北京工业大学信号处理工程应用训练
- 格式:doc
- 大小:1.37 MB
- 文档页数:71
2023最新电子信息工程专业大学排名电子信息工程专业大学排名专业概述电子信息工程是一门应用计算机等现代化技术进行电子信息控制和信息处理的学科,主要研究信息的获取与处理,电子设备与信息系统的设计、开发、应用和集成。
现在,电子信息工程已经涵盖了社会的诸多方面。
电子信息工程专业是集现代电子技术、信息技术、通信技术于一体的.专业。
本专业是一个电子和信息工程方面的专业。
本专业学生主要学习信号的获取与处理、电厂设备信息系统等方面的专业知识,受到电子与信息工程实践的基本训练,具备设计、开发、应用和集成电子设备和信息系统的能力。
该专业是前沿学科,现代社会的各个领域及人们日常生活等都与电子信息技术有着紧密的联系。
全国各地从事电子技术产品的生产、销售和应用的企事业单位很多.,随着改革步伐的加快,这样的企事业单位会越来越多。
为促进市场经济的发展,培养一大批具有大专层次学历,能综合运用所学知识和技能,适应现代电子技术发展的要求,从事企事业单位与本专业相关的产品及设备的生产、安装调试、运行维护、销售及售后服务、新产品技术开发等应用型技术人才和管理人才是社会发展和经济建设的客观需要,市场对该类人才的需求越来越大。
为此电子信息工程专业的人才有着广泛的就业前景,毕业生可从事电子设备、信息系统和通信系统的研究、设计、制造、应用和开发工作。
注重培养电子信息技术基础知识与能力;具有电子产品的装配、调试及设计的基本能力,具有一般电子设备的安装、调试、维护与应用能力;具有对办公自动化设备的安装、调试、维修和维护管理能力;具有对通信设备、家用电子产品电路图的阅读分析及安装、调试、维护能力;具有对机电设备进行智能控制的设计和组织能力;具有阅读相关专业英语资料能力;计算机技术应用能力达到计算机等级四级要求水平。
课程设置主干学科:电子科学与技术、信息与通信工程、计算机科学与技术。
主要课程:电路理论系列课程、计算机技术系列课程、信息理论与编码、信号与系统、数字信号处理、电磁场理论、自动控制原理、感测技术等。
2022年北京工业大学信息管理与信息系统专业《计算机网络基础》科目期末试卷A(有答案)一、选择题1、当数据由主机A送传至主机B时,不参与数据封装工作的是()。
A.物理层B.数据链路层C.网络层D.传输层2、若甲向乙发起一个TCP连接,最大段长MSS-1KB,RTT-5ms,乙开辟的接收缓存为64KB,则甲从连接建立成功至发送窗口达到32KB,需经过的时间至少是()。
A.25msB.30msC.160msD.165ms3、使用两种编码方案对比特流01100111进行编码的结果如图所示,编码1和编码2分别是()A.NRZ 和曼彻斯特编码B.NRZ 和差分曼彻斯特编码C.NRZ-I和曼彻斯特编码D.NRZ-I和差分曼彻斯特编码4、无法隔离冲突域的网络互连设备是()A.路由器B.交换机C.集线器D.网桥5、为了纠正2比特的错误,编码的海明距应该为()。
A.2B.3C.4D.56、X台计算机连接到一台YMbit/s的集线器上,则每台计算机分得的平均带宽为()。
A.XMbit/sB.YMbit/sC.Y/XMbit/sD.XYMbit/s7、使用集线器连接局域网是有限制的,任何两个数据终端设备之间允许的传输通路中可使用的集线器个数最多是()。
A.1个B.2个C.4个D.5个8、某局域网采用SNMP进行网络管理,所有被管设备在15min内轮询一次,网络没有明显拥塞,单个轮询时间为0.4s,则该管理站最多可支持()个设备。
A.18000B.3600C.2250D.900009、下面关于POP3,()是错误的。
A.由客户端选择接收后是否将邮件保存在服务器上B.登录到服务器后,发送的密码是加密的C.协议是基于ASCII码的,不能发送二进制数据D.一个账号在服务器上只能有一个邮件接收目录10、ICMP报文的传输方式是()。
A.无连接的UDP数据报形式传送B.面向连接的TCP报文形式传送C.放在IP数据报的首部字段中传送D.放在IP数据报的数据字段中传送二、填空题11、HTML 语言是一种____________语言。
