2000m3高炉炉型设计
- 格式:wps
- 大小:136.19 KB
- 文档页数:11
2000m3⾼炉开炉⽅案2000m3⾼炉开炉⽅案根据⾼炉⼯程进度和公司安排,定于#年#⽉#⽇点⽕开炉,为实现安全顺利开炉和迅速达产,特制定开炉⽅案如下:⼀、成⽴开炉领导⼩组开炉前的准备⼯作⼆、开炉前的准备⼯作1、对上料系统、炉顶设备、送风系统、煤⽓系统、煤粉喷吹系统和炉前设备等进⾏全⾯、认真的检查,并进⾏12⼩时以上的联动试车,运转正常,确保⽆误后⽅可开炉。
2、蒸汽和通重⼒除尘器氮⽓管路试汽(⽓),炉前⽤压缩空⽓、氧⽓和烘烤⽤途的焦炉煤⽓管道正常要求管路畅通⽆泄漏,汽(⽓)压>0.4MPa。
3、⾼炉各种计算机监控系统、仪表、仪器安装校对完毕,运转正常。
4、上料电⼦秤安装校对完毕,准确可靠。
5、制作临时炭包,铺好并烤⼲所有渣铁沟。
6、准备好备⽤的风⼝⼩套、吹管各⼀套(风⼝∮120mm×450mm 20个,∮110mm×450mm 8个),风⼝⼆套6个。
备件科准备,7#⾼炉领取。
提前烧好热风炉,要求风温⼤于900℃,为⾼炉点⽕做好准备。
7、准备烧铁⼝氧⽓40瓶,氧⽓管1000kg,氧⽓瓶周转使⽤,氧⽓带和卡⼦2套,同时联系管道氧⽓正常供⽓。
8、准备好⽑渣罐(⼤罐)4个和铁罐6个第⼀次铁使⽤。
准备加长钻杆20根。
9、准备好开炉需要的⽆⽔炮泥和有⽔泡泥,⾼炉提供⽤量和规格。
10、准备⽊柴350m3,∮200~300mm,L=500~800mm左右,不能使⽤带油的腐烂⽊柴。
开炉前3天供应科负责送到炉台。
11、准备好开炉料,料仓上料前认真检查每个料仓,把杂物彻底清理⼲净。
(1)烧结矿⽤400m2直过料,保证所有烧结矿仓满仓(装料前24⼩时以内⼊仓,不能提前)(2)使⽤5#、6#焦炉⽣产的焦炭,提前1~2天⼊仓装满。
(3)硅⽯满仓,灰⽯ 100t,萤⽯80t。
(灰⽯不能多上,另上临时通知)开炉料要有分析并报给技术科。
12、风⼝⾯积确定开炉⽤20个∮120×450mm和8个∮110×450mm的风⼝,前期⽤西铁⼝出铁,均匀堵8个风⼝(3#、6#、10#、13#、15#、19#、23#、27#),开20个风⼝送风。
攀枝花学院本科毕业设计(论文)2000m3高炉本体设计学生姓名:学生学号:200611103117院(系):材料工程学院年级专业:冶金工程指导教师:教授助理指导教师:二〇一一年五月摘要高炉炼铁的历史悠久,炼铁技术日臻成熟,是当今主要的炼铁方式。
高炉作为炼铁工艺的主体设备,其结构的合理性对炼铁的工艺操作、生产技术指标以及自身的寿命都有十分重要的影响。
根据攀枝花钒钛磁铁矿的高炉冶炼特点,通过进行配料计算和物料平衡计算,设计了2000m3高炉本体。
设计过程除考虑通常的高炉设计方案外,还考虑了攀枝花钒钛磁铁矿多年高炉冶炼的一些生产实践经验。
所设计完成的高炉本体炉缸直径为9.88m、炉腰直径为10.97m、高径比为2.55、有效高度为27.97m;高炉基础的基墩高1.9m、直径13.53m、基座高2m;采用碳砖加高铝砖综合炉底、全碳砖炉缸;冷却设备的设计为水冷炉底、炉缸和炉底采用三段光面冷却壁、炉身采用镶砖冷却壁;高炉钢结构采用炉体框架式结构,最后采用CAD绘制出高炉本体图。
关键词高炉,高炉本体,炉型,钒钛磁铁矿ABSTRACTThe blast furnace iron-making has a long history which has become the main way of iron manufacture. As the main equipment of ironmaking, the blast furnace plays the most important role. The rationality of the blast furnace’s structural design has great influence on the process operations and technique level of ironmaking and it will decide the useful life of the blast furnace itself. According to the characteristics