究过程,发展抽象概括的能力;4.能使用曲线的方程(方程的曲线)的概念判断曲线与方程的对应关系,继续理解数形结合思想.三、教学问题诊断分析1.问题诊断学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.但是从直线与方程、圆与方程到曲线与方程的对应关系是一次从感性认识到理性认识的“飞跃”,由于大多数学生对“生活中其他的曲线是否能用、如何使用方程表示”这些问题还未曾有过思考,加之曲线的方程(方程的曲线)这一组概念有着较高的抽象性,所以预计在本课的学习中,学生可能出现以下困难:(1)作图探究结束后,学生独立地归纳概括并写出曲线的方程(方程的曲线)的概念时不规范,不全面;(2)难以理解“曲线上的点的坐标都是方程的解”和“以方程的解为坐标的点都在曲线上”这两句话在揭示“曲线与方程”的关系时各自所起的作用.2.重难点重点:曲线的方程(方程的曲线)的概念难点:曲线的方程(方程的曲线)概念的生成和理解3.突出重点、突破难点的策略本节课的教学,根据“问题引导,任务驱动”的设计思路,遵循概念学习的规律,使学生在过程中感受数形结合,从特殊到一般,化归与转化的数学思想.具体表现在:(1)用蕴含数学文化的广告创设情境,并将“章头图”、“章导言”融入其中,产生认知冲突,感悟学习曲线与方程的必要性;(2)让学生经历“作图—存异—质疑—寻因”的探究过程,感知方程的变化带来曲线的变化,曲线的差异导致方程的差异,再通过“独立书写—交流讨论—互动修正”生成概念;(3)学生自主举例,辨析概念,联系已学知识,完成对概念的“结构化”.四、教学支持条件分析1.学情分析本课授课对象是成都石室中学高二理科实验班的学生,数学基础扎实,思维较活跃,具有较为丰富的探究活动经验,但在抽象概括能力和语言的规范表达上还有待进一步提升.2.教学策略与教法、学法本课采取“探究—发现”教学模式.教师的教法注重活动的安排和问题的引导,通过问题引导学生从特殊到一般进行探索发现,并归纳概括.学生的学法注重独立探究、合作交流、归纳建构.教具:多媒体PPT课件,平板电脑,三角板,彩色粉笔学具:教材、草稿本、三角板、圆规、铅笔五、教学过程设计结合教材知识内容和教学目标,本课的教学环节及时间分配如下:教学内容师生活动(预设)设计说明一、创设情景,引入概念师:不知大家有没有看过下面这则广告?。
2.1曲线与方程教学设计教案第一篇:2.1曲线与方程教学设计教案教学准备1. 教学目标[1]了解曲线上的点与方程的解之间的一一对应关系 [2]初步领会“曲线的方程”与“方程的曲线”的涵义 [3]强化“形”与“数”一致并相互转化的思想2. 教学重点/难点教学重点:理解“曲线的方程”与“方程的曲线”的涵义教学难点:利用定义验证曲线是方程的曲线,方程式曲线的方程3. 教学用具多媒体设备4. 标签教学过程教学过程设计1 复习引入【师】在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线,请思考下面问题:【板演/PPT】思考1 直线y=x上任一点M到两坐标轴距离相等吗?思考2 到两坐标轴距离相等的点都在直线y=x上,对吗?思考3 到两坐标轴距离相等的点的轨迹方程是什么?为什么?【生】学生思考交流 2 新知介绍[1]结合具体实例,引入曲线方程和方程曲线概念【师】:引导学生发言总结【板演/PPT】答 y=±x. 理由:在直角坐标系中,到两坐标轴距离相等的点M的坐标(x0,y0)满足y0=x0或y0=-x0,即(x0,y0)是方程y=±x的解;反之,如果(x0,y0)是方程y=x或y=-x的解,那么以(x0,y0)为坐标的点到两坐标轴距离相等.【师】思考下面问题:思考4 曲线C上的点的坐标都是方程f(x,y)=0的解,能否说f(x,y)=0是曲线C的方程?思考5 判断下列命题是否正确.(1)以坐标原点为圆心,半径为r的圆的方程是y=(2)过点A(2,0)平行于y轴的直线l的方程为|x|=2. 【生】思考总结【板演/PPT】解 (1)不正确.设(x0,y0)是方程y=x02+y02=r2.两边开平方取算术平方根,得的解,则y0=,即;=r即点(x0,y0)到原点的距离等于r,点(x0,y0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r的圆上的一点如点在圆上,却不是y=的解,这就不满足曲线上的点的坐标都,是方程的解.所以,以原点为圆心,半径为r的圆的方程不是y=而应是y=±. (2)①、直线上的点的坐标都满足方程︱x︱=2②、满足方程︱x︱=2的点不一定在直线上结论:过A(2,0)平行于y轴的直线的方程不是︱x︱=2 【师】引导学生交流思想总结曲线方程的概念【板演/PPT】曲线的方程、方程的曲线一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.【师】引导学生深入理解定义,从充要条件来理解这个定义【板演/PPT】定义中的两个条件是判定一个方程是否为所定曲线的方程,一条曲线是否为所定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.