西安电子科技大学A+2北京邮电大学A+3电子科技大学A+4清华大学A+5东南大学A+6北京交通大学A+7北京理工大学A8哈尔滨工业大学A9华中科技大学A10上海交通大学A11北京航空航天大学A12北京大学A13西北工业大学A14大连理工大学A中国科学技术大学A16南京大学A17四川大学A18山东大学A19天津大学A20浙江大学A21西安交通大学A22武汉大学A23哈尔滨工程大学A24南京邮电大学A25上海大学A26杭州电子科技大学AB+等(41个):西南交通大学、合肥工业大学、南京理工大学、华南理工大学、苏州大学、吉林大学、深圳大学、大连海事大学、中北大学、重庆邮电大学、南京航空航天大学、重庆大学、武汉理工大学、南开大学、中国海洋大学、成都信息工程学院、上海海事大学、江南大学、安徽大学、北京师范大学、西安理工大学、北京工业大学、同济大学、哈尔滨理工大学、东北大学、湖南大学、长江大学、中国传媒大学、桂林电子科技大学、东华大学、南京信息工程大学、厦门大学、沈阳航空工业学院、济南大学、西安邮电学院、中国民航大学、北方工业大学、长春理工大学、陕西师范大学、浙江工业大学、成都理工大学B等(40个):江苏科技大学、西安科技大学、天津工业大学、长春工业大学、华北电力大学、广东工业大学、中南大学、贵州大学、河海大学、中山大学、暨南大学、西北大学、汕头大学、长安大学、新疆大学、上海理工大学、江西科技师范学院、福州大学、南昌大学、太原理工大学、华东理工大学、山东科技大学、五邑大学、西安工业大学、山西师范大学、西南大学、西华大学、天津理工大学、燕山大学、湘潭大学、兰州理工大学、烟台大学、重庆工学院、北京印刷学院、青岛大学、沈阳工业大学、黑龙江大学、扬州大学、南昌航空工业学院、内蒙古大学通信与信息系统专业与信号与信息处理专业的区别通信与信息系统专业(一)《移动通信与无线技术》研究数字移动通信和个人通信系统的系统模拟、多址技术、数字调制解调技术、信道动态指配技术、同步技术、多用户检测技术、语音压缩技术、宽带多媒体技术以及射频技术。
2022年北京工业大学软件工程专业《计算机网络》科目期末试卷A(有答案)一、选择题1、使用后退N帧协议,根据图所示的滑动窗口状态(发送窗口大小为2,接收窗口大小为1),指出通信双方处于何种状态()。
A.发送方发送完0号帧,接收方准备接收0号帧B.发送方发送完1号帧,接收方接收完0号帧C.发送方发送完0号帧,接收方准备接收1号帧D.发送方发送完1号帧,接收方接收完1号帧2、因特网采用的核心技术是()。
A.TCP/IPB.局域网技术C.远程通信技术D.光纤技术3、对路由选择协议的一个要求是必须能够快速收敛,所谓“路由收敛”是指()。
A.路由器能把分组发送到预订的目标B.路由器处理分组的速度足够快C.网络设备的路由表与网络拓扑结构保持一致D.能把多个子网汇聚成一个超网4、用于域间选路的协议是()。
A.RIPB. BGPC.PIMD.OSPF5、下列帧类型中,不属于HDLC帧类型的是()A.信息帧B.确认帧C.监控帧D.无编号帧6、下列介质访问控制方法中,可能发生冲突的是()A.CDMAB.CSMAC.TDMAD.FDMA7、下列关于TCP的叙述中,正确的是()。
I.TCP是一个点到点的通信协议Ⅱ.TCP提供了无连接的可靠数据传输IⅡ.TCP将来自上层的字节流组织成IP数据报,然后交给IP IV.TCP将收到的报文段组成字节流交给上层A.I、Ⅱ、ⅣB. I、ⅢC.仅ⅣD.Ⅲ、Ⅳ8、下列关于因特网中的主机和路由器的说法,错误的是()。
A.主机通常需要实现IPB.路由器必须实现TCPC.主机通常需要实现TCPD.路由器必须实现IP9、传输层中的套接字是()。
A.IP地址加端口B.使得传输层独立的APIC.允许多个应用共享网络连接的APID.使得远端过程的功能就像在本地一样10、用户提出服务请求,网络将用户请求传送到服务器:服务器执行用户请求,完成所要求的操作并将结果送回用户,这种工作模式称为()。
A.客户/服务器模式B.对等模式C.CSMA/CD 模式D.令牌环模式11、从协议分析的角度,www服务的第一步操作是www浏览器完成对wwW服务器的()。
北京工业大学通信系统工程应用训练报告专业:通信工程学生姓名:***指导教师:***完成时间:2022年4月25日目录训练十一DFT性质研究 (1)训练十二DFT及抽样定理研究 (13)训练十三数字滤波器制作 (20)训练十四IIR数字滤波器设计与实现 (25)训练十五线性卷积计算 (46)训练十六FIR数字滤波器设计与实现 (55)训练十一DFT性质研究验证dft函数正确性设置原始输入信号为x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}},将输入信号x[8]进行DFT正变换,dft(X,x,8,1),输出保存在X[8],如下:可以看到,输入信号x(n)已经变换到频域X(k),且仍为8位。