of the vanadic titanomagnetite smelted in BF in Panzhihua, the 2000m3blast furnace body was designed in this subject based on the calculations of the burden control and the material balance. Besides common design plans of the blast furnace, some practical experiences of the vanadic titanomagnetite smelted in BF was considered in this subject. The basic information of the blast furnace which has been designed is as following: the diameter hearth is 9.88m, the belly diameter is 10.97m, the aspect ratio of the furnace is 2.55, the effective height is 27.97m. As to the blast furnace foundation, the height of under hearth is 1.9m, the diameter of the under hearth is 13.53m, the furnace pad or foundation is 2 m. The hearth bottom adopts carbon bricks and high alumina bricks synthesize technic, the hearth just builds up with carbon bricks. The cooling device is designed to water-cooled hearth bottom, three segments mill finish stave is used for the hearth and hearth bottom, the stack uses inlaid brick stave to make it cool down. The steel structure of the BF adopts frame-type for the furnace body. Finally, the diagram of BF body was gained by using the CAD drawing tools.Key words blast furnace,BF body,furnace type,V-Ti magnetite目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题背景 (1)1.2 攀枝花钒钛磁铁矿特点 (2)1.3 课题设计的内容及意义 (2)2 高炉设计原始数据 (4)2.1 矿石原料成分 (4)2.2 配矿比 (4)2.3 焦炭成分 (4)2.4 喷吹煤粉成分 (4)2.5 生铁成分 (4)2.6 元素分配比 (5)2.7 炉渣碱度 (5)2.8 工艺技术指标 (5)3 高炉设计工艺计算 (6)3.1 配料计算 (6)3.1.1 根据铁平衡求铁矿石需求量 (6)3.1.2 根据碱度平衡计算石灰石用量 (6)3.1.3 终渣成分 (6)3.1.4 生铁成分校核 (7)3.2 物料平衡计算 (8)3.2.1 需要补充的原始条件 (8)3.2.2 根据碳平衡计算风量 (8)3.2.3 计算煤气成分及数量 (9)3.2.4 编制物料平衡表 (11)4 高炉内型设计计算 (12)4.1 高炉炉型 (12)4.2 高炉炉型设计原则 (13)4.3 高炉内型尺寸确定 (13)4.3.1 炉缸直径 (14)4.3.2 炉腰直径 (14)4.3.3 炉喉直径 (15)4.3.4 铁口中心线到炉底砌砖之间的距离 (15)4.3.5 炉缸高度 (15)4.3.6 炉腹角与炉腹高度 (15)4.3.7 