【板演/PPT】从集合角度理解为:定义的实质是平面曲线的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以求曲线的方程 [2]概念应用【师】下面我们看屏幕上的例题【板演/PPT】例1:若命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题为真命题的是( ).A.不是曲线C上的点的坐标,一定不满足方程f(x,y)=0 B.坐标满足方程f(x,y)=0的点均在曲线C上 C.曲线C是方程f(x,y)=0的曲线D.不是方程f(x,y)=0的解,一定不是曲线C上的点. 【师】从定义入手,考虑充要条件【生】思考回答【板书/PPT】解析∵题设命题只说明“曲线C上的点的坐标都是方程f(x,y)=0的解”,并未指出“以方程f(x,y)=0的解为坐标的点都是曲线C上的点”,∴A,B,C都是假命题,如曲线C:平面直角坐标系一、三象限角平分线上的点,与方程f(x,y)=x2-y2=0,满足题设条件,但却不满足选项A,B,C的结论,根据逆否命题是原命题的等价命题知,D是正确的.【师】规律方法(1)判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上.从而建立方程的解与曲线上点的坐标的一一对应关系.(2)定义中的两个条件是判定一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的准则,缺一不可.因此,在证明f(x,y)=0为曲线C的方程时,必须证明两个条件同时成立.【师】为了深刻的理解方程与曲线,我们来看下列一个问题【板书/PPT】[例2] 下列方程表示如图所示的直线,对吗?为什么?不对请改正.【生】分析各个方程所表示的曲线是否与图中图象符合【板书/PPT】解:不对,应为y=x 【师】引导学生反思总结【板书/PPT】反思与感悟判断方程表示什么曲线,必要时要对方程适当变形,变形过程中一定要注意与原方程等价,否则变形后的方程表示的曲线就不是原方程的曲线.【板书/PPT】【师】引导学生思考【板书/PPT】方法点拨 (1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.解:带入验证知P点在此方程所表示的曲线上,Q点不在。
2.1曲线与方程课时分配:1.第一课曲线和方程1个课时2.第二课四种命题1个课时3.第三课四种命题间的相互关系1个课时1.1.1命题【教材分析】“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。
学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。
根据以上分析,确立教学重点是:理解曲线的方程和方程的曲线的概念;难点是:对曲线与方程对应关系的理解。
由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。
【教学目标】一、知识目标:1.了解曲线上的点的坐标与方程的解之间的一一对应关系;2.初步理解“曲线的方程”与“方程的曲线”的概念;3.学会根据已学知识为切入点,引起关注,引发数学思考进而分析、判断、归纳结论4.强化“形”与“数”一致并相互转化的思想方法。
二、能力目标:1.通过直线方程和圆的方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;2.在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;3.能用所学集合知识理解新的概念,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
三、情感目标:1.以现实生活中飞逝的流星,雨后的彩虹,从古代的石拱桥到现代繁华都市的立交桥的图片激发学生学习曲线与方程的兴趣。
通过两个问题的引入,让学生感受从特殊到一般的认知规律;2.通过问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
【教法分析】本节课从问题引入→推广→得概念→概念挖掘深化→具体应用的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。
2.1.1曲线与方程(一)教学目标1、知识与技能:能说出曲线的方程和方程的曲线的概念的定义,并结合具体例子对定义进行解释.可以求出简单曲线的方程,画出简单方程的曲线.2、过程与方法:把自己在理解或解决曲线的方程和方程的曲线问题过程中的经验、困难或者教训与老师和同学交流,获得更好的理解和方法的改进.3、情感、态度与价值观:加深对数形结合的理解.(二)教学重点与难点重点:通过理解方程的解与曲线上的点一一对应的关系,理解曲线的方程、方程的曲线的概念.难点:对曲线与方程的概念的理解.教具准备:与教材内容相关的资料.教学设想:通过学生的参与,激发学生学习数学的兴趣.(三)教学过程一.问题引入在必修2中我们过直线和圆,然而直线和圆我们在初中都做了非常系统、深入的研究,那么,与初中相比,高中研究的方法有什么不同呢?借助直线或圆的方程我们都研究过哪些问题?