再对X[8]进行DFT反变换,dft(x,X,8,-1),重新得到x[8],观察得到的输出与原始输入数据是否相同。
结果如下:可以看到,输出的x[8]取值仍为x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}},证明经过DFT正反变换后,信号能够恢复原始信号。
根据帕塞瓦尔定理,应有时域、频域总能量相等:。
经过计算,时域、频域能量和分别为,证明时域、频域能量和相同,符合帕塞瓦尔定理。
综上,证明DFT变换正确。
A、补0效应研究原数组:x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,},{8,0}}示例程序中补0后数组为:x2[16]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},{0, 0},{0,0}}补0方式我使用的补0方式为:for(i=8;i<13;i++)x2[i]=COMPLEX(0,0);补0后数组为:x2[13]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{0,0},{0,0},{0,0},{0,0},{0,0}}结果分析与图在时域中,信号长度增加,由于所增加的项均为零,波形仍与未补0时相同未补零时的信号时域图补5个零后的信号时域图补8个零后的信号时域图经过DFT变换后,X(k)长度也会随着x(n)长度的增加而增加,且增加的值非零未在末端补零时,信号频谱图在末端补5个零时,信号频谱图在末端补8个零时,信号频谱图可以看到,经过补0,经过DFT变换的频谱与未补零时形状基本相同,只是在长度上进行扩展,且补零数量越多,扩展越长。
可以理解为经过补0效应,增加了频域采样频率,但是由于信号未增加新的信息,因此不能提高物理分辨率。
在能量上,补5/8个零时,信号能量时域、频域能量和如下:时域能量和、频域能量和始终相等,符合帕塞瓦尔定理,且能量与未插值时的相同。
B、插值效应研究原数组:x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,},{8,0}}示例程序中插值后数组为:x3[16]={{1,0},{8,0},{2,0},{7,0},{3,0},{6,0},{4,0},{5,0},{5,0},{4,0},{6,0},{3,0},{7,0},{2,0},{8, 0},{1,0}}插值方式我使用的插值方式为:for(i=0;i<16;i=i+2){x3[i]=COMPLEX(1+i/2,0);x3[i+1]=COMPLEX(i*0.5+2.5,0);}插值后数组为:x[16]={{1,0},{3,0},{2,0},{4,0},{3,0},{5,0},{4,0},{6,0},{5,0},{7,0},{6,0},{8,0},{7,0},{9,0},{8,0 },{10,0}}结果分析与图(1)在示例程序中,在x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}}中反向插入原序列,使原序列变为x3[16]={{1,0},{8,0},{2,0},{7,0},{3,0},{6,0},{4,0},{5,0},{5,0},{4,0},{6,0},{3,0},{7,0},{2,0},{8, 0},{1,0}},再进行DFT变换,观察频谱,对比时域、频域能量和。
反向插值后,时域、频域图可以看到,反向插值后,信号频谱有了很大的直流分量,且近乎左右对称。
从三维频谱图上可以看出,高频、低频部分实际上是共轭反对称:反向插值后,三维频域图。
符合帕塞瓦尔定理,且能量是未插值时的2倍。
(2)在x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}}中插入序列{{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{9,0},{10,0}},使原序列变为x3[16]={{1,0},{3,0},{2,0},{4,0},{3,0},{5,0},{4,0},{6,0},{5,0},{7,0},{6,0},{8,0},{7,0},{9,0},{8,0},{10, 0}},再进行DFT变换,观察频谱,对比时域、频域能量和。