炉身角与炉身高度 (16)4.3.8 有效高度、炉喉高度、炉腰高度 (16)4.3.9 风口、渣口、铁口数 (17)4.3.10 炉容校核 (17)5 高炉本体及主要设备选择 (19)5.1 高炉基础 (19)5.1.1 高炉基础设计条件 (20)5.1.2 基墩设计计算 (20)5.1.3 基座设计 (20)5.2 高炉内衬结构 (21)5.2.1 炉底 (21)5.2.2 炉缸 (22)5.2.3 炉腹 (22)5.2.4 炉腰 (23)5.2.5 炉身 (23)5.2.6 炉喉 (23)5.3 高炉冷却设备设计 (24)5.3.1 冷却设备的作用 (24)5.3.2 冷却介质 (24)5.3.3 高炉各部位冷却设备设计 (24)6 高炉钢结构设计 (26)6.1 炉壳 (26)6.1.1 炉壳厚度的计算 (26)6.1.2 炉壳折点的确定 (27)6.2 炉体平台及走梯 (27)6.3 高炉本体钢结构类型 (28)6.4 高炉主要热工检测仪表 (29)结论 (30)参考文献 (32)致谢 (34)1 绪论1.1课题背景尽管21世纪是一个信息的时代。
附件一湖南工业大学课程设计资料袋冶金工程学院(系、部)2010 ~ 2011 学年第 2 学期课程名称炼铁课程设计指导教师刘竹林职称教授学生姓名夏雨专业班级冶金091 学号01234567题目设计向2000立方米高炉提供热风的热风炉成绩起止日期2011 年5月16 日~2011 年5 月29 日目录清单附件二湖南工业大学课程设计任务书2010 —2011 学年第 2学期冶金工程学院(系、部)冶金技术专业冶金091 班级课程名称:炼铁课程设计设计题目:设计向2000立方米高炉提供热风的热风炉完成期限:自2011 年 5 月16 日至2011 年 5 月29 日共 2 周指导教师(签字):年月日系(教研室)主任(签字):年月日(课程设计名称)设计说明书向2000立方米高炉提供热风的热风炉起止日期:2011 年 5 月16 日至2011 年5 月29 日学生姓名夏雨班级冶金091学号01234567成绩指导教师(签字)冶金工程学院(部)2011年月日湖南工业大学冶金工程学院课程设计答辩评价表湖南工业大学冶金工程学院课程设计评阅表前言从冶炼角度看,风是高炉冶炼的重要原料之一。
高炉发展史充分说明改进鼓风对高炉的发展有着极其重要的作用。
风也是强化高炉冶炼的最积极因素,就现在已采用的新技术来看,风的含义不仅与鼓风机有关,还和热风温度、喷吹、富氧、脱湿等技术的应用即风的质量有关。
热风炉为主的热风系统是综合鼓风系统的重要内容。
1828年美国开始使用热风。
实践和理论均证明:热风不仅是降焦、增产和提高生铁质量的重要措施之一,也为提高所喷吹燃料的燃烧率,为改善喷吹效果和加大喷吹量提供有利条件。
因此国内外高炉均致力于提高风温。
热风炉系统的重要作用就是加热冷风,降低焦比,提高生产效益。
现代高炉普遍采用蓄热式热风炉,由于热烧(即加热格子砖)和送风(即冷却格子砖)是交替工作的,为保证向高炉连续供风,故每座高炉至少配置两座热风炉,一般配置三座,大型高炉配置四座为宜。
目录中文摘要 (Ⅰ)英文摘要 (Ⅱ)1 绪论 (4)1.1砖壁合一薄壁高炉炉型的发展和现状 (4)1.2砖壁合一薄壁高炉炉型的应用 (4)2 高炉能量利用计算 (6)2.1高炉能量利用指标与分析方法 (6)2.2直接还原度选择 (7)2.3配料计算 (8)2.4物料平衡 (13)2.5 热平衡 (17)3 高炉炉型设计 (23)3.1 炉型设计要求 (23)3.2 炉型设计方法 (24)3.3炉型设计与计算 (24)4 高炉炉体结构 (28)4.1 高炉炉衬结构 (28)4.2高炉内型结构 (29)4.3 炉体冷却 (30)4.4 炉体钢结构 (31)4.5风口、渣口及铁口设计 (31)5砖壁合一的薄壁炉衬设计 (33)5.1砖壁合一的薄壁炉衬结构的布置形式 (33)5.2砖壁合一的薄壁炉衬高炉的内型 (33)5.3砖壁合一的薄壁炉衬高炉的内衬 (34)5.4薄壁高炉的炉衬结构和冷却形式 (34)6结束语 (36)参考文献 (37)摘要近年来, 炼铁技术迅猛发展, 总的发展趋势是建立精料基础, 扩大高炉容积, 减少高炉数目, 延长高炉寿命, 提高生产效率,控制环境污染, 持续稳定地生产廉价优质生铁, 增加钢铁工业的竞争力。