老师引导学生得出:用解析的方法,研究直线的位置关系(如平行、相交、重合),直线与圆的位置关系、圆与圆的位置关系……老师在学生回答的基础上从如下几个方面做总结提升:第一,对比初、高中对直线和圆的研究,我们发现,研究的问题都是相似的,但是研究的方法不同.初中是借助平面几何图形复杂的推理论证解决问题,而高中是利用方程,凭借几条简单的数的运算法则解决问题的.第二,在今后的学习中,我们会发现方程的作用很强大,利用方程我们可以研究更多的几何图形(曲线),对几何图形的认识会更加深入、更加细致.本节课,我们将继续研究一般曲线与方程的关系,进一步体会曲线、方程两个不同领域的对象是怎样结合在一起的.二.思考分析在平面直角坐标系中:问题1:直线x=5上的点到y轴的距离都等于5,对吗?提示:对.问题2:到y轴的距离都等于5的点都在直线x=5上,对吗?提示:不对,还可能在直线x=-5上.问题3:到y轴的距离都等于5的点的轨迹是什么?提示:直线x=±5.三.抽象概括曲线的方程、方程的曲线在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.四.例题分析及练习[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.[思路点拨]按照曲线的方程与方程的曲线的定义进行分析.[精解详析](1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.[感悟体会](1)这类题目主要是考查“曲线的方程与方程的曲线”的定义中所列的两个条件,正好组成两个集合相等的充要条件,二者缺一不可.这就是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.(2)判断方程表示什么曲线,要对方程适当变形.变形过程中一定要注意与原方程的等价性,否则变形后的方程表示的曲线就不是原方程的曲线.另外,变形的方法还有配方法、因式分解法.训练题组11.命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( )A .方程f (x ,y )=0的曲线是CB .方程f (x ,y )=0的曲线不一定是CC .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上解析:“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A 、C 、D 都不正确,B 正确.答案:B2.方程4x 2-y 2+6x -3y =0表示的图形是( )A .直线2x -y =0B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0 解析:方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0.∴表示两条直线2x -y =0或2x +y +3=0.答案:C[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M (m 2,-m )在此方程表示的曲线上,求m 的值. [思路点拨] 对于(1),只需判断点P ,Q 的坐标是否满足方程即可;对于(2),就是把点M 的坐标代入方程,从而得到关于m 的方程,进而求出m 的值.[精解详析] (1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)∵点M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,∴x =m 2,y =-m 适合上述方程,即(m 2)2+(-m -1)2=10.解之得m =2或m =-185,∴m 的值为2或-185. [感悟体会](1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.(2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题.训练题组23.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( )A .在直线l 上,但不在曲线C 上B .在直线l 上,也在曲线C 上C .不在直线l 上,也不在曲线C 上D .不在直线l 上,但在曲线C 上解析:将M 点的坐标代入直线l 、曲线C 的方程验证可知点M 在直线l 上,也在曲线C 上. 答案:B4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________. 解析:曲线过A (0,-2),B (12,3)两点, ∴A (0,-2),B (12,3)的坐标就是方程的解.∴⎩⎪⎨⎪⎧4b =4,14a +3b =4,∴b =1,a =4. 答案:4 15.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.解:∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2(a +12)2+12.∴k ≤12,∴k 的取值范围是(-∞,12]. 五.课堂小结与归纳1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.