插值后,时域、频域图可以看到,插值后,信号频谱有了很大的直流分量,且近乎左右对称。
,符合帕塞瓦尔定理。
(3)在x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}}中正向插入原序列,使原序列分别变为x2[16]={{1,0},{1,0},{2,0},{2,0},{3,0},{3,0},{4,0},{4,0},{5,0},{5,0},{6,0},{6,0},{7,0},{7,0},{8,0},{8,0 }},再进行DFT变换,观察频谱,对比时域、频域能量和。
正向插值后,时域、频域图可以看到,正向插值后,信号频谱有了很大的直流分量,且近乎左右对称。
符合帕塞瓦尔定理,且能量是未插值时的2倍。
C、插0效应研究原数组:x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,},{8,0}}示例程序中插0后数组为:x4[16]={{1,0},{0,0},{2,0},{0,0},{3,0},{0,0},{4,0},{0,0},{5,0},{0,0},{6,0},{0,0},{7,0},{0,0},{8, 0},{0,0}}插0方式我使用的插0方式为:for(i=0;i<16;i=i+3){x4[i]=COMPLEX(1+i/2,0);x4[i+1]=COMPLEX(2+i/2,0);x4[i+2]=COMPLE X(0,0);}插0后数组为:x4[12]={{1,0},{2,0},{0,0},{3,0},{4,0},{0,0},{5,0},{6,0},{0,0},{7,0},{8,0},{0,0}}结果分析与图(1)在示例程序中,在x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}}中,每隔一点,插入1个0值,使原序列分别变为x1[16]={{1,0},{0,0},{2,0},{0,0},{3,0},{0,0},{4,0},{0,0},{5,0},{0,0},{6,0},{0,0},{7,0},{0,0},{8,0},{0,0 }},再进行DFT变换,观察频谱,对比时域、频域能量和。
插0前,时域、频域图插0后,时域、频域图可以看到,插0后的频谱是对原始信号频谱的周期延拓。
画出三维图像,可以更直观地看出周期延拓关系:未插入零/插入一个零后的三维频谱图通过对插零后图像进行DFT运算,可以证明插零后的DFT是原信号DFT的周期延拓。
符合帕塞瓦尔定理,且能量与未插值时的相同。
(2)在x[8]={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0}}中,每隔两点,插入1个0值,使原序列变为x4[16]= {{1,0},{2,0},{0,0},{3,0},{4,0},{0,0},{5,0},{6,0},{0,0},{7,0},{8,0},{0,0}},再进行DFT 变换,观察频谱,对比时域、频域能量和。
插0后,时域、频域图符合帕塞瓦尔定理源程序:// 11yy.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include"D:\xhclgcyy\x_math.cpp"#include"D:\xhclgcyy\x_graph.cpp"void plotgri2(COLORREF gridcolor,COLORREF linecolor,COMPLEX p[],int N){int i;HPEN pen1=CreatePen(PS_SOLID,1,gridcolor),oldpen=(HPEN)SelectObject(win3.hdc,pen1); HPEN pen2=CreatePen(PS_SOLID,1,linecolor);for(i=0;i<N;i++)line2(i,0,i,abs(p[i]));SelectObject(win3.hdc,pen2);moveto2(0,p[0].r);for(i=0;i<N;i++)lineto2(i,abs(p[i]));SelectObject(win2.hdc,oldpen);DeleteObject(pen1);DeleteObject(pen2);void