现代高炉的冶炼特征是, 低渣量, 大喷煤, 低焦比, 高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。
高炉采用大喷煤、高利用系数冶炼, 要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。
高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变, 高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。
薄壁高炉的设计炉型就是高炉的操作炉型, 在生产中几乎始终保持稳定, 消除了畸形炉型。
长期稳定而平滑的炉型, 有利于高炉生产的稳定和高效长寿。
高炉操作炉型的显著特征是, 炉腰直径扩大, 高径比减小, 炉腹有、炉身角缩小。
第一章绪论 (4)1概述 (4)1.2 高炉生产主要经济技术指标 (4)1.3高炉冶炼现状及其发展 (5)1.4本设计采用的新技术。
(5)第二章高炉车间设计 (5)2.1厂址的选择 (5)2.2 高炉炼铁车间平面布置应遵循的原则 (6)2.3 车间布置形式 (6)第三章高炉本体设计 (7)3.1高炉数目及总容积的确定 (7)3.2 炉型设计 (7)3.3参数 (9)3.4炉衬设计 (9)3.4.1炉底炉缸的炉衬设计 (9)3.4.2炉腹,炉腰和炉身下部的炉衬设计 (10)3.4.3炉身上部和炉喉砌筑 (10)3.5高炉冷却 (10)3.5.1高炉冷却设备的作用及冷却介质 (10)3.5.2高炉冷却设备设计 (11)3.5.3冷却设备工作制度 (11)3.6高炉钢结构及高炉基础 (11)3.6.1高炉钢结构 (11)3.6.2高炉基础 (12)第4章高炉车间原料系统 (12)4.1贮矿槽及贮焦槽的设计 (13)4.1.1贮矿槽的设计 (13)4.1.2副矿槽 (13)4.1.3贮焦槽设计 (13)4.1.4矿槽的结构形式 (13)4.2给料器,槽下筛分与称量设计 (14)4.2.1给料器 (14)4.2.2槽下筛分 (14)4.2.3槽下称量 (14)4.3胶带机的设计 (15)4.4炉顶装料设备 (15)4.5探料装置 (16)第5章高炉送风系统 (16)5.1高炉鼓风机 (16)5.1.1高炉冶炼对鼓风机的要求: (16)15.1.2鼓风机出口风量的计算 (17)5.1.3鼓风机出口风压的计算 (17)5.1.4鼓风机的选择 (17)5.2高炉热风炉设计 (18)5.2.1热风炉基本结构形式 (18)5.3燃烧器及阀门 (20)5.3.1燃烧器 (20)5.3.2热风炉阀门 (20)5.4提高风温途径 (20)5.5余热回收装置 (20)第6章高炉喷煤系统 (20)6.1煤粉的制备 (21)6.1.1原煤的贮存 (21)6.1.2煤的干燥 (21)6.1.3磨煤机 (21)6.1.4粗粉分离器 (22)6.1.5旋风分离器 (22)6.1.6锁气器 (22)6.1.7布袋收集器 (22)6.2煤粉喷吹系统 (22)6.2.1喷吹设备的确定 (23)6.3安全措施 (23)6.3.1煤粉爆炸条件 (24)6.3.2采取的安全措施 (24)第7章高炉煤气除尘系统 (24)7.1概述 (24)7.1.1高炉煤气除尘的目的 (24)7.1.2评价煤气除尘装置的主要指标 (24)7.2高炉煤气除尘设备 (25)7.2.1荒煤气管道 (25)7.3重力除尘器 (26)7.3.1重力除尘器原理: (26)7.3.2主要尺寸—圆筒部分直径和高度 (26)7.4文氏管 (26)7.4.1文氏管除尘原理: (26)7.4.2半精细除尘设计 (26)7.4.3精细除尘设计 (27)7.5布袋除尘 (27)7.6煤气除尘系统附属设备 (27)7.6.1煤气遮断阀 (27)7.6.2煤气放散阀 (27)7.6.3煤气切断阀 (27)7.6.4调压阀组 (28)7.7炉顶余压发电 (28)2第8章渣铁处理系统 (28)8.1 概述 (28)8.2 风口平台和出铁场 (28)8.2.1 风口平台 (28)8.2.2 出铁场 (29)8.3 渣铁沟和撇渣器 (29)8.3.1 主铁沟 (29)8.3.2 