第三章 变异程度的统计描述
- 格式:ppt
- 大小:1018.00 KB
- 文档页数:46
统计描述的概念
统计描述是通过指标或图表对数据进行总结、概括和分析的过程,旨在从大量数据中提取出有意义的信息。
主要包括以下几个概念:
1. 中心趋势:描述数据的集中程度,常用的指标包括均值、中位数和众数。
2. 变异程度:描述数据的不同程度,常用的指标包括方差、标准差和极差。
3. 偏态和峰度:用来描述数据分布的非对称性和峰态,常用的指标包括偏度和峰度。
4. 相关性:用来描述数据之间的关联性,常用的指标包括相关系数。
5. 分布形态:用来描述数据的整体分布特征,常用的图表包括直方图、箱线图和散点图等。
6. 置信区间:用来描述抽样数据的可靠程度,常用的指标包括置信度和置信区间。
统计描述是数据分析的基础,有助于深入了解数据的特征、发现数据之间的规律和趋势,为后续的数据建模和决策提供依据。
描述变异程度的统计学指标《描述变异程度的统计学指标》概述:描述变异程度的统计学指标是用于衡量数据集内部差异的一组统计量。
这些指标帮助我们了解数据的分散程度,用以描述数据的变异程度及其稳定性。
本文将介绍几种常见的用于描述变异程度的统计学指标。
1. 平均数(Mean):平均数是最常用的描述变异程度的指标之一。
计算方式是将所有数据值相加,然后除以数据的个数。
平均数能够提供数据集的集中趋势,但在面对异常值时容易受到干扰。
2. 方差(Variance):方差是衡量数据集内部差异的另一个重要指标。
方差计算时首先求出每个数据值与平均数之差的平方,并将这些差值的平均数作为方差值。
方差值越大,表示数据集内部的差异程度越大。
3. 标准差(Standard Deviation):标准差是方差的平方根,它衡量数据集内部差异的一种常用指标。
标准差值越大,表示数据集内部的差异越大。
与方差相比,标准差更易于理解,并且在数据分析中更常用。
4. 极差(Range):极差是变异程度的一种简单度量,它是数据集中最大值与最小值之间的差异。
极差提供了数据集取值范围的信息,但它忽略了数据值的分布情况。
5. 百分位数(Percentiles):百分位数是描述变异程度的有用工具,它将数据集分成100个等分。
例如,第50百分位数(中位数)将数据集划分为两个等分,分别包含50%的数据。
分析不同百分位数之间的差异可以提供关于数据分布的更详细信息。
6. 四分位数(Quartiles):四分位数是将数据集划分为四等分的百分位数,其提供了数据集分布的更多信息。
第一四分位数将数据集划分为四个等分中的第一个,包含25%的数据,第三四分位数划分为四个等分中的第三个,包含75%的数据。
四分位数可以用来检测数据集中的异常值。
结论:描述变异程度的统计学指标提供了深入了解数据集内部差异程度的方法。
通过求取平均数、方差、标准差、极差、百分位数和四分位数等指标,我们可以更好地理解数据的变异程度及其稳定性。
第三章统计分布的数值特征只知道什么是统计分布是不够的,还必须学会对其进行量化描述。
描述统计分布的重要的特征值有两个,一个是说明其集中趋势的平均指标,另一个是说明其离散程度的变异指标。
这一对矛盾的指标分别从不同角度反映了统计分布的分布特点,它们相辅相成,相互补充,缺一不可。
本章着重就这两个指标展开讨论,介绍了它们的理论、方法与应用,充分理解掌握本章的内容,对于以后各章节的学习尤为重要。
本章的目的与要求通过本章学习,要求学生在了解总体分布的两个重要特征值就是平均指标与变异指标的前提下,着重掌握这两个指标的计算方法及其数学性质;明确反映集中趋势的各种平均指标的计算特点与作用、反映离散程度的各种变异指标的计算特点与作用;还要学会利用这两个特征值得各自数学性质,采用简捷法计算算术平均数和标准差,以提高计算效率;此外,算术、调和与几何平均数三者之间的关系,算术平均数与众数、中位数之间的关系等也是学生应充分理解掌握的内容。