plotgri3(COLORREF gridcolor,COLORREF linecolor,COMPLEX p[],int N){int i;HPEN pen1=CreatePen(PS_SOLID,1,gridcolor),oldpen=(HPEN)SelectObject(win3.hdc,pen1); HPEN pen2=CreatePen(PS_SOLID,1,linecolor);for(i=0;i<N;i++)line3(i,0,0,i,p[i].r,p[i].i);SelectObject(win3.hdc,pen2);moveto3(0,p[0].r,p[0].i);for(i=0;i<N;i++)lineto3(i,p[i].r,p[i].i);SelectObject(win2.hdc,oldpen);DeleteObject(pen1);DeleteObject(pen2);}void main(){int i;double sumT,sumF;COMPLEX x[8],//{{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,},{8,0}}X[8],x2[13],//={{1,0},{2,0},{3,0},{4,0},{5,0},{6,0},{7,0},{8,0},{0,0},{0,0},{0,0},{0,0},{0,0}} X2[16],x3[16],//={{{1,0},{1,0},{2,0},{2,0},{3,0},{3,0},{4,0},{4,0},{5,0},{5,0},{6,0},{6,0},{7,0},{ 7,0},{8,0},{8,0}}}X3[16],x4[12],//={{1,0},{2,0},{0,0},{3,0},{4,0},{0,0},{5,0},{6,0},{0,0},{7,0},{8,0},{0,0}}X4[16];//给待变换的复数数组赋值:for(i=0;i<8;i++){x[i]=COMPLEX(i+1,0);X[i]=COMPLEX(0,0);}for(i=0;i<8;i++)x2[i]=COMPLEX(i+1,0);for(i=8;i<13;i++)x2[i]=COMPLEX(0,0);for(i=0;i<16;i=i+2){x3[i]=COMPLEX(1+i/2,0);x3[i+1]=COMPLEX(1+i/2,0);}for(i=0;i<16;i=i+3){x4[i]=COMPLEX(1+i/2,0);x4[i+1]=COMPLEX(2+i/2,0);x4[i+2]=COMPLE X(0,0);}//第1步:验证dft函数正确性dft(X,x,8,1);for(i=0;i<8;i++)printf("X[%d]=%f+%f\n",i,X[i].r,X[i].i); getch();dft(x,X,8,-1);for(i=0;i<8;i++)printf("x[%d]=%f+%f\n",i,x[i].r,x[i].i);getch();for(sumT=0,sumF=0,i=0;i<8;i++){sumT=sumT+x[i].r*x[i].r;sumF=sumF+X[i].r*X[i].r+X[i].i*X[i].i;}printf("时域能量和=%f,频域能量和=%f\n",sumT,sumF/8.0);window2("函数图形显示",-20,40,20,-20,"t","f(t)");xy2(BLUE);plotgri2(BLUE,RED,X,8);getch();frame2(win2.xstr,win2.ystr);xy2(BLUE);plotgri2(BLUE,RED,x,8);getch();window3("周期信号频谱图",-1,-12,-12,20,12,12,"N","r","i"); xyz3(BLUE);plotgri3(BLUE,RED,X,8);getch();frame3();xyz3(BLUE);plotgri3(BLUE,RED,x,8);getch();//第2步:补0效应dft(X2,x2,13,1);for(i=0;i<13;i++)printf("X2[%d]=%f+%f\n",i,X2[i].r,X2[i].i); getch();dft(x2,X2,13,-1);for(