六.当堂训练1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =-2x ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:∵y =-2x ≤0,而y 2=4x 中y 可正可负,∴点M 在曲线y 2=4x 上,但M 不一定在y =-2x 上.反之点M 在y =-2x 上时,一定在y 2=4x 上.答案:B2.如图,图形的方程与图中曲线对应正确的是( )解析:A 中方程x 2+y 2=1表示的是以(0,0)为圆心,1为半径的圆,故A 错;B 中方程x 2-y 2=0可化为(x -y )(x +y )=0,表示两条直线x -y =0,x +y =0,故B 错;C 中方程lg x +lg y =1可化得y =1x(x >0),此方程只表示第一象限的部分,故C 错;D 中的方程y =|x |去绝对值得y =⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,表示两条射线,所以D 正确. 答案:D3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( )A .在直线l 上,但不在曲线C 上B .在直线l 上,也在曲线C 上C .不在直线l 上,也不在曲线C 上D .不在直线l 上,但在曲线C 上解析:选B.将M (2,1)代入直线l 和曲线C 的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M 既在直线l 上又在曲线C 上,故选B.4.直线x -y =0与曲线xy =1的交点是( )A .(1,1)B .(-1,-1)C .(1,1)、(-1,-1)D .(0,0)解析:选C.由⎩⎪⎨⎪⎧ y =x ,xy =1,得⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧x =-1,y =-1. 5.方程x +|y -1|=0表示的曲线是( )解析:选B.方程x +|y -1|=0可化为|y -1|=-x ≥0,∴x ≤0,因此选B.6.若点P (2,-3)在曲线x 2-ky 2=1上,则实数k =________.解析:将P (2,-3)代入曲线方程得4-9k =1,∴k =13.答案:137.给出下列结论:①方程y x -2=1表示斜率为1,在y 轴上的截距为-2的直线; ②到x 轴距离为2的点的直线的方程为y =2;③方程(x 2-4)2+(y 2-4)2=0表示四个点.其中正确的结论的序号是__________.解析:①不正确.方程等价于y =x -2(x ≠2),∴原方程表示斜率为1,在y 轴上的截距为-2的直线,但除去点(2,0);到x 轴距离为2的点的直线的方程应是|y -0|=2,即y =2或y =-2,故②不正确;对于③,原方程可化为⎩⎪⎨⎪⎧ x 2-4=0y 2-4=0,即⎩⎪⎨⎪⎧x =±2y =±2,∴方程表示四个点,所以③正确.答案:③8.已知曲线C 的方程为x =4-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解:由x =4-y 2,得x 2+y 2=4.又x ≥0,∴方程x = 4-y 2表示的曲线是以原点为圆心,2为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π·4=2π,所以所求图形的面积为2π.。
2.1.1 曲线与方程的概念1.曲线与方程的概念一般地,一条曲线可以看成动点依某种条件运动的轨迹,所以曲线的方程又常称为满足某种条件的点的 .一个二元方程总可以通过移项写成F (x ,y )=0的形式,其中F (x ,y )是关于x ,y 的解析式. 在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间具有如下关系: ① 都是方程F (x ,y )=0的解; ②以方程F (x ,y )=0的解为坐标的点都在 C 上.那么,方程F (x ,y )=0叫做 ;曲线C 叫做 .思考1:如果曲线与方程仅满足“以方程F (x ,y )=0的解为坐标的点都在曲线C 上”,会出现什么情况?举例说明.思考2:如果曲线C 的方程是F (x ,y )=0,那么点P (x 0,y 0)在曲线C 上的充要条件是什么?2.两条曲线的交点坐标曲线C 1:F (x ,y )=0和曲线C 2:G (x ,y )=0的交点坐标为方程组⎩⎪⎨⎪⎧F (x ,y )=0,G (x ,y )=0的实数解.初试身手1.方程xy 2-x 2y =2x 所表示的曲线( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称D .关于直线x -y =0对称2.下列各组方程中表示相同曲线的是( ) A .x 2+y =0与xy =0B.x+y=0与x2-y2=0C.y=lg x2与y=2lg xD.x-y=0与y=lg 10x3.如图,图形的方程与图中曲线对应正确的是()A B C D合作探究类型1 曲线与方程的概念例1分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.