撇渣器 (29)8.3.3 支铁沟和支沟 (29)8.3.4 摆动流嘴 (30)8.4 炉前主要设备 (30)8.4.1 开铁口机 (30)8.4.2 堵铁口泥炮 (30)8.4.4 堵渣口机 (30)8.5 铁水处理设备 (30)8.5.1 铁水罐车 (31)8.5.2 铸铁机 (31)8.6 炉渣处理 (31)3第一章绪论1概述高炉冶炼是获得生铁的主要手段,它以铁矿石(天然富矿,烧结矿,球团矿)为原料,焦碳,煤粉,重油,天然气等为燃料和还原剂,以石灰石等为溶剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非氧化物造渣等一系列复杂的物理化学过程,获得生铁。
南京钢铁联合有限公司炼铁新厂作业文件高炉工艺参数控制标准文件编码:管理部门:技术质量部版本:试行控制状态:发放编号:拟制:审核:批准:2005年 3月31日发布 2005年 4月1日实施本基准适用于炼铁新厂2000M3操业管理。
1、原燃料管理1)焦炭质量要求焦炭质量控制基准:M40:≥82%;M10:≤7.0%;Ad≤12.85%;CRI≤30%,CSR ≥60%;焦炭水分:3-7%;焦末≤5%。
2)喷吹煤要求喷吹无烟煤灰分Ad%≤13.00%3)烧结矿要求高炉入炉烧结矿5-10mm粒级组成≤22%4)槽位管理A 总在库量小于50%,高炉减风10~30%,并调整用料结构。
B 总在库量小于30%,高炉减风50%,并做好休风准备。
2、炉温管理基准(1)铁水温度目标值:PT=1480±20℃增热情况下:风温→湿度→喷煤量→O/C→风量(见风量管理)减热情况下:喷煤量→O/C →湿度→风温→风量及料制3、煤气分布管理基准**W=十字测温边缘温度平均值/炉顶平均温度Z=中心5点温度之和/炉顶平均温度CCT--十字测温中心温度4、装料管理5、炉渣成分管理基准6、风量管理(1)风压波动管理风压波动上下限规定:±3δP=Po、δ-表示波动后风压,正常时风压,正常时风压偏差。
P、Po(3)下列情况要求减风A)风压超限或炉况失常时;B)炉温向凉,不减风不能防止炉凉时;C)低料线作业时;a)低于正常料线1米以上,估计1小时无法赶上正常料线或炉顶温度超限(>280℃),打水也不能制止时;应将风量控制在正常风量的80~90%;b)料线已经达到3米,且造成空料的原因仍然未排除时,应将风量控制在正常风量的40%以下,并立即组织出铁,准备休风;c)料线深达4米,且仍然无明确恢复正常时间,应迅速请示厂调,经批准后按正常程序休风;d)料线深达6米应迅速按正常程序休风;D) 动力故障(水、电、气)或渣铁排放故障危及管理安全生产时;E) 因上次铁未出尽(或铁口难开),铁水贮存量达到120吨(或者渣量40吨)而又不具备重叠出铁条件时,减风10%以上。
2000m3高炉新并罐炉顶技术郑志斌①宋恩奎(西宁特殊钢股份有限公司加工分厂,青海西宁810005)(中冶东方工程技术有限公司,山东青岛266555)摘要对新并罐炉顶装料设备的技术特点进行了分析,新并罐无料钟炉顶在装料能力方面有一定的技术优势,有助于改善炉况、增加低质量原燃料用量、有助于降低高炉生产成本,能满足高炉大型化和降低成本条件下的快速、多级、分批的装料要求。
关键词高炉炉顶无料钟装料设备布料均匀称重均匀工艺设计1 炉顶设备的选型高炉无料钟炉顶不仅具有良好的高压密封性能、灵活的布料手段,而且能使高炉充分利用煤气能,保持高炉顺行;同时它运行可靠,易损部件少,检修方便快捷,有利于高炉实现高产、稳产、低耗和长寿。
无料钟炉顶设备已在全世界大中型高炉上得到广泛应用。
高炉无料钟炉顶设备有串罐、并罐和三罐之分,但应用较多的主要是串罐和并罐两种。
老式并罐无料钟炉顶设备存在布料时易产生圆周偏析,下阀箱及中心喉管内耐磨衬易磨损、寿命短等不足。
串罐、并罐和新并罐无料钟炉顶设备的主要特点比较见表1。
从表中可以看出,虽然串罐无料钟炉顶具有设备少、维修量小、检修方便、投资低、布料均匀等优点,但装料能力小,尤其在采用烧结矿分级入炉的情况下更显其赶料能力的有限。
新并罐炉顶在装、布料上借鉴了串罐的优点,大大降低了布料偏析。
新建150万t/a 钢工程,选用的高炉炉顶装料系统即为并罐无料钟炉顶设备,实现全面高效能作业,使高炉的产量、作业效率、能耗指标等达到世界先进水平。
