高中物理动量定理解题技巧讲解及练习题(含答案)
- 格式:doc
- 大小:622.50 KB
- 文档页数:10
高中物理动量定理解题技巧讲解及练习题(含答案)
一、高考物理精讲专题动量定理
1.如图所示,足够长的木板A和物块C置于同一光滑水平轨道上,物块B置于A的左端,A、B、C的质量分别为m、2m和3m,已知A、B一起以v0的速度向右运动,滑块C向左运动,A、C碰后连成一体,最终A、B、C都静止,求:
(i)C与A碰撞前的速度大小
(ii)A、C碰撞过程中C对A到冲量的大小.
【答案】(1)C与A碰撞前的速度大小是v0;
(2)A、C碰撞过程中C对A的冲量的大小是32mv0.
【解析】
【分析】
【详解】
试题分析:①设C 与A碰前速度大小为1v,以A碰前速度方向为正方向,对A、B、C从碰前至最终都静止程由动量守恒定律得:01(2)3?0mmvmv-
解得:10 vv.
②设C 与A碰后共同速度大小为2v,对A、C在碰撞过程由动量守恒定律得:012 3(3)mvmvmmv-
在A、C碰撞过程中对A由动量定理得:20CAImvmv-
解得:032CAImv
即A、C碰过程中C对A的冲量大小为032mv. 方向为负.
考点:动量守恒定律
【名师点睛】
本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.
2.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B的质量分别为m1=0.5 kg、m2=1.5 kg。求: ①A与B撞击结束时的速度大小v;
②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s; ②12N•s
【解析】
【详解】
①A、B碰撞过程系统动量守恒,以向左为正方向
由动量守恒定律得
m1v0=(m1+m2)v
代入数据解得
v=3m/s
②以向左为正方向,A、B与弹簧作用过程
由动量定理得
I=(m1+m2)(-v)-(m1+m2)v
代入数据解得
I=-12N•s
负号表示冲量方向向右。
3.如图所示,一光滑水平轨道上静止一质量为M=3kg的小球B.一质量为m=1kg的小球A以速度v0=2m/s向右运动与B球发生弹性正碰,取重力加速度g=10m/s2.求:
(1)碰撞结束时A球的速度大小及方向;
(2)碰撞过程A对B的冲量大小及方向.
【答案】(1)-1m/s ,方向水平向左(2)3N·s,方向水平向右
【解析】
【分析】A与B球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A球的速度大小及方向;碰撞过程对B应用动量定理求出碰撞过程A对B的冲量;
解:(1)碰撞过程根据动量守恒及能量守恒得:0ABmvmvMv
2220111222ABmvmvMv
联立可解得:1m/sBv,1m/sAv 负号表示方向水平向左
(2)碰撞过程对B应用动量定理可得:0BIMv
可解得:3INs 方向水平向右
4.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5 m的位置B处是一面墙,如图所示.物块以v0=8m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以5m/s的速度反向运动直至静止.g取10 m/s2.
(1)求物块与地面间的动摩擦因数μ;
(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;
(3)求物块在反向运动过程中克服摩擦力所做的功W.
【答案】(1)0.32(2)130FN(3)9WJ
【解析】
(1)由动能定理,有:2201122mgsmvmv可得0.32.
(2)由动量定理,有'Ftmvmv可得130FN.
(3)'2192WmvJ.
【考点定位】本题考查动能定理、动量定理、做功等知识
5.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。已知物体A的质量为m,物体B的质量为2m,求:
(1)弹簧压缩到最短时物体B的速度大小;
(2)弹簧压缩到最短时的弹性势能;
(3)从A开始运动到弹簧压缩到最短的过程中,弹簧对A的冲量大小。
【答案】(1)(2)(3)
【解析】
【详解】
(1)弹簧压缩到最短时,A和B共速,设速度大小为v,由动量守恒定律有
①
得 ②
(2)对A、B和弹簧组成的系统,由功能关系有
③
得 ④
(3)对A由动量定理得
⑤ 得 ⑥
6.甲图是我国自主研制的200mm离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出.在加速氙离子的过程中飞船获得推力.
已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q.
(1)将该离子推进器固定在地面上进行试验.求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;
(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B.推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N.
(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况.通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法.
【答案】(1)(2)(3)增大S可以通过减小q、U或增大m的方法.
提高该比值意味着推进器消耗相同的功率可以获得更大的推力.
【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极A的氙离子数为n,在时间t内,离子推进器发射出的氙离子个数为Nnt,设氙离子受到的平均力为F,对时间t内的射出的氙离子运用动量定理,FtNmvntmv,F= nmv
根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F= nmv
电场对氙离子做功的功率P= nqU
则
根据上式可知:增大S可以通过减小q、U或增大m的方法.
提高该比值意味着推进器消耗相同的功率可以获得更大的推力.
(说明:其他说法合理均可得分)
考点:动量守恒定律;动能定理;牛顿定律.
7.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。可视为质点的小物块B置于A的最右端,B的质量。现对小车A施加一个水平向右的恒力F=20N,作用0.5s后撤去外力,随后固定挡板与小物块B发生碰撞。假设碰撞时间极短,碰后A、B粘在一起,继续运动。求:
(1)碰撞前小车A的速度;
(2)碰撞过程中小车A损失的机械能。
【答案】(1)1m/s(2)25/9J
【解析】
【详解】
(1)A上表面光滑,在外力作用下,A运动,B静止,
对A,由动量定理得:,
代入数据解得:m/s;
(2)A、B碰撞过程系统动量守恒,以向右为正方向,
由动量守恒定律得:,
代入数据解得:,
碰撞过程,A损失的机械能:,
代入数据解得:;
8.质量m=0.60kg的篮球从距地板H=0.80m高处由静止释放,与水平地板撞击后反弹上升的最大高度h=0.45m,从释放到弹跳至h高处经历的时间t=1.1s,忽略空气阻力,取重力加速度g=10m/s2,求: (1)篮球与地板撞击过程中损失的机械能ΔE;
(2)篮球对地板的平均撞击力的大小.
【答案】(1)2.1J(2)16.5N,方向向下
【解析】
【详解】
(1)篮球与地板撞击过程中损失的机械能为
0.6100.80.45)J=2.1JEmgHmgh(
(2)设篮球从H高处下落到地板所用时间为1t,刚接触地板时的速度为1v;
反弹离地时的速度为2v,上升的时间为2t,由动能定理和运动学公式
下落过程
2112mgHmv
解得
14m/sv
110.4vtsg
上升过程
22102mghmv
解得
23m/sv
220.3svtg
篮球与地板接触时间为
120.4stttt
设地板对篮球的平均撞击力为F,取向上为正方向,由动量定理得
21Fmgtmvmv()()
解得
16.5FN
根据牛顿第三定律,篮球对地板的平均撞击力 16.5NFF,方向向下.
点睛:本题主要考查了自由落体运动的基本规律,在与地面接触的过程中,合外力对物体的冲量等于物体动量的变化量,从而求出地板对篮球的作用力.
9.2018年诺贝尔物理学奖授于了阿瑟·阿什金(Arthur Ashkin)等三位科学家,以表彰他们在激光领域的杰出成就。阿瑟·阿什金发明了光学镊子(如图),能用激光束“夹起”粒子、原子、分子;还能夹起病毒、细菌及其他活细胞,开启了激光在新领域应用的大门。