规律方法解决“曲线”与“方程”的判定这类问题(即判定方程是不是曲线的方程或判定曲线是不是方程的曲线),只要一一检验定义中的“两性”是否都满足,并作出相应的回答即可.判断点是否在曲线上,就是判断点的坐标是否适合曲线的方程.跟踪训练1.命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是真命题,下列命题中正确的是() A.方程f(x,y)=0的曲线是CB.方程f(x,y)=0的曲线不一定是CC.f(x,y)=0是曲线C的方程D.以方程f(x,y)=0的解为坐标的点都在曲线C上2.方程4x2-y2+6x-3y=0表示的图形是()A.直线2x-y=0B.直线2x+y+3=0C.直线2x-y=0或直线2x+y+3=0D.直线2x+y=0和直线2x-y+3=0类型2 曲线与方程关系的应用 例2 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M ⎝⎛⎭⎫m 2,-m 在此方程表示的曲线上,求m 的值. 规律方法(1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.(2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题. 跟踪训练3.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.类型3 由方程判断其表示的曲线 探究问题如何证明已知曲线C 的方程是f (x ,y )=0?[提示] 用“曲线的方程”和“方程的曲线”的定义来证明已知曲线C 的方程是f (x ,y )=0,证明中分两个步骤:第一步,设M (x 0,y 0)是曲线C 上任一点,证明(x 0,y 0)是方程f (x ,y )=0的解;第二步,设(x 0,y 0)是方程f (x ,y )=0的任一解,证明点M (x 0,y 0)在曲线C 上. 例3 方程(2x +3y -5)(x -3-1)=0表示的曲线是什么? 母题探究1.(变换条件)把方程换成“2x -3-1(2x +3y -5)=0”,其表示什么曲线?2.(变换条件)把方程换成“(2x +3y -5)[log 2(x +2y )-3]=0”,其表示什么曲线? 规律方法方程表示的曲线的判断步骤提醒:(1)方程变形前后要等价,否则变形后的方程表示的曲线不是原方程代表的曲线. (2)当方程中含有绝对值时,常采用分类讨论的思想. 当堂达标 1.思考辨析(1)到两坐标轴距离相等的点的轨迹方程是y =±x .( ) (2)方程x -y =0表示直角坐标系中第一、三象限的角平分线.( )(3)条件甲:“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,条件乙:“曲线C 是方程f (x ,y )=0的图形”,则条件甲是条件乙的充要条件. ( )2.若P (2,-3)在曲线x 2-ay 2=1上,则a 的值为( ) A .2 B .3 C.12 D.133.方程(x 2-4)2+(y 2-4)2=0表示的图形是________. 4.方程1-|x |=1-y 表示的曲线是________.参考答案新知初探 1.轨迹方程①曲线C上点的坐标②曲线曲线的方程方程的曲线思考1:[提示]如果曲线与方程仅满足“以方程F(x,y)=0的解为坐标的点都在曲线C上”,有可能扩大曲线的边界.如方程y=1-x2表示的曲线是半圆,而非整圆.思考2:[提示]若点P在曲线C上,则F(x0,y0)=0;若F(x0,y0)=0,则点P在曲线C 上,所以点P(x0,y0)在曲线C上的充要条件是F(x0,y0)=0.初试身手1.【答案】C【解析】将(-x,-y)代入xy2-x2y=2x方程不变,故选C.2.【答案】D3.【答案】D合作探究类型1 曲线与方程的概念例1解:(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5;但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限两轴夹角平分线上的点的坐标都满足x+y=0;反之,以方程x+y=0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x+y=0.跟踪训练1.【答案】B【解析】“曲线C上的点的坐标都是方程f(x,y)=0的解”,但“以方程f(x,y)=0的解为坐标的点”不一定在曲线C上,故A、C、D都不正确,B正确.]2.【答案】C【解析】方程可化为(2x-y)(2x+y+3)=0,即2x-y=0或2x+y+3=0.∴表示两条直线2x-y=0或2x+y+3=0.类型2 曲线与方程关系的应用例2解:(1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴点P(1,-2)在方程x2+(y-1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)∵点M ⎝⎛⎭⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上,∴x =m 2,y =-m 适合上述方程, 即⎝⎛⎭⎫m 22+(-m -1)2=10,解得m =2或m =-185, ∴m 的值为2或-185.