2 炉顶设备的组成与特点2.1主要设备组成新并罐无料钟炉顶设备的组成如图1所示。
2.2主要设备规格上密封阀通径DN800mm,料罐容积2×42m3,下密封阀通径DN800mm,料流调节阀通径DN800mm,中心喉管直径750mm,溜槽倾动范围2°~53°,溜槽回转速度8r/min,倾动速度1.6°/s,溜槽长度3500mm,溜槽倾动方式为电动。
攀钢高钛型钒钛矿冶炼2000m3级高炉设计特点吴秋廷【摘要】结合攀钢1000 m3高炉生产实践,针对大型高炉冶炼高钛型钒钛磁铁矿的特殊性,分析攀钢高炉大型化存在的难点,分析并总结了攀钢2000 m3高炉在高炉本体设计及环保节能方面采取的措施和实施效果.【期刊名称】《四川冶金》【年(卷),期】2011(033)001【总页数】6页(P1-6)【关键词】高钛型钒钛矿冶炼;2000 m3级高炉;设计特点【作者】吴秋廷【作者单位】攀钢集团设计研究院有限公司,四川,攀枝花,617023【正文语种】中文【中图分类】TF51高炉作为钢铁产业中最重要的生产设备,其大型化是现代钢铁工业提升技术装备水平的重要标志,大型化高炉具有生产效率高、投资省、环保节能、物流运输优化等特点,是我国钢铁工业结构调整、淘汰落后、降低成本、改善环境、提高钢铁产品市场竞争力的生力军。
但是,由于攀西铁矿石冶炼的特殊性,攀钢高炉自投产 40年来,一直维持着 1000 m3高炉生产。
攀钢高炉冶炼的钒钛磁铁属高钛型钒钛磁铁矿,所谓高钛型是指炉渣中TiO2含量超过 20%以上,曾被一些外国专家称为无法用高炉冶炼的呆矿。
攀钢1970年投产前集全国冶金行业力量进行了大规模的工业试验,均表明高钛型钒钛磁铁矿高炉冶炼难度极大,而且冶炼难度随高炉容积增加大幅增加,因此攀钢投产时的炉容仅为 1000 m3。
攀钢 1000 m3高炉自 1970年出第一炉铁水以来,花了近 20年时间才解决 1000 m3高炉冶炼高钛型钒钛磁铁矿的部分技术难题,到 1999年赶上并超过了普通矿的冶炼水平,由此可见高钛型钒钛磁铁高炉冶炼的难度。
实践表明,高钛型钒钛磁铁矿冶炼难度极大,主要原因是:1)铁矿石含铁量仅 50%左右,比普通矿低 5%~10%,渣量高达 650~700 kg/t,是普通矿的 2倍以上,因此高炉冶炼时产生的渣量大,炉缸工作状态的均匀性和煤气流分布受到很大的影响;2)炉渣中 T iO2含量高达 20%以上,其反应体系复杂,反应产物高熔点物质多,而且炉子容积越大,冶炼时间越长,炉内工作状态的不均匀性增加,死区多,这种高熔点物质也越多,将严重影响高炉的稳定生产,钒钛磁铁矿高炉冶炼反应体系与普通矿的区别为:普通铁矿石还原:Fe2O3→Fe3O4→FeO→Fe钒钛磁铁矿还原:Fe2TiO4→Fe3O4·TiO2→FeO·TiO2→Fe+TiO2TiO2在炉内产生的还原及过还原反应化学方程式如下:还原反应:TiO+C=[Ti]+CO过还原反应:3[Ti]+C+N2=TiC+2TiN[1]过还原产生的化合物 TiN、TiC的熔点分别高达2950℃、3140℃,在炉渣和铁水中以弥散固体颗粒形式存在,导致炉渣流动性差,对炉缸工作状况的均匀性产生很大影响,渣、铁难分,高炉生产稳定性差。
钢铁集团2000m3高炉工程钢结构安装施工组织设计编制人:审核人:批准人:项目部二0 年月钢铁集团2000m3高炉工程钢结构安装施工组织设计1、依据及说明:1.1 编制依据:1.1.1根据工程技术股份有限公司设计院设计图。
1.1.2国家及冶金行业的冶金机械设备安装工程施工及验收规范和标准。
1.1.3国家及冶金现行的建设工程施工及验收规范和标准。
1.1.4根据《高炉系统工程施工总体规划》1.1.5根据施工高炉的经验的技术总结。
1. 2 编制说明本施工组织设计是在设计院设计图未到齐、只有少量二次设计详图的条件下编制的,其间涉及的工程量、构件量等均是依照工程技术股份公司设计院设计图中技术数据计算的。
施工时应以二次设计详图重量为准,对特别大、重、高的结构吊装及主要部位安装应编制详细作业方案。
2、工程概况:2. 1 厂址及环境:***钢铁公司位于***市中心北面***区,离***市中心约25公里,******高炉系统工程布置在原***厂的南面江边新区,地面相对于绝对标高10.800m,为******高炉相对标高0.000m。