本章主要内容(计划学时7 )一、分布的集中趋势(1)——数值平均数1、算术平均数2、调和平均数3、几何平均数二、分布的集中趋势(2)——位置平均数1、众数2、中位数3、其他分位数三、分布的离中趋势——变异指标1、变异全距2、平均差3、标准差4、变异系数学习重点一、重点掌握各种平均数的特点、应用条件、应用范围和计算方法,及其相互之间的关系;二、了解变异指标的意义和作用,熟练掌握各种变异指标的计算方法,尤其应重点掌握标准差的计算与应用;三、理解掌握算术平均数与标准差的数学性质,并且能利用其数学性质进行简捷计算;四、明确平均指标与变异指标的相互关系及其运用原则。
学习难点一、各种平均指标的应用条件、运用范围,尤其是加权算术权数的选择;二、根据所掌握的资料,应选择算术平均或调和平均方法;三、标准差的理论依据及其计算方法,尤其是成数标准差的计算更是初学者不易掌握的问题。
第一节 分布的集中趋势(1)——数值平均数一、统计平均数1、反映总体分布的集中趋势2、反映统计数列所达到的一般水平(静态、动态)3、与强度相对数的区别 二、算术平均数(用A x 表示) (一)算术平均数的基本内容: 算术平均数=总体单位总量总体标志总量(二)简单算术平均数nxnx x x x ni inA ∑==+++=121可简写为:nx x A∑=式中: x i 为变量值 n 是总体单位数 Σ为总和符号例3-1.1 从某味精厂的生产线上随机抽取了10包味精,测得每包净重分别为(单位:克)499 497 501 499 502 503 500 499 498 500 将此十个数据相加除以十就是算术平均数(结果为499.8克)。
第三章平均数、标准差与变异系数第三章平均数、标准差与变异系数第⼀节平均数平均数是统计学中最常⽤的统计量,⽤来表明资料中各观测值相对集中较多的中⼼位置。
并且可以作为代表与同类资料⽐较,平均数主要包括有:算术平均数(arithmetic mean )中位数(median )众数(mode )⼏何平均数(geometric mean )调和平均数(harmonic mean )⼀、算术平均数资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数。
根据样本⼤⼩及分组情况⽽采⽤直接法或加权法计算。
(⼀)直接法样本含量n ≤30以下、未经分组资料平均数的计算。
设某⼀资料包含n 个观测值: x 1、x2、…、xn ,(3-1)【例3.1】某种公⽜站测得10头成年公⽜的体重分别为500、520、535、560、585、600、480、510、505、490(kg ),求其平均数。
由于Σx =500+520+535+560+58+600+480+510+505+49=5285,n =10得:(⼆)加权法对于样本含量 n ≥30 以上且已分组的资料,可以在次数分布表的基础上采⽤加权法计算平均数:(3-2)式中: x i —第i 组的组中值;f i —第i 组的次数;k —分组数第i 组的次数f i 是权衡第i 组组中值x i 在资料中所占⽐重⼤⼩的数量,因此将f i 称为是x i 的“权”,加权法也由此⽽得名。
n x n x x x x n i i n ∑==+++=121 .5(kg)528105285∑===n x x ∑∑∑∑==++++++===f fx f x f f f f x f x f x f x k i i ki i i k k k 11212211【例3.2】将100头长⽩母猪的仔猪⼀⽉窝重(单位:kg )资料整理成次数分布表如下,求其加权数平均数。
表3—1 100头长⽩母猪仔猪⼀⽉窝重次数分布表利⽤(3—2)式得:计算若⼲个来⾃同⼀总体的样本平均数的平均数时,如果样本含量不等,也应采⽤加权法计算。