跟踪训练3.解: ∵曲线y 2-xy +2x +k =0过点(a ,-a ), ∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2⎝⎛⎭⎫a +122+12. ∴k ≤12,∴k 的取值范围是⎝⎛⎦⎤-∞,12. 类型3 由方程判断其表示的曲线 探究问题[提示] 用“曲线的方程”和“方程的曲线”的定义来证明已知曲线C 的方程是f (x ,y )=0,证明中分两个步骤:第一步,设M (x 0,y 0)是曲线C 上任一点,证明(x 0,y 0)是方程f (x ,y )=0的解;第二步,设(x 0,y 0)是方程f (x ,y )=0的任一解,证明点M (x 0,y 0)在曲线C 上.例3 解:因为(2x +3y -5)(x -3-1)=0,所以可得⎩⎪⎨⎪⎧2x +3y -5=0,x -3≥0,或者x -3-1=0,也就是2x +3y -5=0(x ≥3)或者x =4,故方程表示的曲线为一条射线2x +3y -5=0(x ≥3)和一条直线x =4. 母题探究 1.解:由2x -3-1(2x +3y -5)=0得2x +3y -5=0(x ≥3)表示一条射线.2.解:由(2x +3y -5)[log 2(x +2y )-3]=0得⎩⎪⎨⎪⎧2x +3y -5=0,x +2y >0,或者x +2y =8,也就是2x +3y -5=0(x <10)或者x +2y =8,故方程表示的曲线为一条射线2x +3y -5=0(x <10)(去除端点)和一条直线x +2y =8. 当堂达标 1. [提示] (1)√(2)× x -y =0表示直角坐标系中第一、三象限的角平分线. (3)× 必要不充分条件. 2.【答案】D【解析】因为点P (2,-3)在曲线x 2-ay 2=1上,代入曲线方程可得a =13,故选D.]3.【答案】4个点【解析】由方程得⎩⎪⎨⎪⎧x 2-4=0,y 2-4=0,表示四个点.4.【答案】两条线段【解析】由已知得1-|x |=1-y,1-y ≥0, 1-|x |≥0,∴y =|x |,|x |≤1. ∴曲线表示两条线段.。
甘肃省金昌市第一中学2014年高中数学2.1.1曲线与方程2.1.2求曲线的轨迹方程教案新人教A版选修1-1一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程学生探究过程:(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果.练习题用一小黑板给出.1.△ABC一边的两个端点是B(0,6)和C(0,-6),另两边斜率的2.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?3.求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程.答案:义法)由中点坐标公式得:(四)、教学反思求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1.两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2.动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹.3.已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1.以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=42.∵|PF2|-|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线六、板书设计教学反思:。
§2.1.1 曲线与方程(1)1.理解曲线的方程、方程的曲线;2.求曲线的方程.,找出疑惑之处)3436复习1:画出函数2=(12)2y x-≤≤的图象.x复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.二、新课导学※学习探究探究任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程.问题:能否写成y x=,为什么?新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线C与一个二元方程(,)0F x y=之间,如果具有以下两个关系:1.曲线C上的点的坐标,都是的解;2.以方程(,)0F x y=的解为坐标的点,都是的点,那么,方程(,)0F x y=叫做这条曲线C的方程;曲线C叫做这个方程(,)0F x y=的曲线.注意:1︒如果……,那么……;2︒“点”与“解”的两个关系,缺一不可;3︒曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;4︒曲线与方程的这种对应关系,是通过坐标平面建立的.