***钢铁集团有限公司原有高炉五座。
根据***现有设备生产状况及生产发展的要求,新建一座高炉容积为2000立方米。
施工现场经场地平整后,地形平坦,为高炉系统工程安装创造了较好的条件,现场施工用电、用水具备,进现场的临时道路已基本形成,施工机具及运输车辆基本能满足施工要求。
2. 2 工程简介2.2.1******高炉系统工程,是一座年产154万吨生铁能力的高炉及其相关设施,高炉为矮胖型,高炉容积为2000立方米,高炉炉底、炉缸采用国产陶瓷杯与碳砖相结合的复壁结构,3个铁口、26个风口,炉体冷却采用全冷却壁薄壁结构,软水密闭循环冷却,串罐无料钟装料装置。
炉顶均排压、皮带上料,紧凑式平坦型双出铁场。
高炉煤气采用上升、下降管,球节点,重力除尘器、旋风除尘器和比肖夫湿法净化系统,并设置高炉煤气余压回收装置(TRT)等先进工艺,高炉炉体结构自立式框架结构,2.2.2高炉炉壳最大直径为14.200m,炉壳厚度为40mm---65mm,炉体高度40.700m,高炉最高高度为95.250m,高炉炉壳材料选用BB503低合金钢,高炉炉壳安装、砌筑后检漏2.5Kg/cm2,介质为空气。
·76· 维修与改造 机械 2008年第4期 总第35卷————————————————收稿日期:2007-11-07作者简介:李玲瑜(1981-),重庆人,助理工程师,主要研究方向为冶金设备。
2000 m 3高炉无钟炉顶装料布料设备设计李玲瑜(攀枝花钢铁(集团)公司设计院,四川 攀枝花 617023)摘要:炼铁高炉装料布料设备性能的好坏直接影响到高炉冶炼产品的产量和质量。
通过对现有国内外高炉装料布料设备的深入研究,对攀钢新3号2000 m 3高炉无钟炉顶装料布料设备中移动受料斗、密封阀、料流调节阀、中间漏斗、布料器等关键设备采用了一系列先进技术进行施工设计。
关键词:高炉;移动受料斗;密封阀;料流调节阀;中间漏斗;布料器中图分类号:TH54 文献标识码:B 文章编号:1006-0316(2008)04-0076-02Design of the bell less top charging and distributing device for 2000 m 3 blast furnaceLI Ling-yu(Panzhihua Iron and Steel Co. Design institute ,Panzhihua 617023,China)Abstract :The production and the quality of blast furnace smelting products are influenced by the performance of iron-smelting blast furnace charging and distributing device. Through elaborately studying current blast furnace charging and distributing device both domestic and abroad, a series of advanced technologies have been adopted in the essential equipments of the bell less top charging and distributing device for PANGANG' new No.3 2000 m 3 blast furnace. The essential equipments include motion feed hopper, sealed valve, material flux adjusting valve, middle hopper and SS distributor.Key words :blast furnace ;motion feed hopper ;sealed valve ;material flux adjusting valve ;middle hopper ;distributor攀钢新3号2000 m 3高炉采用国内外无钟设备先进技术进行施工设计,克服了现有国内外无钟设备的一些不足,取得了良好的设计使用效果。