i=0;i<13;i++)printf("x2[%d]=%f+%f\n",i,x2[i].r,x2[i].i); getch();for(sumT=0,sumF=0,i=0;i<13;i++){sumT=sumT+x2[i].r*x2[i].r;sumF=sumF+X2[i].r*X2[i].r+X2[i].i*X2[i].i;}printf("时域能量和=%f,频域能量和=%f\n",sumT,sumF/16.0);window2("函数图形显示",-20,40,20,-20,"t","f(t)");xy2(BLUE);plotgri2(BLUE,RED,X2,13);getch();frame2(win2.xstr,win2.ystr);xy2(BLUE);plotgri2(BLUE,RED,x2,13);getch();window3("周期信号频谱图",-1,-12,-12,20,12,12,"N","r","i"); xyz3(BLUE);plotgri3(BLUE,RED,X,13);getch();frame3();xyz3(BLUE);plotgri3(BLUE,RED,x,13);getch();//第3步:插值效应dft(X3,x3,16,1);for(i=0;i<16;i++)printf("X3[%d]=%f+%f\n",i,X3[i].r,X3[i].i); getch();dft(x3,X3,16,-1);for(i=0;i<16;i++)printf("x3[%d]=%f+%f\n",i,x3[i].r,x3[i].i); getch();for(sumT=0,sumF=0,i=0;i<16;i++){sumT=sumT+x3[i].r*x3[i].r;sumF=sumF+X3[i].r*X3[i].r+X3[i].i*X3[i].i;}printf("时域能量和=%f,频域能量和=%f\n",sumT,sumF/16.0);window2("函数图形显示",-20,20,20,-20,"t","f(t)");xy2(BLUE);plotgri2(BLUE,RED,X3,16);getch();frame2(win2.xstr,win2.ystr);xy2(BLUE);plotgri2(BLUE,RED,x3,16);getch();window3("周期信号频谱图",-1,-12,-12,20,12,12,"N","r","i"); xyz3(BLUE);plotgri3(BLUE,RED,X3,16);getch();frame3();xyz3(BLUE);plotgri3(BLUE,RED,x3,16);getch();//第4步:插0效应dft(X4,x4,12,1);for(i=0;i<12;i++)printf("X4[%d]=%f+%f\n",i,X4[i].r,X4[i].i); getch();dft(x4,X4,12,-1);for(i=0;i<12;i++)printf("x4[%d]=%f+%f\n",i,x4[i].r,x4[i].i); getch();for(sumT=0,sumF=0,i=0;i<12;i++){sumT=sumT+x4[i].r*x4[i].r;sumF=sumF+X4[i].r*X4[i].r+X4[i].i*X4[i].i;}printf("时域总和=%f,频域总和=%f\n",sumT,sumF/12.0); window2("函数图形显示",-20,40,20,-20,"t","f(t)");xy2(BLUE);plotgri2(BLUE,RED,X4,12);getch();frame2(win2.xstr,win2.ystr);xy2(BLUE);plotgri2(BLUE,RED,x4,12);getch();window3("周期信号频谱图",-1,-12,-12,20,12,12,"N","r","i"); xyz3(BLUE);plotgri3(BLUE,RED,X4,12);getch();frame3();xyz3(BLUE);plotgri3(BLUE,RED,x4,12);getch();}训练十二DFT及抽样定理研究D、给定单频信号抽样1. 对给定信号x(t)=sin(2πfct),fc==50,N=264进行抽样,抽样频率分布为100Hz,110Hz,200Hz,230Hz,250Hz。