试试:1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ .2.曲线220x xy by +-=上有点(1,2)Q ,则b = .新知:根据已知条件,求出表示曲线的方程.※ 典型例题例1 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±.变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗?例2设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.变式:已知等腰三角形三个顶点的坐标分别是(0,3)A ,(2,0)B -,(2,0)C .中线AO (O 为原点)所在直线的方程是0x =吗?为什么?反思:BC 边的中线的方程是0x =吗?小结:求曲线的方程的步骤:①建立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标;②写出适合条件P 的点M 的集合{|()}P M p M =;③用坐标表示条件P ,列出方程(,)0f x y =;④将方程(,)0f x y=化为最简形式;⑤说明以化简后的方程的解为坐标的点都在曲线上.※动手试试练1.下列方程的曲线分别是什么?(1)2xyx=(2)222xyx x-=-(3) log a xy a=练2.离原点距离为2的点的轨迹是什么?它的方程是什么?为什么?三、总结提升※学习小结1.曲线的方程、方程的曲线;2.求曲线的方程的步骤:①建系,设点;②写出点的集合;③列出方程;④化简方程;⑤验证.※知识拓展求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 与曲线y x =相同的曲线方程是( ).A .2x y x= B .y =C .y =D .2log 2x y =2.直角坐标系中,已知两点(3,1)A ,(1,3)B -,若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1, 则点C 的轨迹为 ( ) .A .射线B .直线C .圆D .线段 3.(1,0)A ,(0,1)B ,线段AB 的方程是( ).A .10x y -+=B .10x y -+=(01)x ≤≤C .10x y +-=D .10x y -+=(01)x ≤≤4.已知方程222ax by +=的曲线经过点5(0,)3A 和点(1,1)B ,则a = ,b = . 5.已知两定点(1,0)A -,(2,0)B ,动点p 满足12PA PB =,则点p 的轨迹方程是 .1. 点(1,2)A -,(2,3)B -,(3,10)C 是否在方程 2210x xy y -++=表示的曲线上?为什么?2 求和点(0,0)O ,(,0)A c 距离的平方差为常数c 的点的轨迹方程.。
2.1.1曲线与方程教案
课题:2.1.1曲线与方程第1课时课型:新授
教学目标:
1知识与技能:
①了解曲线上的点与方程的解之间的一一对应关系。
②领会在平面直角坐标系中“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单
的判断与推理。
③进一步渗透数形结合的数学思想。
2过程与方法:
①通过曲线和方程概念的知识形成过程,进一步明白坐标系是沟通曲线与方程的基本工
具,坐标法是解析几何的基本方法。
②在师生活动过程中,培养学生思维能力的严密性品质。
3情感、态度、价值观:渗透联系的辩证唯物主义观点。
教学重点:“曲线的方程”与“方程的曲线”的概念.
教学难点:对“曲线的方程”与“方程的曲线”的概念的理解.
教学过程:
一、知识回顾:
1、曲线是由什么构成的?____点______
2、二元方程f(x,y)=0的实数解是什么?_一对有序实数对__
3、“点”与“解”在直角坐标系中可以建立一一对应关系。
二、新知探究:
1、设曲线C表示直角坐标系中平分第一、三象限的直线.解答下列问题:
1.1如果点M(x0,y0)是曲线C上任意一点,点M的坐标是方程x-y=0的解吗?()可以从集合观点找出它们之间的关系吗? ________________________
1.2如果x0,y0是方程x-y=0的解,那么点M(x0,y0)一定在曲线C上吗?()
可以从集合观点找出它们之间的关系吗?__________________________
图1 图2 图3
结论:方程x-y=0是曲线C的方程;
曲线C是方程x-y=0的曲线.
1.3曲线C上的点的坐标都是方程|x|=|y|的解吗?()
可以从集合观点找出它们之间的关系吗?__________________________
以方程|x|=|y|的解为坐标的点都在曲线C 上吗?( )
可以从集合观点找出它们之间的关系吗?__________________________
结论:方程|x|=|y|不是曲线C 的方程;
曲线C 不是方程|x|=|y|的曲线.
1.4曲线C 上的点的坐标都是方程
= )
可以从集合观点找出它们之间的关系吗?__________________________
=的解为坐标的点都在曲线C 上吗?
可以从集合观点找出它们之间的关系吗?__________________________
结论:方程
=C 的方程;
曲线C 不
=
. 三、形成新知:
1、曲线的方程与方程的曲线:
一般地,在直角坐标系中,如果其曲线c 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:
(1)
(2) 那么,方程f (x ,y )=0叫做曲线C 的方程;曲线C 叫做方程f (x ,y )=0的曲线.
2、理解概念:
①曲线C 的方程是f (x ,y )=0,点 P 0(x 0,y 0)在曲线C 上的充要条件是 . ②只有曲线上的点集与此曲线的方程的解集______________,才说曲线是方程的曲线,方程是曲线的方程。
③曲线的方程与方程的曲线是等价的。
四、新知应用:
例1:解答下列问题:
1.判断下列结论的正误并说明理由
(1) 过点A (3,0)且垂直于x 轴 的直线方程为x=3;
(2) 到x 轴距离为2的点的轨迹方程为y=2;
(3) 到两坐标轴距离乘积等于1的点的轨迹方程为xy=1.
练习:判断下列命题是否正确并说明理由
方程表示斜率为1,在轴上的截距为-2的直线;已知则
的中线的方程是方程表示两条射线2,:(1)12(2)(3,0),(3,0),(0,3),0;(3)21.y y x A B C ABC CO x y
x x
2.判断图中曲线的方程是否正确
(1)曲线C 为过点A(1,1),B(-1,1),顶点在原点的折线,方程为(x -y)(x+y)=0;
(2)曲线C 是顶点在原点,过点(1,1)的抛物线,方程为x+y =0;
图4 图5
3、如果曲线C 上的点坐标(x,y)都是方程F(x,y)=0的解,那么( )
A 、以方程F(x,y)=0的解为坐标的点都在曲线C 上
B 、以方程F(x,y)=0的解为坐标的点,有些不在曲线上.
C 、不在曲线C 上的点的坐标都不是方程F(x,y)=0的解.
D 、坐标不满足F(x,y)=0的点不在曲线C 上.
例2:画出下列方程表示的曲线:
21104(1)
y x
y +=--()(2)x= 22(1)||02(4)0
x y x y x y -=+--=练习:画出下列方程的曲线.()
例3:证明:与两条坐标轴的距离的积是常数(0)>k k 的点的轨迹方程是xy =±k . 五:新知总结:
1、 曲线的方程,方程的曲线的概念.其中的关系如下图。
2、 概念的本质:{}={}⇔曲线的方程方程的曲线,即:
点解 六、课后反思:______________________________________________________________
七、板书设计
八、新知巩固:课后作业
1.如果命题“坐标满足方程(,)0f x y =的点都在曲线C 上”是不正确的,那么下列命题正确的是( )
.A 坐标满足方程(,)0f x y =的点都不在曲线C 上;
.B 曲线C 上的点不都满足方程(,)0f x y =;
.C 坐标满足方程(,)0f x y =的点有些在曲线C 上,有些不在曲线C 上;
.D 至少有一个点不在曲线C 上,其坐标满足方程(,)0f x y =.
2.如果曲线C 上的点满足方程(,)0f x y =,则以下说法正确的是:( )
.A 曲线C 的方程是(,)0f x y =;.B 方程(,)0f x y =的曲线是C ;
.C 坐标满足方程(,)0f x y =的点在曲线C 上;
.D 坐标不满足方程(,)0f x y =的点不在曲线C 上;
3.方程()()22
22440x y -+-=表的图形是 .A 两个点.B 四个点.C 两条直线.D 四条直线
4.下述方程表示的图形分别是下图中的哪一个?
(A) (B) (C) (D)
5.设曲线C 是到两坐标轴距离相等点的轨迹,那么C 的方程是 ( )
.A 0x y -=.B 0x y -=.C ||||0x y -=.D ||y x =和||x y =
6.若两直线50x y a ++=与0x y a --=交点在曲线2y x a =+上,则a =
7.若曲线220y xy x k -++=通过点(,)()a a a R -∈,则k 的取值范围是
8.画出以下方程的曲线
(1)()22410x y x y +-⋅++= (2) 221y x x =
-+ ①-=0
x y |x |-|y |=0②③x -|y |=0。